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Abstract: The push for sustainability in the construction sector has demanded the use of increasingly
renewable resources. These natural fibers are biodegradable and non-toxic, and their mechanical
capabilities are superior to those of synthetic fibers in terms of strength and durability. A lot of
research recommends coconut fibers as an alternative to synthetic fibers. However, the knowledge is
scattered, and no one can easily judge the suitability of coconut fibers in concrete. This paper presents
a summary of research progress on coconut fiber (natural fibers) reinforced concrete. The effects of
coconut fibers on the properties of concrete are reviewed. Factors affecting the fresh, hardened, and
durability properties of concrete reinforced with coconut fiber are discussed. Results indicate that
coconut fiber improved the mechanical performance of concrete due to crack prevention, similar to
the synthetic fibers but decreased the flowability of concrete. However, coconut fibers improved
flexure strength more effectively than compressive strength. Furthermore, improvement in some
durability performance was also observed, but less information is available in this regard. Moreover,
the optimum dose is an important parameter for high-strength concrete. The majority of researchers
indicate that 3.0% coconut fiber is the optimum dose. The overall study demonstrates that coconut
fibers have the creditability to be used in concrete instead of synthetic fibers.

Keywords: natural fibers; physical properties; mechanical properties; durability aspects

1. Introduction

Conventional concrete (CC) is generally robust in compression but not in tension. Steel
bars are often employed when tensile stresses are created or tension zones are discovered
to overcome this deficit in traditional concrete, which is commonly referred to as reinforced
cement concrete (RCC). Fibers are added to concrete to increase its inherent tensile strength,
resulting in a specific form of concrete known as fiber reinforced concrete (FRC) [1–4]. It is
desirable that beams be ductile rather than brittle [5].

Besides secondary cementitious materials, which help in ecofriendly concrete [6–8],
natural fibers have emerged as one of the most popular reinforcing materials in terms of
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sustainability and biodegradability [9], Non-toxic, and environment-friendly [10], features
that are particularly beneficial for the manufacture of biocomposites natural fibers, on
the other hand, help to reduce CO2 emissions into the surrounding environment as well.
Biocomposites are becoming more popular as appealing products in a variety of industries,
including automotive, aviation, packaging, construction, architectural, and biomedical [11].
Furthermore, natural fibers can be found all over the world, which are cheaper than
artificial fibers, have more stiffness, and can be recycled [12]. Coir is a popular natural
fiber derived from the husks of mature coconut fruits and is used to make high-strength
and long-lasting products [13]. Due to the many advantages of natural fibers, including
their widespread availability, biodegradability, lightweight, cheap cost, and simplicity of
manufacture, natural fiber-based biocomposites have largely displaced synthetic plastics
in a range of applications [14]. Numerous researchers have suggested a variety of natural
fiber composites for use in a variety of technical applications [9,15–17]. Many countries
across the globe, particularly in tropical and subtropical regions, cultivate coconuts, which
play an important role in economic growth. Coir fibers from over fifty billion coconuts are
gathered across the globe, according to recent research [18].

A growing number of academics and scientists have been interested in using natural
fibers as an alternative to conventional glass and carbon fibers as a reinforcement in polymer
composites in the last several decades [19]. Among the natural fibers that may be found in
clothing are flax, jute, kenaf, coir, banana husk, and henequen [20–22]. Cost, density, specific
tensile properties, non-abrasive to equipment and skin, reduced energy consumption, less
health risk, renewability, recyclability, and biodegradability are all advantages of natural
fibers over man-made glass and carbon fibers. Fereshteh incompatibility of hydrophilic
natural fibers with hydrophobic thermoplastic matrices is a known disadvantage of natural
fiber/polymer composites. This leads to unwanted composite characteristics. To promote
fiber-matrix adhesion, the fiber surface must be chemically modified [23]. Coconut fiber
has been the subject of several researchers who have sought to enhance the performance of
concrete by using it as a fiber reinforcing material [24–26].

Natura fibers have extremely good compatibility with a variety of thermoplastics,
thermosetting polymers, and cementitious materials due to their lower density, better
thermal insulation properties, mechanical properties, lower prices, unlimited availability,
nontoxic approaches, and problem-free disposals, among other characteristics. Despite
the fact that natural fibers have been extensively investigated in terms of their thermal,
mechanical, and morphological characteristics, little is known about their compressive
qualities. As a result, this study discusses the chemical, physical, workability, mechanical,
and durability properties of coconut fiber reinforced concrete, as well as their application.
Coconut fiber is classified into the following four types: bristle coil, buffering coil, brown
fibers, and white fibers. Bristle coil is the most common form of coconut fiber. The brown
fiber is generated from mature coconut, and it is typically highly strong, thick, and has
great abrasion resistance, making it the most favored and most widely used fiber on the
planet [27]. Unlike the brown fiber, which comes from mature coconut, the white fiber
comes from immature coconut and is often not as strong as the brown fiber. The fiber
has a large amount of lignin material and a low amount of cellulose, which makes the
fibers versatile, solid, and strong [28]. Coconut fibers are available in the following two
varieties: treated and untreated. Either by soaking the fibers in hot water or by soaking
them in chemical solutions, they may be cured [29]. According to a study, when treated
natural fibers are incorporated into the concrete using the compression molding method
with a 10 percent fiber weight, the resulting concrete has a very high tensile strength
when compared to composites that have untreated fibers incorporated into them. Tensile
and fatigue tests were performed on the treated natural fibers to confirm this claim. The
removal of lignin, pectin, wax, and hemicellulose from the fiber surface resulted in the
elimination of parenchyma cells, which increased the contact area of the exposition of
fibrils and globular marks. As a result, the roughness of the fibers increased, which in
turn increased the adhesion between the matrix and the fibers [30]. In addition, coconut
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fibers have low heat conductivity while being strong and stiff, so they enhance the tensile,
flexural, and compressive strengths of concrete while at the same time reducing the weight
of the concrete [31].

