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Abstract: Large amounts of waste are derived not only from construction processes, but also the
demolition of existing buildings. Such waste occupies large volumes in landfills, which makes
its final disposal difficult and expensive. Reusing this waste type is generally limited to being
employed as filler material or recycled aggregate in concrete, which limits its valorisation. The
present work proposes reusing construction and demolition waste to manufacture alkali-activated
cement to improve its sustainability and recovery. Construction and demolition waste (C&DW) from
a demolition waste collection plant in Valencia (Spain) was physically and chemically characterised.
This residue contained large fractions of concrete, mortar, bricks, and other ceramic materials. X-ray
fluorescence (XRF) analysis showed that its chemical composition was mainly CaO, SiO2 and Al2O3.
X-ray diffraction (XRD) analysis revealed that it presented some crystalline products, and quartz
(SiO2) and calcite (CaCO3) were the main components. Blends of C&DW and blast furnace slag (BFS)
were alkali-activated with mixtures of sodium hydroxide and sodium silicate. The corresponding
pastes were characterised by techniques such as thermogravimetry and scanning electron microscopy
(SEM). The alkali-activated mortars were prepared, and the resulting mortars’ compressive strength
was determined, which was as high as 58 MPa with the 50% C&DW-50% BFS mixture. This work
concluded that it is possible to make new sustainable binders by the alkali activation of C&DW-BFS
without using Portland cement.

Keywords: valorisation; construction and demolition waste; blast furnace slag; compressive
strength; microstructure

1. Introduction

The European Commission Waste Framework Directive provides basic waste management-
related definitions. To comply with the objectives of this Directive, European Union Member
States, by 2020, must use 70% non-hazardous waste from construction and demolition
works [1]. Construction and demolition waste (C&DW) is assumed to comprise at least
30% of all total solid waste worldwide [2]. Depending on the construction type, several
construction material waste types can be found in C&DW compositions: mortar, concrete,
wood, bricks, ceramic sanitaryware, steel, etc.

In 2018, China produced 2360 million tonnes of C&DW. The EU generated a significant
amount the same year: for example, Germany alone contributed 225 million tonnes [3].
China is the largest producer of C&DW, followed by India and the United States. To date,
the main use of C&DW is to replace natural aggregates to produce mortar and concrete.
Nevertheless, large-scale C&DW reuse towards a circular economy system needs to be
enhanced [4].
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In line with this, Lopez et al. [5] proposed action strategies based on five main stages:
preconstruction; construction and renovation; collection and distribution; end of life; ma-
terial recovery and production. Following the above strategies, four potential outputs
for C&DW use were pointed out: substitution of 100% raw material for C&DW; recov-
ered materials with partially recycled content to substitute materials of a similar nature;
recovered material to substitute components of materials of a different nature; lowered
energy demand.

Employing C&DW as a precursor in alkali-activated cements is a new way to valorise
this waste material. The main difficulty of large-scale C&DW use is probably related to
its high heterogeneity and, consequently, its low reproducibility. Indeed, most studies
have focused on utilising specific C&DW parts/fractions. Ahmari et al. [6] studied using
a mixture of ground waste concrete (GWC) and the fly ash (FA) types as precursors in
geopolymeric pastes with different concentrations and proportions of NaOH and sodium
silicate (SS). GWC was prepared with concrete made in the laboratory to analyse unconfined
compressive strength (UCS), SEM/EDS, XRD and FTIR. The highest UCSs were obtained
with the 50% GWC-50% FA mixture for all the NaOH concentrations (5 M and 10 M) and at
two SS/NaOH ratios (1 and 2). According to the authors, the presence of calcium in GWC
enhanced strength due to the co-existence of CSH gel and the incorporation of Ca+2 into
the geopolymer structure.

