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Abstract: In this paper, the stress superposition method (SSM) is proposed to solve the stress
distribution of regular polygon membranes. The stress-solving coefficient and the calculation formula
of arbitrary point stress of regular polygon membrane are derived. The accuracy of the SSM for
calculating stresses in regular polygonal membranes is verified by comparing the calculation results
of the SSM with the finite element simulation results. This article is the first to propose a method
to investigate the response of the arch height of the membrane curved edge to the membrane’s
mechanical properties while keeping the effective area constant. It is found that the equivalent stress
and the second principal stress at the midpoint of the membrane curved edge are effectively increased
with the increase of the arch height of the curved edge. The second principal stress at the edge region
of the membrane is relatively small, leading to the occurrence of wrinkles. When the stress at the
midpoint of the curved edge is equal to that at the center of the membrane, the membrane plane
attains the maximum stiffness and reduces the possibility of wrinkling at the edge.

Keywords: stress superposition; membrane; curved edge; wrinkles

1. Introduction

With the current rapid development of the aerospace industry, the scale of spacecraft
required to meet the needs of space exploration is increasing. The overall mass increases
and the stiffness decreases if the spacecraft is enlarged without optimizing the structure.
Thin-membrane structures can reduce rockets’ launch mass and stowage volume due to
the advantages of light mass, high stowage ratio, and flexible configuration [1]. Therefore,
thin-membrane deployable structures are widely applied in thin-membrane antennas, [2]
thin-membrane shields [3], and solar sails, [4,5] and play an essential role in the design
of future large spacecraft. However, thin membranes are more sensitive to forces. The
strain increases with increased membrane tension, which causes wrinkles. According to
the present research, the two main states, pre-wrinkling and post-wrinkling, are attained
depending on whether the strain of the membrane is considered or not [6]. When the strain
of the membrane is not considered, the membrane is in the pre-wrinkling state; when the
strain of the membrane is considered, the membrane is in the post-wrinkling state.

Currently, there are substantial studies on the post-wrinkling membrane, which mainly
focus, on the following three theories: tension field theory, the Föppl–von Kármán theory,
and the Koiter theory. Tension field theory was proposed to analyze the wrinkling behavior
of membranes under finite deformation and is used to solve the problems that arise during
the stretching of membranes [7–13]. Pipkin [9] applied the tension field theory by intro-
ducing the lowest possible energy density method matching a given deformation gradient.
Steigmann [10] derived a partial differential equation for the membrane tension trajectory
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to avoid the membrane deformation in uncertainty. The Kármán theory is commonly
used to analyze the amplitude and wavelength of thin membranes [14–22], and it takes
into account the effects of membrane bending in the analysis of wrinkles. Fu et al. [21]
established a solution framework for compressible and incompressible materials under
the Föppl–von Kármán Theory. Huang et al. [22] used the Föppl–von Kármán theory to
improve the accuracy and efficiency of membrane instability calculations by transitioning
the Fourier-approximated membrane model to a multiscale model through the Arlequin
method. Koiter’s theory is based on the three-dimensional elastic theory, which simulates
the fold mode by combining the stretching and bending effects of the thin plate [23,24].
Taylor et al. [25] applied Koiter’s nonlinear plate theory to the numerical simulation of
stretching elastic thin plate wrinkles. Ciarlet [26] proposed a natural two-dimensional
Koiter model for linear elastic shells under half-space constraints. In addition to the studies
above, some scholars have combined the calculation of post-wrinkling membranes with
finite element theory. Lee et al. [27] used the nonlinear finite element method to simulate
the large deformation of membrane wrinkles in migration coordinates. Wong et al. [28]
analyzed the generation and increase of wrinkles in corner-point tensioned square mem-
branes by finite element simulation software. Wong’s method could accurately predict the
central membrane wrinkles, but not the wrinkles at the edges.

Compared with the post-wrinkling theories of thin membranes, the pre-wrinkling
theories are less well studied. Silvestre [29] applied the modal method to unidirectional
tensioned thin plates and proposed analytical solutions for nonuniform displacement,
stress, and strain fields, which laid the foundation for the future mechanical roots of
membrane wrinkle generation. Martins et al. [30] performed a pre-wrinkling analysis
based on the modal idea of generalized beam theory using the principle of potential energy
standard value. Li et al. [31] proposed a stress superposition method (SSM) and predicted
the location of wrinkles in rectangular membranes with different aspect ratios. However,
a stress calculation model for regular polygons was not established in their studies. Due
to the complexity and inhomogeneity of the membrane stress field, there are relatively
few solutions for stresses in orthogonal polygonal membranes determined by analytical
methods. This study will address the above problems.