Many variables may impact the performance of natural fiber-reinforced composites,
including the fiber type used and the amount of fiber used. Aside from the hydrophilic
nature of the fiber, the characteristics of natural fiber-reinforced composites may be altered
by the quantity of fiber used in the composite and the amount of filler used. In general,
substantial fiber content is essential for composites to function well in order to obtain high
performance. The optimum is also important for the better performance of concrete. The
effect of fiber content on the properties of natural fiber-reinforced composites is particularly
significant. A lot of researchers focus on coconut fiber instead of steel fibers. As the
steel fiber is costly as well as thermal expansion and corrosion problems. However, the
knowledge of coconut fiber in concrete is scattered, and no one can easily judge the
importance of coconut fiber in concrete. Therefore, this review focuses on the physical
properties of coconut fibers, fresh properties, and mechanical and durability aspects of
concrete reinforced with coconut fiber. A successful project will also give the idea to a new
researcher to choose and apply coconut fiber in concrete.

2. Physical Properties of Coconut Fibers

Coconut fiber, also known as coir, is derived from the fibrous husk of the coconut plant
and is used in the production of coir. This is the thick fibrous middle layer of the coconut,
which is shown in Figure 1 as a thick fibrous middle layer. Coconut shells are sliced in
half and retted to remove the fibers from the meat. It is necessary to bury the coconut
shells in damp soil during the retting process in order to enable the microbial breakdown
of the softer tissues to occur. After that, the shells are smashed and rinsed in order to easily
extract the coir fibers. By the way, the “stone” is the term used to describe the hard inner
layer [32].
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Coconut fibers are mostly brown in color with varying lengths and diameters. More-
over, other properties such as tensile strength and modulus of elasticity vary depending
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on the source and usage. A different researcher reported different physical properties of
coconut fiber. The details of the various physical properties of fibers as per past researchers
are given in Table 1.

Table 1. Physical properties of coconut fibers.

Property
Name Naveen et al. [33] Amadi et al. [34] Bai et al. [35] Ramakrishna et al. [36] Ahmad et al. [15] Ramli et al. [37]

Length (mm) - 25 18 60 to 250 8 to 10 20 to 30
Diameter (mm) - 0.25 0.1 to 0.5 0.40 to 0.10 0.5 to 1.0 0.32

Aspect Ratio - 100 - - - -
Tensile Strength (MPa) 175 405 - 15 to 327 - 176

Modulus (GPa) 4 to 6 4 - - 4.5 22.4
Density (g/cm3) - - 0.67 to 10 - - -

Water Absorption (%) 130 to 180 - - - - -
Elongation (%) 30 - - 75 25 -

3. Fresh Properties

Concrete workability is a term that relates to how easily mixed concrete can be placed,
compacted, and finished while retaining its homogeneity to the greatest extent possible.
Unworkable concrete is one that cannot be easily worked. In unworkable, the cement paste
is not sufficiently lubricated and it does not adhere to the aggregates correctly, resulting in
significant aggregate segregation. Maintaining the homogeneity of an unworkable concrete
mix is very difficult, and compaction of concrete requires a significant amount of work,
which has a negative impact on the mechanical and durability performance of concrete.

According to one study, the value of slump flow decreased when the dose of coconut
fibers was raised. The maximum slump flow was reached at zero percent addition (control
concrete) while the lowest slump flow was recorded at three percent addition of coconut
fibers, as indicated in Figure 2. The increased surface area of coconut fibers requires more
water to cover, resulting in less free water for oiling. Moreover, coconut fibers increased
internal friction among concrete elements, necessitating more cement paste [38]. Adding
0.25 percent coir fiber (by weight of aggregate) reduced slump to 50 mm. The slumps of
the following variants indicate decreasing values with increasing coir fiber content. This
propensity is due to the coir fibers’ surface shape and physical qualities [39]. According
to one study, coir fibers have hydrophilic surfaces and hence repel water [26]. In a similar
manner, several studies have shown that the slump value decreases when coconut fiber is
included [40–42].

As illustrated in Figure 2, according to one study, fresh density rose as the proportion
of coconut fiber increased up to 2.0 percent, after which it decreased when compared
to reference concrete. Coconut fiber at a dose of 2.0 percent exhibits the highest fresh
density when compared to the reference concrete (0 percent addition of coconut fibers).
However, the fresh density was lowered with the additional addition of coconut fibers, with
a minimum fresh density of 3.0 percent when compared to other coconut fiber reinforced
concrete. The increase in fresh density of concrete reinforced with coconut fibers is related
to crack prevention since coconut fiber reinforced concrete has fewer plastic shrinkage
voids and produces denser concrete. However, with the 4% addition of coconut fibers,
compaction becomes problematic, resulting in porous concrete and lower fresh density. A
study claim that adding 1.5 percent fibers by volume to concrete increases density by 15%
as compared to the reference concrete [43]. In contrast, one study found that when the fiber
content of the specimens increased, the density of the specimens dropped. Due to the fact
that fibers are light, their addition to concrete causes cavities in the matrix, which reduces
the density of the concrete. As a consequence of the inclusion of low-density coconut fibers,
a phenomenon is known as the “filled void effect” occurs, which decreases the density of
the concrete when compared to plain concrete.
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Figure 2. Slump and fresh density of concrete with coconut fibers.