Several studies have demonstrated the potential of ceramic waste as a precursor
in alkali-activated cements. This material can be used alone or combined with other
materials, such as blast furnace slag (BFS) or fluid catalytic cracking residue (FCC) [7–9].
An interesting research work was by Kioupis et al. [10], who proposed using rejected
bricks as a precursor and glass waste to fabricate windowpanes as a component of the
alkaline-activating solution. Glass waste was thermally treated with NaOH and water. The
authors prepared different mixtures to obtain specimens with a maximum compressive
strength of 32 MPa after 7 days of curing.

Vasquez et al. [11] utilised C&DW (concrete structure debris) to prepare single, hybrid
and binary pastes with C&DW, cement (OPC) and metakaolin (MK), respectively. In the
binary pastes, the authors considered the proportion between MK and C&DW to calculate
the SiO2/Al2O3 molar ratio in the precursor. However, the molar ratio in the hybrid pastes
was calculated only with the quantity of C&DW. In the single mixtures (only C&DW), SS
addition enhanced the compressive strength of the sample activated with only NaOH, by
288%. The presence of 10% MK in the binary pastes yielded 46.4 MPa compressive strength
at 28 curing days in an ambient temperature versus 25 MPa obtained from the paste with
100% C&DW. Finally, the compressive strength of the hybrid mixture with 30% OPC was
33 MPa, achieved under the same curing and activator conditions as the aforementioned
pastes. The authors concluded that addition of MK and OPC enhanced the dissolution of
several crystalline phases of C&DW and contributed to better mechanical properties.

Robayo–Salazar et al. proposed separating C&DW into fractions to prepare blocks
fabricated with 100% waste. Fractions were concrete waste, mortar waste, masonry waste
and ceramic waste [12]. The coarse aggregate was formed by concrete waste, and the
fine aggregate was formed by mortar waste and ceramic waste (red and white). Finally,
the precursor of the geopolymeric mixture was 10% OPC and 90% C&DW (25% concrete
waste, 25% mortar waste, 25% masonry waste and 25% ceramic waste). The first part of the
study involved performing the binder optimisation of the hybrid mixture (OPC-C&DW) at
different NaOH + SS/precursor and NaOH/SS ratios. The optimal ratios were 0.35 and 0.34,
respectively. The second part of the paper studied the evolution of a concrete’s compressive
strength with 100% waste. The compressive strength of this concrete’s specimens was
42.9 MPa after 90 curing days and at ambient temperature. Finally, the solid concrete block
preparation demonstrated this system’s suitability. The characteristics of these blocks met
the specifications of a high-class structural block.

The same authors recently published a communication with an eco-house proto-
type [13]. They compared the behaviour of the alkali-activated blocks obtained from differ-
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ent precursors: natural volcanic pozzolan with ground granulated BFS, FA, C&DW and red
clay brick waste. The only mixture that was considered as low-strength structural block
was the mixture with C&DW because the block did not meet the water absorption criterion.

Two marine sediments and different C&DW fractions were studied as precursors to
prepare pastes activated with KOH and SS [14]. Sediments substituted fractions of 10%
and 30% tiles, bricks and concrete. The concrete paste proved to be the worst sample
because this fraction had a small quantity of SiO2 and Al2O3. One of the studied sediments
enhanced the compressive strength of all the C&DW fractions. The same conclusions were
reached in another paper published by the same author, which demonstrated that concrete
waste always yielded compressive strengths below 15 MPa versus the tile and brick waste,
which, respectively, obtained 49.5 MPa and 57.8 MPa [15].

The present study aims to assess the potential of using real C&DW from a waste-
sorting and recovery plant in Valencia (east Spain). Systematic waste characterisation was
performed, and preliminary studies associated with its reactivity were carried out. The
compressive strength and microstructural properties of the alkali-activated cements based
on C&DW/BFS activated at two different SiO2/Na2O molar ratios were assessed for two
different curing conditions. The use of BFS as part of the precursor is due to the fact that
it is a well-known material in the literature of alkaline activation and that it has amply
demonstrated its good behaviour both mechanically and in terms of durability [16].