The purpose of this paper is to establish a pre-wrinkle model for corner-point ten-
sioned orthogonal polygonal membranes and put forward the idea of solving the stresses
in orthogonal polygonal membranes by the SSM. The stress regions of the membranes with
odd and even edges are divided. The expressions of the constant coefficients of the stresses
in the orthogonal polygonal membranes are derived, and the analytical equations of the
stresses in the orthogonal polygonal membranes are solved. The SSM and finite element
simulation are used to solve different types of membrane samples, and the SSM is verified
by comparing the analytical results with the simulation. Considering the sensitivity of
membrane curved edge to the change in membrane stress, the response of the membrane
curved edge arch height to the change in membrane mechanical properties is investigated.
As shown by the analysis results, the SSM can be used to solve for the optimal height of
the membrane arc edge and to predict the effect of the arc edge on wrinkle generation.

2. Stress Superposition of Edge-Shaped Membranes

When an object is subjected to an external force, it produces a small deformation.
According to the article [31], a two-ended rope subject to tension F is equivalent to the
superposition of two ropes, each of which has one end under tension and the other
end fixed.

For flat (planar) membranes, the form of force changes. When tension is applied to
each corner point of the membrane, the membrane plane has a two-dimensional force.
Opposite to each tensioning point, there are multiple tensioning points that bear the tension.
Because of the symmetry of the tension point, the rectangular membrane resembles the
stress superposition of one-dimensional cable tension. When the displacement produced
by the membrane under tension is small, it can be regarded as bearing a tension between
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two opposite points. This method is unable to solve regular polygonal membranes with odd
tension points, such as regular triangles and regular pentagons. The stress superposition
model of a regular polygon is explored through the force analysis of regular triangular
membranes. As is shown in Figure 1, the three corner points of the triangular membrane
are sorted clockwise as corner point 1, 2, and 3, and subjected to tensile force F. Based on
the force analysis of an arbitrary point M, the force from corner point 1 to M is F1M, that
from corner point 2 to M is F2M, and that from corner point 3 to M is F3M.The following
equations can be obtained according to the force balance.

→
F 2M +

→
F 3M =

→
F 1M . . .

→
F 1M +

→
F 2M =

→
F 3M . . .

→
F 1M +

→
F 3M =

→
F 2M

Figure 1. Analysis of the force at any point of the positive triangle.

When calculating the stress at point M, if the stress of the three tension F is super-
imposed on the M point, the stress is increased by two times. Therefore, if the size of the
arbitrary point of the regular triangle does not change after the stress superposition, it is
equivalent to the superposition of three membranes with two points fixed and one point
tensioned by F/2. The stress superposition form is shown in Figure 2.

Figure 2. Triangular membrane stress superposition. (a) A plane membrane with three points subject
to tension F; (b) Double point fixation, single point force F/2 of the plane membrane.

Given the above theoretical analysis, the thin membrane stress of any regular polygon
can be solved by a similar method. If the number of sides of a regular polygon is n, it can
be transformed into a superposition of n polygonal stresses. Among them, each polygon
has (n − 1) corner points fixed and one corner point tensioned by F/2. The direction of
the tension is in the connection line from the center of the shape to the corner point. This
method decouples the stress distribution of the regular polygon structure in the multi-point
tension state into the superposition of the single-point tension state, so that the analytical
solution of the stress field of the regular polygon membrane under the corner tension can
be obtained. When using the stress superposition method to solve the stress distribution in
this article, the membrane needs to meet the following conditions:

(1) The membrane structure is a symmetrical regular polygon shape;
(2) The membrane is subjected to symmetrical tensile forces, and the tensile forces are

equal in magnitude;
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(3) The corner pull direction is on the line connecting the center of the regular polygonal
membrane to the corner points.