Density is an important factor that influences the flowability of concrete. A lack
of workability leads to voids in occupied space and reduced density. Figure 3 shows
the link between fresh concrete density and workability with increasing percentages of
polypropylene fibers. Workability and concrete density of fiber reinforced concrete have a
good association (R2 > 90%).
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4. Treatment of Coconut Fibers

To investigate the durability of coconut fiber, several treatments were carried out on
the material. For the first minute, each coconut fiber was soaked in an adherent solution



Materials 2022, 15, 3601 6 of 24

(deionized water or natural latex) to ensure that it adhered to the other fibers. During
this process, the adherent solution surrounds the coconut fiber, forming bonding layers
between the two materials. A coating agent was then applied, which consisted of pozzolanic
materials (silica fume or metakaolin). Pozzolans are attracted to the coconut fiber by the
adhering solution in which they are dissolved. The production of “chicken fingers” is
comparable to the process used in the development of this novel medicine [44]. Table 2
shows the details of the surface treatment of coconut fibers.

Table 2. Treatment of CF [44].

Coating Solution Details

Silica fume Water

Coconut fibers were immersed in a deionized water solution for 60 min while being
constantly agitated. Following that, the fibers were put in a receiver that was filled with silica
fume to dry. The coconut fiber began to get covered with a thin coating of silica fume on its

surface as the process progressed.

Silica fume Latex The same silica water treatment technique is followed, with the exception that the deionized
water solution is replaced with a natural latex solution at a concentration of 1 percent.

Metakaolin Water The identical silica water treatment process is applied, with the exception that silica fume is
used in place of metakaolin instead of the latter.

Metakaolin Latex The metakaolin water treatment technique is the same as before, with the exception that
metakaolin is used instead of silica fume.

Nil Nil Using natural coconut fiber (that has not been treated) and incorporating it into the
cementitious matrix for the fabrication of specimens for the durability test

Using a latex polymer film and a pozzolan layer, the coconut fiber treatment was
created to increase the flexural strength and durability of cement-based composites. The
performance of the sample treated with silica fume and natural latex was 42.2 percent
better than the performance of the sample without any treatment. When fiber samples
were subjected to degradation tests, the mass conservation rate increased as a consequence
of this treatment (silica fume and natural). This treatment resulted in an enhancement
in the retention of the fiber structure against the degradation process, according to the
microstructural examinations of the treated fibers isolated from CF. This treatment (silica
fume and natural) has the potential to be a viable alternative to the use of coconut fibers in
the creation of novel cementitious composite materials that have appropriate performance
and long-term durability. The compressive and flexural strengths of the structures increased
by up to 13 percent and 9 percent, respectively, according to the testing data. However, in
terms of durability, the chloride penetration, intrinsic permeability, and carbonation depth
increased with CF. The authors propose that the coconut fiber could be treated prior to being
used in concrete to ensure that it is protected against deterioration [37]. Two approaches
were employed to enhance the durability of cementitious composites by using vegetable
fibers. Both treatments are applied in this investigation, namely, a surface treatment of the
coconut fibers with a polymeric film of natural latex mixed with a pozzolan layer and a
pozzolan layer alone. Based on the findings of this research, the treatment used to treat
the fibers generates local pozzolanic reactions that affect both the cementitious matrix
around them as well as the surface of the fiber, therefore preventing alkaline attack and
mineralization of the fibers [45]. Coconut fibers were immersed in NaOH solutions with
concentrations ranging from 2 to 10% for four weeks. The authors discovered that the
tensile strength reduced as the concentration of NaOH increased, which they attributed to
the fibers becoming more fragile [46].

5. Mechanical Properties
5.1. Compressive Strength

Compressive strength is a material’s or structure’s capacity to bear loads without crack-
ing or deflection. Compression shrinks a material’s size. Concrete’s compressive strength



Materials 2022, 15, 3601 7 of 24

gives an indication of the concrete’s properties. This single test determines whether or not
concrete was correctly performed. In commercial and industrial construction, concrete’s
compressive strength ranges from 15 MPa (2200 psi) to 30 MPa (4400 psi). Compressive
strength is tested on a cube or a cylinder. The American Society for Testing Materials
established ASTM C39/C39M [47] for compressive strength testing of cylindrical concrete
specimens.

Figure 4 depicts the compressive strength of concrete with various doses of coconut
fiber (length 60 mm and diameter 0.75 mm) ranging from 0% to 1% in 0.25% increments for
concrete mix 1:2:4 (M15) with water to cement ratio of 0.58. The compressive strength of
concrete rose to 0.5 percent with the addition of coconut fiber and then steadily dropped,
with the lowest compressive strength at 1 percent after the addition of coconut fiber and
the highest compressive strength at 0.5 percent.
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Research also found that fibers boosted concrete’s compressive strength up to a certain
point before decreasing owing to a lack of workability [38]. Even at a larger dosage, the
compressive strength of the concrete is lower than that of the reference concrete. The
fiber reinforcement’s confinement on the specimen has a favorable impact on compressive
strength. Compression results in lateral expansion, which is limited by the coconut fibers
(CF), resulting in increased compressive strength. Because of their strength, the fibers can
sustain strain and shear [38]. Compaction becomes problematic at larger doses (more than
2.0%) owing to a lack of workability, resulting in decreased strength. A study reported
that in comparison to reference concrete, 1.5 percent of the fibers enhanced compressive
strength by over 15% [43]. At 1.0 percent by volume, fibers significantly improve the
mechanical performance of concrete at both the initial and later ages. The greatest 28-day
strength increase was found to be 29.15 percent [49]. As a result, coconut fiber has an ideal
limit. The experiments indicate that the best dosage of coconut fiber for strength is 2.0% by
weight of cement [26]. A study indicates that the optimal quantity of coir fiber in concrete is
0.25 percent, which results in a 19% increase in 28-day compressive strength [39]. However,
the optimum dose of fibers varies depending on the type of fiber, the physical aspects such
as length and diameter, as well as the concrete mix design and the water-to-binder ratio. A
study reported that in coconut fibers of 50 mm and 75 mm long, the compressive strength