The main objective of the investigation is to valorise C&DW residue in the construction
industry. Its recovery would contribute to the fact that a waste produced by the same
industry could be used again as a raw material, contributing to the development of the
circular economy

2. Experimental Programme
2.1. C&DW Conditioning and Characterisation

Figure 1 shows a diagram of the different areas in the SECOPSA Medio Ambiente
plant. This plant is located in Horno de Alcedo, Valencia (Spain).
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Figure 2a shows the as-received C&DW. Figure 2b illustrates the two fractions obtained
in step 4 before manual classification.
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Two C&DW fractions were obtained by sieving in step 4: fine and coarse fractions
(see Figure 2b). In this study, the coarse fraction was selected to prepare alkali-activated
cements because the finest fraction contained more impurities (plastic, wood chips, paper,
gypsum). As this waste was of no value, it was subsequently taken to a landfill. The only
valuable waste obtained in the plant was in step 7, which was later used as gravel.

About 500 kg of coarse C&DW was collected from the recovery plant and characterised
for this study. C&DW was placed inside a jab crusher (Retsch BB20 model) to produce parti-
cles of size < 2 mm. This material was milled in a ball mill for 15 min (200 g of C&DW with
96 alumina balls in Gabrielli Mill 2 equipment) to obtain a similar mean diameter particle
to the other binding materials used in this research. Different instrumental techniques were
applied to characterise C&DW: X-ray fluorescence (Philips Magix Pro spectrometer); X-ray
diffraction in a Brucker AXS D8 Advance of Billerica (XRD spectra were taken from 10◦

to 70◦ 2θ, at 20 mA and 40 kV, in an angle step of 0.02◦); a laser dispersion granulometric
analysis using Malvern Instruments Mastersize 2000 (measurements in aqueous medium);
field emission scanning electron microscopy (Zeiss FESEM ULTRA 55); thermogravimetric
analysis by Mettler Toledo TGA 850 (using alumina crucibles, and temperature range from
35 ◦C to 1000 ◦C at a heating rate of 20 ◦C/min in an air atmosphere). To analyse XRD
pattern, DRXWin&Creafit 2.0 software was used. The samples analysed by microscopy
were coated with carbon to make them conductive and to be observed in the equipment.

2.2. Other Materials

Calcium hydroxide (Ca(OH)2, 96% purity, supplied by Panreac Química SLU) was
used to study the pozzolanic reactivity of C&DW following the evaluation method pro-
posed by Tashima et al. [17].

BFS was supplied by Cementval SL (Puerto de Sagunto, Valencia, Spain). It was dried
at 100 ◦C and dry-milled in a ball mill for 30 min (450 g of BFS with 98 alumina balls
in Gabrielli Mill 2 equipment). The mean particle diameter obtained after milling was
26.09 µm. The main BFS compounds in the mass were: CaO (40.35%), SiO2 (30.04%) and
Al2O3 (10.6%).

Siliceous sand, with a fineness modulus of 4.1 and a humidity percentage < 0.1%,
was used to prepare the mortars. The alkaline solutions were composed of a mixture of
commercial reagents: the mixture contained NaOH pellets (98% purity, Panreac Quimica
SLU), Na2SiO3 (28% SiO2, 8% Na2O, 64% H2O, supplied by Merck S.L.U) and tap water.
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2.3. Experimental Procedure