3. Calculation and Verification of Positive Polygon SSM
3.1. Theoretical Derivation of SSM in Regular Polygons

According to the equation of Timoshenko and Goodier [32] for the corner point tension,
the stress associated with the corner point i (i = 1, 2, 3, 4) in the polar coordinate system can
be described as:

σr =
kT
2ri

cos α (1)

where α is the angle between the line from point i to point M and the line where the
corner point pull force is located; ri is the distance from point i to point M; σr is the radial
positive stress component; and k is the stress-solving coefficient. When the thickness of the
membrane is t, the formula can be described as:

σr =
kT
2tri

cos α (2)

According to the distribution law of the stress circle of the tension membrane at the
corner, the tangency of the stress circle and the arc edge of the membrane is defined as the
critical condition. The stress circle critical conditions of the odd-sided positive polygon
and the even-sided positive polygon are different. The SSM of the odd-sided and even-
sided membranes needs to be analyzed separately. In order to observe the law of stress
superposition of regular n-polygons, regular hexagons and regular polygons are selected
to calculate the stress superposition. Since the arc edge can improve the membrane’s
mechanical properties, the arc edge of the membrane is taken into account in the stress
superposition calculation of the regular polygon membrane. The stress region division is
done for the ortho-hexagon, as is shown in Figure 3. For the regular hexagon, the stress arc
distribution exists mainly in the following three regions: (I) the stress circle tangent to 3− 2
and 6− 5, which is a continuous arc in the membrane plane and not divided; (II) the stress
circle tangent to 4− 3 and 5− 4, where the stress arc is divided into three segments; and
(III) the stress circle crossing 4− 3 and 5− 4, where the stress arc is cut into five segments.
With a gradual increase in the radius of the stress circle, each tangency is a critical point,
and each critical point passing will be divided into two more stress arcs.

According to the balance between the stress on the membrane stress arc and the
tension at the corner point, the following equations can be obtained.

2
∫ γ1

0

kT
2r

cos θ·r cos θdθ =
T
2

, a ∈ NI, (3)

2
∫ γ2

0

kT
2r

cos θ·r cos θdθ + 2
∫ γ1

γ2+γ3

kT
2r

cos θ·r cos θdθ =
T
2

, a ∈ NII, (4)

2
∫ γ2

0
kT
2r cos θ·r cos θdθ + 2

∫ γ2+γ3+γ4
γ2+γ3

kT
2r cos θ·r cos θdθ

+2
∫ γ1

γ2+γ3+γ4+γ5
kT
2r cos θ·r cos θdθ = T

2 , a ∈ NIII
(5)

where, NI, NII, and NIII represent stress regions I, II, and III, respectively, and a is the
location of the stress calculation point.

Then, k in the above equations is obtained as follows:

k1 = 2(sin 2γ1 + 2γ1)
−1, a ∈ NI, (6)

k2 = 2
(

sin 2γ2 + sin 2γ1 − sin 2(γ2 + γ3)
+2γ1 − 2γ3

)−1

, a ∈ NII, (7)

k3 = 2
(

sin 2γ2 + sin 2γ1 + sin 2(γ2 + γ3 + γ4)− sin 2(γ2 + γ3)
− sin 2(γ2 + γ3 + γ4 + γ5)− 2γ3 + 2γ1 − 2γ5

)−1

, a ∈ NIII (8)
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Figure 3. Corner point tensioning ortho-hexagonal stress area division. (a) Region I stress arc
distribution;(b) region II stress arc distribution; (c) region III stress arc distribution.

According to the relationship above, if the number of sides of the regular polygon is
2 m, when m > 2, the general expression of k can be obtained as follows:

ki = 2

 sin 2γ2 + sin 2γ1 + sin 2(γ2 + γ3 + γ4)− sin 2(γ2 + γ3)
+ · · ·+ sin 2(γ2 + γ3 + · · ·+ γ2i−2)− sin 2(γ2 + γ3 + · · · γ2i−3)
− sin 2(γ2 + γ3 + γ4 + · · ·+ γ2i−1) + 2γ1 − 2γ3 − · · · − 2γ2i−1

−1

i = 2, 3 · · ·m (9)

Above are the expressions for the stress circle distribution and the coefficients of radial
stress σr for a membrane with an even number of sides of a regular polygon. Next, the
distribution of the stress circle of the membrane with an odd number of sides will be
analyzed. Taking a regular heptagon as an example, the stress circle is divided as shown in
Figure 4.

The regular heptagon has one more stress region than the regular hexagon. The first
three stress regions are consistent with the regular hexagon, so it is only necessary to
calculate the coefficient of the fourth region.

2
∫ γ2+γ3

γ2
kT
2r cos θ·r cos θdθ + 2

∫ γ2+γ3+γ4+γ5
γ2+γ3+γ4

kT
2r cos θ·r cos θdθ

+2
∫ γ1

γ2+γ3+γ4+γ5+γ6
kT
2r cos θ·r cos θdθ = T

2 , a ∈ NIV
(10)
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Figure 4. Corner point tensioning positive heptagonal stress area division. (a) Region I stress arc
distribution; (b) region II stress arc distribution; (c) region III stress arc distribution; (d) region IV
stress arc distribution.