Materials 2022, 15, 3601 8 of 24

decreases with the increase in fiber content. The decrease in compressive strength could be
attributed to the decreased workability of fresh concrete caused by the increased content
and length of fibers, as well as the lack of proper compaction during specimen casting,
resulting in the formation of air voids. It might be possible due to the dilution of the cement
matrix/hardened cement paste caused by the addition of fibers [50].

Figure 5 shows a relative analysis of compressive strength with varying doses of fiber
on different days of curing. The compressive strength of control concrete at 28 days of curing
was considered as a reference mix, from which the compressive strength of other doses of
coconut fiber (CF) was compared at different days of curing. The optimum dose of CF (3%)
was considered for a comparison analysis. At 7 days of curing, compressive strength is
33% less than compared to reference compressive strength (28 days of controlled concrete
compressive strength at 3% addition of CF. At 3% addition of CF, the compressive strength
is 6% more than the reference concrete compressive strength at 14 days of curing. At a
similar dose of CF (3%), compressive strength is 12% more than the reference concrete. It
can be observed that coconut fiber does not considerably improve the compressive strength
of concrete. Similarly, a study also reported that fiber improved the tensile strength of
concrete more effectively than compressive strength [38].
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Figure 5. Relative analysis of compressive strength [24].

5.2. Split Tensile Strength

Splitting tensile strength refers to the stresses generated when compressive loads are
applied using compressive testing equipment in such a manner that a concrete cylindrical
specimen splits vertically in half. It is referred to as the indirect approach for determining
the tensile strength of concrete. The direct technique is not practicable due to insufficient
grip on the cylindrical sample and the eccentric force. As a result, the direct tensile test is
not the standard procedure. At the stipulated duration of curing, concrete tensile strength
was discovered according to ASTM C496-71 [51] for a typical cylindrical sample of size
150 (mm) in diameter and 300 (mm) in length.

Figure 6 shows that the greatest concrete tensile capacity was recorded at a 3.0 per-
cent addition of CF as compared to the control (0 percent fibers) after specified days of
curing [24].
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Figure 6. Tensile strength [24].

According to the results of the research, the split tensile strength is 40 percent greater
than the reference mix when just 2.0 percent of the fibers are added. The fact that fibers
enhance tensile strength more than compressive strength is also mentioned [52]. When
coconut fiber is added at a concentration of 3.0 percent, the lack of workability results in a
gradual decrease in split tensile strength. Because coconut fibers inhibit fracture formation
and increase tensile strength, they improve the flexibility of concrete and increase its
tensile strength. Fiber-reinforced concrete performs better than normal concrete in terms of
strength and durability. Cracks are stopped rather than prevented by CF. Notably, CF has a
greater effect on tensile strength than it does on compressive strength. Fibers have been
shown to improve the behavior of post-cracked concrete [53]. Furthermore, fibers having
from 0.5 to 2.0 percent by volume have a much greater influence on the tensile strength of
concrete than fibers containing less than 0.5 percent by volume [54]. It was discovered that
increasing the fiber content from 0 to 20 percent by weight enhanced the tensile strength by
almost thrice [55]. Coconut fibers, with a tensile strength of 21.51 MPa, are the strongest
natural fibers. It has the ability to sustain forces that are four to six times larger than those
experienced by other natural fibers. A large number of studies have looked at the usage
of coconut fibers for a range of different reasons. Some characteristics are significantly
different; for example, the diameter of the coconut fibers is nearly the same and the levels of
tensile strength are somewhat different. For example, the fibroblasts of various individual
cells were dependent on the type of plant, its location, and puberty, among other factors [56].
In the study, it was discovered that treatment of the fiber decreased its tensile strength.
The lignin, pectin, fatty acid, and cellulose levels are reduced as a result of the treatment
approach. Tensile stresses at the failure of fibers were elevated by 18 percent and 51 percent,
respectively, as a result of chemical and physical treatments. Thus, treatment has been
shown to improve the ductility of fibers [57]. According to one study, increasing the amount
of coconut fiber in a material may increase the tensile split strength by as much as 5 percent.
When the fiber content increases over this threshold, a reduction in tensile stress is seen. It is
possible for concrete to fail under tension due to disturbances in the presence of atoms and
molecules in the concrete mix design. By adding them to the mix, they act as a connection
that helps to hold the fibers together [56]. In contrast, the inclusion of coir fibers reduces
the split tensile strength of concrete [39].
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In the relative analysis of concrete shown in Figure 7, the 28-day tensile strength of the
control mix is used as the reference mix, and then other mixes with varying percentages
of coconut fiber are compared to the reference mix. When 3.0 percent of coconut fiber is
added, split tensile strength is about 17 percent lower than reference concrete at 7 days of
curing. At 14 days of curing, the tensile capacity of concrete is only 5 percent more than
that of reference concrete when coconut fiber is added 3.0 percent. At the same dose of 3%
of coconut fibers, the tensile capacity of the concrete is 15 percent greater than the reference
concrete after 28 days of curing.
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Figure 7. Relative analysis of tensile strength [24].