A preliminary study of the C&DW reactivity was performed to assess its potential
use as a precursor in alkali-activated systems. First of all, the reactivity of C&DW with
Ca(OH)2 (CH) was evaluated following the electrical conductivity method proposed by
Tashima et al. [17]. The pH and electrical conductivity (using Micro PH2001 and Micro
CM2201 supplied by Crison, respectively) for the C&DW and CH mixtures were monitored
for the different CH:C&DW proportions (0.5:9.5; 1.0:9.0; 1.5:8.5; 2.0:8.0; 2.5:7.5 and 3.0:7.0) at
60 ◦C for 7 days. The suspension was prepared with 50 mL of deionised water in a 100 mL
plastic screw-cap Erlenmeyer flask and the total amount of solid (C&DW plus CH) was
set at 1 g. This flask was tightly sealed and placed inside a thermal bath (JULABO-SW22
equipment) with continuous shaking at 60 ◦C. Next, the corresponding amount of CH was
added in each case to completely dissolve it, or until liquid saturation. At this point the
electrical conductivity values were measured to obtain a control of the saturated suspension
with CH, and C&DW was added. Electrical conductivity was measured every 24 h for
7 testing days.

An alkali-activated paste based on C&DW was prepared using 9 mol·kg−1 of sodium
at the SiO2/Na2O molar ratio of 1.21 and a water/binder ratio of 0.45. This paste was
cured for 7 days at 65 ◦C, and the thermogravimetric analysis and XRD pattern of paste
were assessed.

Mortars were prepared using five different C&DW/BFS proportions (100/0, 80/20,
70/30, 60/40, 50/50 per mass) as a binder (precursor). For the activating solution, two differ-
ent Na+ concentrations (7 and 9 mol·kg−1) were tested, for which two distinct SiO2/Na2O
molar ratios (1.21 and 1.56) were assessed. The water/binder ratio and the siliceous
sand/binder ratio were set at 0.45 and 3, respectively. Mechanical strength was measured
on 40 mm × 40 mm × 160 mm specimens according to Standard UNE-EN 196-1 [18].
Compressive strength was measured after 3 and 7 curing days at 65 ◦C, and also after
28 and 90 curing days at room temperature. The selected alkali-activated pastes cured at
65 ◦C for 7 days (without sand) using similar mix proportions as the mortars were studied
by FESEM.

Figure 3 shows an outline of the studies carried out in the paper.
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3. Results and Discussion
3.1. C&DW Characterisation

Figure 4 depicts the percentages of the construction material types found in C&DW.
Low percentages of paper, plastic and wall paints were found (about 0.24%), whereas
ceramic materials such as sanitaryware and ceramic floors appeared at 14.9%. The highest
proportions were composed of mortar and concrete (approximately 39.8%) and tiles and
bricks (about 25.4%). More than 65% C&DW was based on mortar, concrete, tiles and bricks.
Petreous materials comprised mainly limestone materials, which are extremely abundant
in the area where the plant is located.
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After the milling process, C&DW presented a wide granulometric distribution (Figure 5)
and a mean particle diameter of 19.24 µm. The particle size distribution parameters for
C&DW appeared, such as d (0.1), d (0.5) and d (0.9), which were 0.83 µm, 6.79 µm and
58.40 µm, respectively.
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Table 1 shows the chemical composition of C&DW analysed by XRF. The main oxides
present in waste were CaO (23.41%) and SiO2 (38.41%). These percentages were similar not
only the C&DW investigated by Mucsi et al. [19] with CaO (21.1%) and SiO2 (38.7%), but
also to the waste used by Robayo–Salazar et al. [12] with CaO (21.2%) and SiO2 (47.6%).
Regarding the composition of the BFS, this residue had a lower percentage in CaO and
slightly higher percentage in SiO2.

Table 1. Chemical composition of the construction and demolition waste (C&DW) (wt %).

Al2O3 SiO2 CaO Fe2O3 K2O Na2O MgO SO3 Other LOI *

8.43 38.76 23.41 3.67 1.71 0.22 1.29 3.80 1.24 17.46

* loss of ignition determined at 950 ◦C for 1 h.