The solution gives:

k4 = 2

 sin 2(γ2 + γ3)− sin 2γ2 + sin 2(γ2 + γ3 + γ4 + γ5)
− sin 2(γ2 + γ3 + γ4) + sin 2γ1 − sin 2(γ2 + γ3 + γ4 + γ5 + γ6)
+2γ1 − 2γ2 − 2γ4 − 2γ6

−1

, a ∈ NIV (11)

It follows that when the number of sides of a positive polygon membrane is 2 m + 1,
there is a total of m + 1 values of k. The first m coefficient, k, is the same as those of a positive
2 m-sided shape, and the m + 1 th coefficient is:

ki+1 = 2

 sin 2(γ2 + γ3)− sin 2γ2 + · · ·+ sin 2(γ2 + γ3 + · · ·+ γ2i−1)
− sin 2(γ2 + · · ·+ γ2i−2) + sin 2γ1 − sin 2(γ2 + γ3 + · · ·+ γ2i)
+2γ1 − 2γ2 − 2γ4 − · · · − 2γ2i

−1

, i = m (12)

when a point in the membrane plane is given, the stress circle area can be determined
according to different tension points. The corresponding angle γi and distance ri from the
point to the tension point can be found according to the geometric relationship. According
to Equations (6), (7), (9) and (12), the corresponding k value is obtained. By bringing
the above values into Equation (1) respectively, the radial stress value produced by each
tensional point can be obtained. Then, from Equation (13), the radial stresses generated at
each point are transformed from the polar coordinate system to the Cartesian coordinate
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system. The stresses generated at each point can be superimposed in the x and y directions,
respectively, according to the SSM.

σx = σr cos2 η

σy = σr sin2 η
σxy = σr sin η cos η

(13)

In the equations above, η is the angle between the force direction of the tension point
and the X-axis of the coordinate system The planar thin membrane’s first principal stress
and the second principal stress can be obtained by bringing the superposition value in the
Cartesian coordinate system into Equation (14). Then, the Von Mises stress at each point of
the thin membrane can be obtained by bringing it into Equation (15).

σ1 =
σx+σy

2 +

√
(σx−σy)

2

4 + σxy2

σ2 =
σx+σy

2 −

√
(σx−σy)

2

4 + σxy2

(14)

σ =

√
σ1

2 + σ22 + (σ1 − σ2)
2

2
(15)

3.2. Verification of SSM on Regular Polygons

To verify the accuracy of the SSM of the regular polygon, the Abaqus finite element
analysis software can be used to establish the regular hexagonal and regular heptagonal
membrane finite element models. It is verified by comparing the simulation value and the
theoretical solution. The membrane material is polyimide. The radius of the inner tangent
circle R of both membranes is 270 mm, and the membrane thickness is 0.05 mm. The four
sampling points (c1, c2, c3, c4) are located on the line from the tension point to the center of
the membrane. The distance between each two points is 60 mm, as shown in Figure 5. The
distance from each tension point to the center of the membrane is 360 mm.

Figure 5. Example of stress superposition in ortho-hexagonal and ortho-heptagonal membranes.
(a) Positive hexagonal sampling point distribution; (b) Positive heptagonal sampling point distribution.

The membrane size and force form in Figure 5 is input to Abaqus for static analysis.
The analysis unit is a three-node triangular membrane element in Abaqus (M3D3), and
each corner bears 10 N of tension. To make the membrane in a static state, a fixed boundary
can be applied to the center of the membrane. The finite element simulation results are
shown in Figure 6. The values of the four sampling points are shown in Table 1.
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Table 1. Comparison of the simulation and theoretical values of both membranes.

Shape Nodes Simulation Value [Pa] Theoretical Value [Pa] Error

Regular hexagon

c1 640,656 610,470 4.7%
c2 640,729 618,059 3.5%
c3 649,116 631,387 2.7%
c4 775,573 762,149 1.7%

Regular
heptagon

c1 746,736 698,081 6.5%
c2 756,771 702,967 7.1%
c3 759,641 747,279 1.6%
c4 830,996 816,430 1.8%

Taking the stress value of point c1 in a regular hexagonal membrane as an example,
this point is in stress region I. When the corner point is subjected to a tensile force of
10 N, its stress distribution is shown in Figure 7. The stress circle and arc 5− 6 intersect at
point H, and the arch height of the arc side is h. The circumference angle corresponding to
the arc 1− H is ξ2, and the central angle corresponding to the arc 6− H is ξ1. The central
angle corresponding to the arc 1− 6 is ψ, the radius is R1, and the line 1− 6 is L. The
following assortment can be obtained:

Figure 7. c1 nodal stress calculation.