As previously stated, the split tensile strength follows the same pattern as the com-
pressive strength. Split tensile strength is 10–15% of concrete’s compressive strength. As
a consequence, compressive and split strength correlated significantly. Figure 8 shows a
regression model with an R2 of approximately equal to 90%.

The following equation has been developed with different doses of coconut fibers:

fsp = 0.16 × fc0.85 (1)

where,
fsp = Split tensile strength, fc = Compressive strength

However, different codes recommended different equation to predict split tensile
strength from compressive strength, which are listed below. ACI-318.11 [58] Equation (2),
Eurocode [59] Equation (3), and JSCE-07 [60] Equation (4).

fsp = 0.53 ×
√

f c (2)

fsp = 0.3 ×
√

f c (3)

fsp = 0.44 ×
√

f c (4)

A comparison among split tensile strength from Equation (1), different codes, and
past studies is given in Figure 9 and Table 3. It may be noted that the experimental tensile
strength from paste studies, predicted from Equation (1) and ACI-318.11 [58], approximately
gives the same results. However, the code Eurocode [59] and JSCE-07 [60] give results that



Materials 2022, 15, 3601 11 of 24

are less than the experimental results of the past study. The results with various amounts
of fiber are more scattered than the predicted tensile strength from Eurocode [59] and
JSCE-07 [60]. These codes were applied to conventional concrete. The results found by
previous findings with different doses of coconut fiber also did not follow these codes
except ACI-318.11 [58]. However, the equation developed in the study with different
doses of coconut fibers was much nearer to the tensile strength of the previous research
(experimental results). Instead of using codes for concrete with varying amounts of coconut
fibers, this study’s equation yielded more accurate results.
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Figure 8. Correlation between compressive strength and split tensile strength.

Materials 2022, 15, x FOR PEER REVIEW 13 of 26 
 

 

Table 3. Experimental and predicted tensile strength. 

Experimental 
Compressive 

Strength (MPa) 
Equation (1) ACI-318.11 [58] Eurocode [59] JSCE-07 [60] 

Experimental 
Split Tensile 

Strength (MPa) 
32.5 3.08 3.02 1.71 2.50 3.1 
32.72 3.10 3.03 1.71 2.51 3.14 
33.2 3.14 3.05 1.72 2.53 3.41 
36.4 3.39 3.19 1.80 2.65 3.56 
34.9 3.27 3.13 1.77 2.59 3.48 
31.7 3.08 2.98 1.68 2.47 3.01 

 
Figure 9. Experimental and predicted tensile strength. 

5.3. Flexure Strength  
The tensile capacity of concrete may be determined in many ways, one of which is a 

flexural test. Flexure strength is the capability of an unreinforced concrete beam or rein-
forced concrete beam to withstand bending failure. According to ASTM standards, it is 
determined by loading 6 × 6-inch (150 × 150-mm) concrete beams with a span length that 
is at least three times the depth [61]. 

Figure 10 shows the flexure capacity of concrete with various quantities of coconut 
fiber, from 0% to 5% in 1% increments. The flexure strength of concrete rose to 3% with 
the addition of coconut fiber and then steadily reduced, with the lowest flexure strength 
happening at 0% and the greatest occurring at 3%. Additional research found that when 
the percentage of coconut fiber is raised by the weight of cement by up to 2.0 percent, the 
flexure strength improves, but subsequently drops when the percentage of coconut fiber 
is further increased as compared to a reference or standard concrete [62]. The inclusion of 
coconut fibers at a rate of 2.0 percent resulted in the greatest possible flexure strength. 
After the addition of coconut fiber at a rate of beyond 2.0 percent, the flexure strength 
gradually reduced. The flexural strength of all coconut fiber reinforced concrete is much 
higher than that of ordinary concrete. Coconut fibers increase flexural capacity by inhib-
iting the development of fractures. Because of the interfacial between the concrete com-
ponents and the coconut fibers, the load is quickly transmitted to the coconut fibers. The 

1.5

2

2.5

3

3.5

4

31 32 33 34 35 36 37

Sp
lit

 T
en

si
le

 S
tre

ng
th

 (M
Pa

)

Compressive Strength (MPa)

Equation (1) ACI-318.11 Exp. tensile Strength Eurocode JSCE-07

Figure 9. Experimental and predicted tensile strength.



Materials 2022, 15, 3601 12 of 24

Table 3. Experimental and predicted tensile strength.

Experimental
Compressive

Strength (MPa)
Equation (1) ACI-318.11 [58] Eurocode [59] JSCE-07 [60]

Experimental
Split Tensile

Strength (MPa)

32.5 3.08 3.02 1.71 2.50 3.1
32.72 3.10 3.03 1.71 2.51 3.14
33.2 3.14 3.05 1.72 2.53 3.41
36.4 3.39 3.19 1.80 2.65 3.56
34.9 3.27 3.13 1.77 2.59 3.48
31.7 3.08 2.98 1.68 2.47 3.01

5.3. Flexure Strength

The tensile capacity of concrete may be determined in many ways, one of which
is a flexural test. Flexure strength is the capability of an unreinforced concrete beam or
reinforced concrete beam to withstand bending failure. According to ASTM standards, it is
determined by loading 6 × 6-inch (150 × 150-mm) concrete beams with a span length that
is at least three times the depth [61].