The XRD pattern of C&DW appears in Figure 6. The main peaks corresponded to
the presence of quartz (Q, SiO2, PDFcard 210816) and calcite (C, CaCO3, PDFcard 050583).
Gypsum was identified as the secondary peak (G, CaSO4·2H2O, PDFcard 210816). These
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minerals derived from the composition of mortars and concretes (Portland cement and
aggregates). Some peaks derived from the ceramic compounds present in C&DW, such
as albite (A, NaAlSi3O8, PDFcard 090466) and muscovite mica (M, MgAlSi4O10(OH)2,
PDFcard 210993). The presence of these crystalline compounds was similar to the C&DW
studied by other authors [19,20].
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Figure 6. XRD pattern of C&DW.

The derivative thermogravimetric curve (DTG) of C&DW is represented in Figure 7.
The main peak occurred at around 850 ◦C, which was attributed to loss of CO2 from CaCO3.
The other peak was around 150 ◦C and was attributed to the dehydration of gypsum and
the hydrated compounds that derived from the hydration process of the Portland cement
present in the mortar and concrete fractions. Total mass loss was 13.75% and the mass loss
that derived from carbonates was 8.07%.
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Figure 8 shows the FESEM images of the milled C&DW. The micrographs of this
material displayed well-graded irregular-shaped particle distribution. Many particles were
not porous.
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3.2. C&DW Reactivity
3.2.1. C&DW Reactivity as Pozzolanic Material

Tashima et al. [17] proposed using a parameter denominated loss of electrical conduc-
tivity (LC%) to evaluate the unsaturation criterion of CH/pozzolan suspensions. A value
higher than 30% for LC% would indicate that the aqueous solution was unsaturated in rela-
tion to CH and, therefore, pozzolan would have consumed the lime-forming cementitious
products. As seen in Figure 9, only the suspensions with a small quantity of CH (0.5:9.5,
1.0:9.0 and 1.5:8.5) achieved the unsaturation setup for the CH:C&DW system.
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Figure 9. Loss of conductivity (LC%) versus time of the CH/C&DW mixtures.

According to the classification proposed by Tashima et al. [17], the pozzolanic reactivity
shown by C&DW was low.

Frías et al. [21] used six different wastes generated during concrete waste crushing
(particles of <5 mm). They assessed pozzolanic reactivity with an accelerated method in a
pure pozzolan/CH system and concluded that these waste types exhibited medium–low
fixation capacity. These results were consistent with the present research. Low reactivity
was due to the high proportion in mortar, concrete and stones for C&DW, which are
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components with no pozzolanic material. Pozzolanic reactivity is attributed to the presence
of ceramics and bricks.

3.2.2. C&DW Reactivity as Precursor Material in Alkaline Activated Pastes

A 100% C&DW paste was activated using sodium hydroxide and sodium silicate
(9 mol·kg−1 of sodium, an SiO2/Na2O molar ratio of 1.21, and a water/binder ratio of
0.45). The paste was cured for 7 days at 65 ◦C to study the products that formed during the
activation reaction. Figure 10 represents the TGA and DTG curves for this paste obtained
within the heat interval 35 ◦C and 1000 ◦C. There are three significant zones which can be
related to the decomposition of reaction products. In zone 1, mass loss can be attributed
to the decomposition of CSH, CASH, NASH, and C(N)ASH that derive from either the
alkaline activation reaction or unreacted waste. Similar products have been observed by
Escalante et al. for active limestone with sodium hydroxide and waterglass [22]. The
peak observed in Figure 7, centred at 850 ◦C, unfolded in two zones (zones 2 and 3). The
peak in zone 3 appeared at the same temperature as that observed in the original waste
(850 ◦C). A peak centred at 550 ◦C in zone 2. This phenomenon demonstrated that calcium
carbonate reacts and produces calcium carboaluminate hydrate products. The formation
of carboaluminates has been observed in binary and ternary pastes with cement, ground
BFS, limestone filler and ground oyster shells [23]. The authors of those research works
established that calcium carbonate was consumed to form calcium hemi- and monocarboa-
luminate phases. Other authors have established the interval between 300 ◦C and 650 ◦C
for carboaluminates decomposition [24] or within 800–850 ◦C [25]. Payá et al. [26] observed
carbonate decomposition at low temperature when calcium carbonate was activated.
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Figure 10. TGA and DTG curves of the alkali-activated paste of C&DW cured for 7 days at 65 ◦C.