L =
2
√

3
3

(R + h) (16)

R1 =
h2 +

(
1
2 L
)2

2h
(17)

ξ2 = arcsin
1− H
2R1

(18)
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ψ = 2arcsin
L

2R1
(19)

ξ1 =
1
2

ψ− ξ2 (20)

γ1 = arccos
1− H

L
(21)

γ1 + ξ1 =
π

3
(22)

By solving Equations (16)–(22), γ1 = 50o can be obtained, and by bringing this
into Equation (6), k = 0.73 can also be obtained. The radial stress can be calculated as
203,490 pa by bringing k and L into Equation (1). Since the point is the center of the
membrane, the radial stress of six corner points is equal. The radial stress generated at
each angular point can be superimposed by transformation into the Cartesian coordinate
system through Equation (13). Then, the equivalent stress at the point can be found as
610,470 pa by Equations (16) and (17). The angular relationship of each point in Figure 5
can be obtained through a geometric relationship, the corresponding k value and r value
can be obtained, and then the equivalent stress at each point can be determined. The finite
element simulation results and theoretical calculation results of each point are shown in
Table 1.

From the results above, the average error of the n-hexagonal membrane is 3.15% and
the average error of the n-heptagonal membrane is 4.25%. SSM can be used for both the
regular hexagonal and regular heptagonal membranes to find their theoretical solutions
under tension at the corner points. That is, regardless of whether the number of sides of the
n-polygon is odd or even. Under the condition of being subjected to tension F at the corner
point, this can be regarded as the stress superposition of regular polygonal membranes
with n single points under tensile force F/2 and the remaining n−1 fixed points. It is worth
noting that the mechanical boundary and membrane shape should be consistent with the
model proposed in this paper during simulation and calculation. When the tensile force
value, tensile force direction, and membrane shape change, this theoretical analysis method
is no longer in use and needs to be analyzed separately.

4. Analysis of Mechanical Properties of Orthogonal Polygonal Membranes Based
on SSM

According to the law of stress propagation in the membrane plane, the midpoint of
the straight edge of the corner tensioned regular polygon membrane is the lowest point of
the stress, which seriously affects the stiffness of the membrane plane. In previous studies
of thin membranes, many scholars have demonstrated that the design of curved edges
can effectively increase the stress level at the edges of the membrane and equalize the
stress distribution of the membrane. The design of the curved edge should be such that
the effective area of the membrane remains constant. Otherwise, the curved edge design
will bring about a reduction in the working plane of the membrane. When the effective
area of the membrane is constant according to Equation (15), the size of the membrane
will increase with an increase in arch heigh. Therefore, a balance point should be found
to exert reasonable control of the arch height of the curved edge. In this section, the finite
element simulation is used to explore the stress distribution law of thin membranes. The
optimal arc edge structure is obtained according to the SSM of regular polygonal thin
membranes, which provides theoretical guidance for the future arc edge optimization
design of thin membranes.

A finite element model is established by taking the straight line from the center point
of the regular hexagonal membrane to the center point of the arc edge as the research object.
When the arch height h is 0 mm, 10 mm, 20 mm, 30 mm, and 40 mm, the stress distribution
of the membrane plane where the straight line is located is studied. The membrane material
is polyimide, with a thickness of 0.05 mm and an effective circle radius r of 270 mm. The
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tensile force of 10 N is applied to each corner point and the analysis results are shown in
Figure 8.

Figure 8. The stress distribution from the center point of the membrane to the midpoint of the
membrane arc at different arch heights.

When the effective area of the membrane is constant, with the increase of arch height,
the stress at the center of the film shows a downward trend, and the stress at the midpoint
of the arc shows an upward trend. The increase of the stress at the midpoint of the arc edge
is greater than the decrease of the stress at the center of the membrane. When the stress at
the center point of the membrane is equal to the stress at the center point of the arc edge,
the overall minimum stress of the membrane is enhanced to the greatest extent. At this
time, the highest stiffness is obtained in the whole membrane plane. The trend of stress at
the center point of the membrane and the trend of stress at the center point of the arc edge
are obtained by the SSM, as shown in Figure 9.
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Figure 10. Distribution of the second principal stress in the membrane at different arch heights. (a)The arch height h = 0 
mm; (b) the arch height h = 10 mm; (c) the arch height h = 0 mm. 