Figure 10 shows the flexure capacity of concrete with various quantities of coconut
fiber, from 0% to 5% in 1% increments. The flexure strength of concrete rose to 3% with
the addition of coconut fiber and then steadily reduced, with the lowest flexure strength
happening at 0% and the greatest occurring at 3%. Additional research found that when
the percentage of coconut fiber is raised by the weight of cement by up to 2.0 percent, the
flexure strength improves, but subsequently drops when the percentage of coconut fiber is
further increased as compared to a reference or standard concrete [62]. The inclusion of
coconut fibers at a rate of 2.0 percent resulted in the greatest possible flexure strength. After
the addition of coconut fiber at a rate of beyond 2.0 percent, the flexure strength gradually
reduced. The flexural strength of all coconut fiber reinforced concrete is much higher
than that of ordinary concrete. Coconut fibers increase flexural capacity by inhibiting the
development of fractures. Because of the interfacial between the concrete components
and the coconut fibers, the load is quickly transmitted to the coconut fibers. The breaking
of cracks is prevented by coconut fibers, which allow the crack to flow around the fibers
and transfer the stress. The coconut fibers and concrete matrix resist the load as a whole,
resulting in increased flexure strength for the structure [49]. The compaction procedure
becomes more complicated as the quantity of fiber in the mixture rises. Using higher
dosages, such as 3.0 percent, the workability of the concrete was worsened, causing porous
concrete and a drop in flexural strength. According to other findings, the best quantity
of CF in concrete is 0.25 percent, which results in a 19 percent increase in 28-day flexural
capacity [39]. Table 4 shows a summary of the flexural strength of concrete with different
doses of coconut fibers.
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Table 4. Summary of mechanical performance of concrete with coconut fibers.

Author/
Reference

Percentage of
Replacement

Compression Strength
(MPa)

Flexure Strength
(MPa)

Split Tensile
Strength (MPa)

Abbass et al.
[63]

0
0.1
0.2
0.3
0.4
0.5
0.6

36
38
38

36.5
35

33.5
30

4.8
5.2
5.4

4.98
4.85
4.75
4.50

3.61
3.70
3.90
3.85
3.60
3.50
3.30

Srinivas et al.
[64]

0
0.5
1

1.5

8.0
8.66
9.93
4.75

6.33
3.23
3.82
2.80

2.95
0.87
0.95
0.92

Kumar et al.
[16]

0
CF%:5

CF ASH%:15

22.3
19.53
34.87

6.73
5.27
5.33

1.28
2.39

1.378

Khan et al.
[65]

Silica Fume:CF
0:2
5:2

10: 2
15: 2
20: 2

27.2
27.5
28.8
32.4
26.6

6.2
6.6
7.8
8.3
4.7

3.0
3.4
3.5
3.6
2.9

Das et al.
[66]

Steel fiber:CF
0:0
1:2
1:4
1:6

19.26
20.42
18.58
17.66

3.94
492
4.02
3.56

3.62
4.32
3.76
2.98

Raj et al.
[67]

0
0.3
0.4
0.5

9.5
11.5
8.0
7.5

1.4
1.7
1.2
1.1

3.50
3.48
2.45
2.10
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Table 4. Cont.

Author/
Reference

Percentage of
Replacement

Compression Strength
(MPa)

Flexure Strength
(MPa)

Split Tensile
Strength (MPa)

Wongsa et al.
[68]

0
0.5

0.75
1

31
33
28
25

3.2
5.3
6.2
6.7

1.8
2.1
2.2
2.4

Krishna et al.
[69]

0
0.5
1

1.5
2

37.5
35

47.5
51

41.75

- -

Sathiparan et al.
[25]

0.000
0.125
0.250
0.500
0.750

2.8
2.83
2.86
2.75
2.62

1
1.12
1.14
1.15
0.84

-

Hwang et al.
[70]

0
1

2.5
4

65
50
48
40

5.2
5.5
6.4
7.5

-

Korniejenko et al.
[71]

Control
Coir fibers (1%)

Cotton fibers (1%)
Raffia fibers (1%)
Sisal fibers (1%)

24.78
31.36
28.42
13.66
25.16

5.55
5.25
5.85
3.05
5.90

-

Ali et al.
[40]

Length (2.5 cm:5 cm:7.5 cm)
1:1:1
2: 2:2
3: 3:3
5: 5:5

42:43.5:37
41:42.5:33.5
40:38:31.5
36.5:36:00

-

3.85:4.3:4.35
3.80:4.30:4.20
3.35:4.25:4.00
3.5:3.75:0.00

Baruah et al.
[72]

0
0.5
1.0
1.5
2.0

21.42
21.70
22.74
25.10
24.35

-

2.88
3.02
3.18
3.37
3.54

Figure 11 shows a relative analysis of flexure strength with a differing dose of coconut
fiber at various days of curing. The flexure strength of reference concrete at 28 days of
curing was considered as a reference mix, from which the flexure strength of other doses
of coconut fiber (CF) was compared at various days of curing. The optimum dose of CF
(3%) was considered for comparison analysis. At 7 days of curing, flexure strength is 15%
lower than that associated with control flexure strength (28 days of control concrete flexure
strength at 3% addition of CF. At 3% addition of CF, the flexure strength is 18% more than
the reference concrete compressive strength at 14 days of curing. At a similar dose of CF
(3%), flexure strength is 38% more than the reference concrete. It is worth mentioning that
coconut fiber improved flexure strength (47%) more effectively than compressive strength
(12%). A study also reported that the fibers enhanced flexure capacity more efficiently than
compressive capacity at the same dose and same dose of curing [26].
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Figure 11. Relative analysis of flexure strength [24].