The presence of products derived from the alkali activation reaction was corrobo-
rated by the XRD analysis. Figure 11 represents the activated paste and the formation
of zeolitic phases, specifically the formation of zeolite Pt (Z, Na5.7Al5.7Si10.3O32·12H2O,
PDFcard 340524). The phases of the original material simultaneously appeared, such as
albite, quartz or calcite.
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Figure 11. XRD pattern of the alkali-activated paste of C&DW cured for 7 days at 65 ◦C.

3.3. Properties of the Alkali-Activated Mortars Based on the C&DW/BFS System
3.3.1. Mechanical Strength

Although it was demonstrated that C&DW can be alkali-activated, the preliminary
studies on the mortars demonstrated that the compressive strength of the mortar with only
this waste type was very low. It was thought to use BFS as a precursor material along with
C&DW. The use of BFS with other less reactive materials such as ceramic sanitaryware
had been explored in previous research obtaining good results. In this research it was
corroborated that the resistance of mortars with 100% BFS obtain compressive strength
values higher than 90 MPa for 7 days of curing at 65 ◦C, and 80 MPa at 28 days of curing
at room temperature. The author used a Na+ concentrations of 7.5 mol·kg−1 and an
SiO2/Na2O molar ratios of 1.94 [27].

In the present experiment, the two selected SiO2/Na2O ratios (1.21 and 1.56) were
chosen based on previous research [28], which employed hydrated cement. It was car-
bonated by two methods before being used as a precursor in an alkali-activated system.
The prepared alkali-activated mortars contained this carbonated waste. The obtained
compressive strength was between 10 MPa and 20 MPa at room temperature (28 curing
days) depending on the carbonation conditions and the employed SiO2/Na2O ratio.

The compressive strength for the C&DW/BFS mortars with different C&DW percent-
ages cured at 65 ◦C are depicted in Figure 12. The compressive strength was 7.4 MPa after
3 curing days for the mortars activated at the 1.56 SiO2/Na2O molar ratio (Figure 12a)
containing 100% C&DW. By replacing only 20% C&DW with BFS, a 201% increment in com-
pressive strength was achieved. A linear increase in compressive strength took place with
the rise in BFS and yielded up to 58.2 MPa after 7 curing days at 65 ◦C for the 50% sample.

Figure 12b presents the compressive strength of the mortars activated at the 1.21 SiO2/Na2O
molar ratio. The maximum compressive strength (52.2 MPa) was yielded for the mortars
containing 50% BFS after 7 curing days. A similar trend was generally observed for this
series compared with the 1.56 SiO2/Na2O molar ratio. The main difference was related to
the compressive strength of the 100% C&DW mortar. At the 1.21 SiO2/Na2O molar ratio,
the 100% C&DW mortar yielded 18.0 MPa after 3 curing days, which was 2.5-fold higher
than for the 1.56 SiO2/Na2O molar ratio. When the mixture contained 30% BFS or more,
compressive strengths were slightly higher for the ratio with the smallest Na2O quantity.
These results agreed with those published by Heikal et al. [29], who established that the
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compressive strength of BFS increases by alkali contents, but further increases can lower
compressive strength. The increasing Na2O content probably resulted in changes in the
products’ structure.
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Figure 12. Compressive strength of the alkali-activated mortars cured at 65 ◦C at different SiO2/Na2O
molar ratios: (a) 1.56; (b) 1.21.