Figure 9. Stress variation in the center of the membrane and the center of the curved edge.

When the two figures intersect at a single point, the stress at the center point of the
membrane is equal to the stress at the center of the arc edge. The minimum stress in the
whole membrane plane reaches the maximum value, in which the peripheral size of the
ortho-polygon membrane only increases by 4.6%, but the minimum stress on the membrane
surface is increased by 18.52%. For any orthogonal polygon structure, the law of stress
propagation is the same, and the SSM can obtain the stresses at each point. According to
the intersection point of the figure, the arch height corresponding to the maximum stiffness
of the membrane is determined.



Materials 2022, 15, 192 11 of 13

In addition, the design of the curved edges of the membrane changes the initial stress
distribution state of the membrane, which can impact the wrinkling of the membrane.
In previous studies, it was considered that the membrane would be wrinkled at the first
principal stress σ1 > 0 and the second principal stress σ2 < 0 [6]. In the actual membrane
tensioning, due to the membrane strain generation, wrinkles are easy to generate in the
region where the second principal stress of the membrane is small, according to the tension
field theory and relaxation strain theory. Therefore, it is necessary to investigate the
effect on the region where membrane wrinkles may be generated when the stress at the
midpoint of the arc is equal to the stress at the center of the membrane. In order to facilitate
observation, the regular hexagonal membrane with arch heights of 0 mm, 10 mm, and
12.5 mm is analyzed by the finite element method. The second principal stress distribution
is shown in Figure 10, and the second principal stress distribution on the straight line from
the center of the membrane to the center of the arc edge is shown in Figure 11.

Figure 10. Distribution of the second principal stress in the membrane at different arch heights.
(a) The arch height h = 0 mm; (b) the arch height h = 10 mm; (c) the arch height h = 0 mm.

Figure 11. The second principal stress distribution on the straight line from the center of the mem-
brane to the center of the arc edge.

From the results of the analysis above, the second principal stress distribution states
of the three are basically in the same state, and all of them are greater than 0. The second
principal stress in the middle is higher than the second principal stress in the edge, which
indicates that the wrinkles of the membrane can easily occur in the edge area. When the
arch height of the arc side increases from 0 mm to 12.5 mm, the stress in the middle area of
the membrane is unchanged, but its second principal stress increases by 143%. This shows
that the design of the curved edge not only improves the stiffness of the membrane, but
also reduces the possibility of wrinkling at the edge of the membrane.
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5. Conclusions

In this paper, the SSM for regular polygonal membranes is proposed for the first time.
Taking regular hexagonal and regular heptagonal membranes as research objects, the stress
superposition algorithm for regular n-polygons membranes is derived. The accuracy of the
SSM in the calculation of ortho-hexagonal membranes is verified by comparing the stresses
at sampling points of ortho-hexagonal and ortho-heptagonal membranes with the results
of finite element simulation. The curved edge of corner point tensioned regular polygonal
membranes is more sensitive to stress. It is proposed for the first time to optimize the arc
edge of the membrane in order to improve the maximum stiffness of the membrane while
keeping the effective area of the membrane unchanged. Through the stress calculation of
the thin membrane by the SSM, the optimal value of the arch height can be regarded as the
height at which the stress at the middle point of the arc edge of the membrane is equal to
the stress at the center of the membrane. The analysis of the diametrical principal stresses of
the membrane predicts that the wrinkles of the regular polygon membrane may appear in
the edge region of the membrane. The design of the curved edges can substantially increase
the second principal stress at the edges of the membrane, thus reducing the possibility
of wrinkles.

This analysis improves the theoretical basis of stress calculation for corner point
tensioned regular n-polygons membranes. That is, for any corner point tensioned regular
polygonal membrane structure, the stress field can be regarded as the superposition of the
stress distribution field generated by half of each load. The proposal of this method will
play an important role in the calculation of the stress field of regular polygonal membranes
under corner tension, the design of the arc, and the prediction of membrane wrinkles in the
future. It provides theoretical support for the development of regular polygonal membrane
sunshields, membrane solar sails, and membrane solar arrays in spacecraft.
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