A regression model between compressive and flexural strength is shown in Figure 12.
It can be observed that a strong correlation exists between compressive and flexural strength,
with the R square approximately equal to 90%.
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Figure 12. Correlation between compressive strength and flexure strength.

6. Durability
6.1. Water Absorption

The water absorption test analyses the rate of water absorption of the outer and inner
concrete surfaces. The test includes measuring the increase in mass of concrete samples
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caused by water absorption as a function of the time when the specimen is exposed to water.
Higher water absorption results in less durability since water contains various hazardous
compounds that seep into the concrete, causing concrete breakdown and resulting in
reduced durability.

Figure 13 depicts the water absorption of concrete with various doses of coconut fiber.
With the addition of coconut fibers, it can be noted that the amount of water absorbed
increased [73]. Research revealed that the effects of fiber volume fraction on heat conduc-
tivity and water absorption were not significant [68]. A study concluded that the water
absorption decreases as the percentage of coconut fibers increase up to 2.0 percent addition
of coconut fibers, and the decrease occurs gradually, with maximum water absorption
observed at 0 percent substitution and minimum water absorption observed at 2.0 percent
addition of coconut fibers [15]. It has also been reported that minimal water absorption was
achieved when steel fibers were added at a rate of 2.0 percent [38]. This is due to the fact
that the elastic modules of conventional concrete are lower than those of fiber-reinforced
concrete. The inclusion of CF would result in an increase in the tensile strain characteristics
of concrete, which would limit the creation and development of early fractures in the
concrete [74]. In other words, increasing concrete density reduces water absorption. Due to
lack of workability, greater dosages (above 2.0%) resulted in less dense concrete. Because of
the increased porosity of the coconut coir fraction mortar compared to the control mortar,
according to one research, more water absorption was noticed in coconut fiber reinforced
concrete than in the control mortar. The porous structure of the cement blocks, as well as the
presence of an interfacial zone surrounding the particles, are the most important elements
influencing water absorption. The findings reveal that as compared to the control mortar,
the coconut coir mortar noticed water absorption considerably in the greater amount [25].
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6.2. Carbonation Depth

The carbonation of concrete is a crucial characteristic connected with steel reinforce-
ment corrosion. Carbonation depth entirely depends on permeability. By contrast, other
influencing variables such as temperature, carbon dioxide concentration, water/binder
ratio, and relative humidity are consistent throughout all specimens. The findings show
that carbonation depth rises with fiber concentration, implying that carbonation happens
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faster on a more porous material. The 2.4 percent CF carbonation depth was 74.3 per-
cent greater than the reference concrete at 546 days, while the 0.6 percent CF result was
equivalent to the reference concrete with a 4.3 percent difference as shown in Figure 14.
The research also found that the carbonation depth of concrete reduces as the number
of CF increases from 0% to 2.0% by weight of cement. Conversely, all the coconut fiber
reinforced concrete has a lower carbonation depth than normal concrete. The minimal
depth was observed at a 2.0% addition of CF, which is over 48% (after 14 days) lower than
conventional concrete [15]. Many holes are developed in concrete as a result of the loss
of accessible water and shrinkage, which makes it easier for CO2 to diffuse through the
concrete. The addition of coconut fibers (CF) limits the CO2 diffusion channel, resulting in
an increase in the resistance to CO2 penetration into the concrete. As a consequence, the
rate of carbonation depth has decreased significantly [75]. In contrast, when using a higher
dosage of CF (3.0 percent), the fiber inhibits the cement paste from filling the voids in the
microstructure, resulting in increased internal porosity. In addition, the fiber can create a
new channel for CO2 to penetrate the concrete, resulting in enhanced carbonation speed in
the concrete structure [42].
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6.3. Permeability

The water absorption by immersion provides an estimate of the total (reachable) pore
volume of the concrete, but it provides no information on the permeability of the concrete,
which is more essential in terms of long-term performance.

The permeability of concrete after the addition of coconut fiber is seen in Figure 15. It
was discovered that the permeability of concrete increased with the addition of coconut
fibers. The continuous pore structure of the specimens has a significant influence on the
permeability of the specimens [76]. Generally speaking, the wider the width of continuous
pores, the more permeable the concrete would be considered to be. It is possible to produce
continuous holes under a variety of situations, some of which include the capillary network
formed by hydration, the interfacial transition zone between paste and aggregate, the
production of micro-cracks, and others [77]. Not only the interfacial zones between the
aggregate and the paste but there will also be a gap between the interfacial zones between
the fiber and the matrix [78]. However, the authors hypothesized that there is another
mechanism at work that is also responsible for the disparity. This gap may be linked to
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the strong water absorption characteristics of the coconut fiber, which is responsible for its
existence. During the mixing process, a water film is formed around the fiber’s immediate
surroundings. The absorption capabilities of the film, as well as the osmosis pressure, will
keep the film in place and cause the fiber to inflate. As the hydration process advances, the
formation of the permanent shell structure starts to take place. As water is consumed by
cement hydration and evaporation, the water film gradually vanishes, finally creating a
gap between the fiber/matrix interfacial zones of the composite. When the fiber shrinks
back to its former shape after inflating as a result of the drying process, the gap widens
even further, creating a larger opening. According to the findings of a study, nitrogen gas
travels through the natural fiber during the permeability test because the natural fiber has
a porous cellular structure, increasing the likelihood of pore network connection during
the test [79].
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7. Scan Electronic Microscopy (SEM)