When the alkali-activated mortars were cured at room temperature (Figure 13), com-
pressive strength slightly lowered, mainly for the 100% C&DW mortar compared with
the results obtained at 65 ◦C. In this case, the mortar with the 1.21 SiO2/Na2O molar
ratio yielded 10.3 MPa after 90 days, whereas compressive strength was 18.0 MPa af-
ter 3 curing days for the same mortar at 65 ◦C. This behaviour was observed only for
the 1.21 SiO2/Na2O molar ratio. The mortars containing 70% C&DW presented very in-
teresting mechanical behaviour, which yielded about 40 MPa after 90 curing days. The
50% C&DW mortars yielded more than 50 MPa compression.
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Figure 13. Compressive strength of the alkali-activated mortars cured at room temperature at different
SiO2/Na2O molar ratios: (a) 1.56; (b) 1.21.

The results obtained by adding C&DW, compared with a mortar with 100% BFS in
other investigations, were lower, although the concentrations of the activators were not
exactly the same. The contribution of C&DW to the alkaline activating reaction was not
very high. Nevertheless, no deleterious effect was observed in the mechanical strength
that developed when C&DW was added to the mortar. Thus, depending on the mortar
application, up to 80% C&DW can be added to mortar to yield about 20 MPa depending on
the SiO2/Na2O molar ratio. This fact can be considered a new sustainable way towards
C&DW valorisation.
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The improvement of mechanical resistance when using other precursors together with
C&DW has already been studied by other authors such as Vasquez et al. [11] where the
use of 10% MK or 30% OPC improved mechanical resistance by 85% and 33%, respectively,
compared with a system with 100% C&DW.

3.3.2. FESEM Studies

The activated pastes at the 1.21 SiO2/Na2O molar ratio and with different proportions
of C&DW/BFS were studied by FESEM. Figure 14 depicts the micrographs for the pastes
cured for 7 days at 65 ◦C.
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The pastes activated with only C&DW (Figure 14a,b) presented a type of gel as the
chemical reaction product. Gel morphology was similar to that previously reported during
the activation of this waste type [20]. Villaquirán–Caicedo and Mejía de Gutiérrez [20]
activated C&DW mixtures, which corresponded to zeolitic phases.

For the BFS-containing pastes (Figure 14c–f), the morphology of the products was
more compact than those in the paste with only C&DW. The micrographs reveal particles of
unreacted BFS and the principal product of the reaction was C(N)ASH gel. The formation
of C(N)ASH gel in the pastes with BFS was reported by Moraes et al. when they activated
BFS with sugar cane straw ash [30]. Yang et al. also indicated the presence of this gel while
performing an EDS analysis on alkaline-activated BFS and coal gangue samples [31]. In
pastes with BFS, the presence of zeolitic phases has not been observed.

4. Conclusions

The main conclusions drawn from the present research work are:
The studied C&DW contained considerable amounts of compounds CaO, SiO2, and

Al2O3 to a lesser extent, which are very important for the alkaline activation process
The analysis of the electrical conductivity of the CH/C&DW suspensions showed that

C&DW lacks important pozzolanic properties
The compressive strength results of the alkali-activated C&DW mortars using a mix-

ture of NaOH and sodium silicate as an activator demonstrated the possibility of valorising
this waste in this way, with up to 18 MPa after 3 days of curing at 65 ◦C. These resis-
tances are perfectly valid for non-structural applications where resistance requirements are
less important.

When BFS was added as part of the precursor, improvements in mechanical strength
occurred, with values above 55 MPa after 7 days of curing at 65 ◦C. These improvements in
mechanical strengths by adding BFS would allow mixed BFS/C&DW systems to be used
in structural applications.

In view of the obtained results, one might think that these systems can be used as
prefabricated elements of different characteristics. Depending on the necessary mechanical
strength, the percentage of BFS to be used would vary. It also opens the possibility of
valorisation of C&DW in binary mixtures with other precursors such as fly ash or the fluid
catalytic cracking residue.
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