The use of scanning electron microscopy (SEM) improves the capacity to evaluate
the microstructure of cement and concrete. It will also assist in analyzing the impacts of
supplemental cementing ingredients or fibers, as well as evaluating concrete durability
issues. The microstructure of the coconut fiber reinforced concrete was investigated using
SEM [50]. The samples for SEM were prepared from the coconut fiber reinforced concrete
beams after flexure testing. The goal of the SEM examination was to investigate the
interfacial transition zones (ITZs) between the fiber-cement paste and aggregate-cement
paste, as well as micro-cracks and their propagation through the matrix. As shown in
Figure 16a,b, free space was detected at the ITZ between the fiber and the cement paste,
indicating that the fiber had a poor bond with the cement paste. It is due to the fact that
coconut fiber reinforced concrete samples have a lower modulus of rupture than high-
strength concrete. According to Figure 17a,b, a suitable bond between the fiber and cement
paste was formed, i.e., there were no gaps between the fiber and cement paste, resulting
in enhanced mechanical qualities. The microcracks in the cement paste and aggregates
are seen in Figure 16a,b, and Figure 18a. Crack propagation was detected across both the
aggregate and the cement paste, indicating a strong fiber-cement paste ITZ and an enhanced
microstructure. The addition of silica fume to the matrix resulted in an improvement in
the microstructure of the matrix due to the strong pozzolanic activity of silica fume. This
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indicates that upon hydration in an alkaline environment, calcium silicate hydrates (CSH)
gel is created because of silica-fume interacting with calcium hydro oxide, which is formed
during the hydration of cement. The CSH gel decreases the porosity of the matrix by filling
the pores, thus resulting in an increase in the strength of the concrete. The silica fume
cannot hydrate directly with water, it combines with Ca(OH)2 to form CSH. Ca(OH)2 may
also have an unfavorable influence on the interfacial and microstructure characteristics of a
material owing to the orientation and crystallinity of the material. A study also reported
that Ca(OH)2 is chemically active, which causes a decrease in the durability of concrete by
reacting with other chemicals, forming harmful compounds [80]. The inclusion of silica
fume may increase the overall matrix strength to a certain amount. However, the addition
of fibers in greater numbers might result in lower strengths owing to non-uniformity due
to a lack of flowability [81]. A study also reported that pozzolanic materials improved
the microstructure characteristics of concrete due to micro filling, which gives a more
compact mass [82]. The incorporation of coconut fiber into the concrete resulted in the
formation of new interfaces within the matrix, which resulted in weak linkages between
the coconut fiber and the matrix. There were open spaces created because of the debonding
of the coconut fiber from the matrix (Figure 16a). The increase of coconut fiber in higher
amounts weakens the binding strength of the matrix because of the lower flowability. The
creation of the free space may also be caused by fiber breaks in the surrounding tissue.
Because of the existence of this free gap, the post-cracking performance of the matrix
material was reduced. Figure 17b illustrates how a good link between coconut fibers and
the cement matrix should be free of gaps, resulting in improved mechanical characteristics
for the coconut fibers. It is also significant to note that the slippage of fibers in relation
to the matrix is the primary cause of the increased strength of concrete. The fibers are
surrounded by cement paste inside the matrix, which increases the strength of the matrix
as a result of a stress transfer mechanism between the matrix and the reinforced fibers.
Furthermore, to a certain degree, the tensile stresses created by the application of a load are
also resisted by fibers, which contributes to the preservation of the material by preventing
crack propagation from occurring.
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8. Conclusions

This paper presents a summary of research progress on natural fibers (coconut fibers).
Coconut fibers are an inexpensive, recyclable, low-density, and environmentally acceptable
building material. These fibers have excellent tensile qualities, and they may be utilized
instead of traditional fibers such as glass and carbon steel fibers. Based on a detailed review,
the following conclusions have been made:

• The flowability of concrete decreased with the addition of coconut fiber due to the
larger surface area of the fiber, which enhanced the internal friction among concrete
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ingredients, leading to less workability. Furthermore, an increase in fresh density is
observed up to 2% addition of coconut fibers.

• Mechanical characteristics such as compressive, split tensile, and flexure strength
were improved up to a certain dose of coconut fiber, which depends on physical
properties of fibers such as length, diameter, and aspect ratio. Furthermore, it can also
be observed that coconut fibers improved flexure capacity (47%) more efficiently than
compressive capacity (12%).

• Increased durability properties were also observed with the addition of coconut fibers.
However, less information is available in this regard.

• The optimum dose of coconut fibers is the most important parameter for better per-
formance of concrete, as a higher dose results in more voids in hardened concrete
due to lack of workability, leading to lower mechanical and durability performance of
concrete. The optimum dose of concrete varies depending on fiber length, diameter,
and aspect ratio. However, the majority of researchers recommended the optimum
dose of coconut fiber is from 2 to 3% by volume of cement.

It can be concluded that coconut fibers enhanced flexure capacity more efficiently
than compressive capacity. Therefore, further research was recommended to add some
pozzolanic materials such as fly ash and silica fume to the improved compressive capacity
of fiber reinforced concrete for high strength concrete. It is necessary to conduct detailed
research investigations into the influence of coconut fibers on crack abridgment, cement
matrix pore structure, water, and chloride permeability properties of concrete. It is also
necessary to investigate a novel strategy that makes use of the water retention capacity of
coconut fibers in order to generate high-performance cement composites using internal
curing technology.
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