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Abstract: The application of supplementary cementitious materials (SCMs) in concrete has been
reported as the sustainable approach toward the appropriate development. This research aims to
compare the result of compressive strength (C-S) obtained from the experimental method and results
estimated by employing the various modeling techniques for the fly-ash-based concrete. Although
this study covers two aspects, an experimental approach and modeling techniques for predictions,
the emphasis of this research is on the application of modeling methods. The physical and chemical
properties of the cement and fly ash, water absorption and specific gravity of the aggregate used,
surface area of the cement, and gradation of the aggregate were analyzed in the laboratory. The four
predictive machine learning (PML) algorithms, such as decision tree (DT), multi-linear perceptron
(MLP), random forest (RF), and bagging regressor (BR), were investigated to anticipate the C-S
of concrete. Results reveal that the RF model was observed more exact in investigating the C-S
of concrete containing fly ash (FA), as opposed to other employed PML techniques. The high R2
value (0.96) for the RF model indicates the high precision level for forecasting the required output
as compared to DT, MLP, and BR model R2 results equal 0.88, 0.90, and 0.93, respectively. The
statistical results and cross-validation (C-V) method also confirm the high predictive accuracy of the
RF model. The highest contribution level of the cement towards the prediction was also reported in
the sensitivity analysis and showed a 31.24% contribution. These PML methods can be effectively
employed to anticipate the mechanical properties of concretes.

Keywords: concrete; fly ash; modeling; machine learning; compressive strength

1. Introduction

CO2 emissions from industry, transportation, and services, and nitrogen and methane
oxides from agriculture are significant greenhouse gases (GHGs) [1]. Worldwide worries
about the environmental, economic, and social consequences of GHG emissions such as
CO2 have prompted the growth and deployment of a variety of CO2 emission mitigation
technologies and initiatives [2–7]. At this time, environmental sustainability has developed
as a global objective for social interests [8–10]. Furthermore, ecological issues about CO2
ejection from the Ordinary Portland Cement (OPC) manufacturing process have prompted
past academics to look at the viability of other materials to substitute OPC during concrete
production [11–13]. According to a study [14], the use of waste materials is desirable for
the sustainability of the construction sector; however, another study [15] claims that the ap-
plication of byproducts obtained from industries as a supplementary cementitious material
(SCM) partly substitute OPC has substantially helped to achieve a more green environment.
The growing demand for the strength properties along with the durability of concrete has

Materials 2022, 15, 3762. https://doi.org/10.3390/ma15113762 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15113762
https://doi.org/10.3390/ma15113762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-7994-4642
https://orcid.org/0000-0001-6524-4389
https://orcid.org/0000-0002-1668-7607
https://doi.org/10.3390/ma15113762
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15113762?type=check_update&version=1


Materials 2022, 15, 3762 2 of 19

necessitated the incorporation of a variety of industrial wastes with pozzolanic attributes
into the OPC [16–21]. Additionally, these components used in OPC have a remarkable result
in the microstructure alteration of cement pastes and the physio-mechanical parameters
of concretes [19,22,23]. The application of waste products in concrete structures not only
decreases ecological pollution but also improves the fresh and hardened properties of the
selected concrete [22–27]. Due to these aspects, waste materials are frequently employed
to improve the characteristics of concrete [28,29]. Nowadays, industrial wastes of various
sorts and nanoparticles are employed in concrete [30,31]. A set of the waste materials
frequently incorporated in concrete from the industries are ground granulated blast furnace
slag, metakaolin, fly ash, and silica fume. However, nano industrial wastes which are
frequently using in concrete are graphene, nano silica, titania–silica nanosphere, nano
titanium, carbon nanotubes, and nano metakaolin.

FA is one of the most utilized SCM in concretes [32–36]. The FA obtained from coal
incineration activities is not risky from the radiological fact [37]. Regrettably, it comprises
trace levels of hazardous substances derived from coal-burning, including mercury, fluorine,
and [38]. After burning, approximately 10–40% of chlorine and fluorine and 30–80% of
mercury in coal are reported to retain in FA [39,40]. As a result, this industrial waste
can be classified as a possibly hazardous substance in some instances. FA is an effective,
very desirable waste for recycling purposes since concretes containing these supplements
in proportions of up to 20% as OPC substitutes exhibit enhanced stability and fracture
toughness [41–44], deterioration resistance [45], and tolerance to elevated temperatures [46].
Additionally, by utilizing FA, eco-friendly green material for civil engineering might be
produced [47–51] and promote the development of a specific microstructure in concrete
matrices, thereby facilitating the restriction of harmful elements [52]. Initially, the usage
of FA in concrete enables the reduction of problematic disposal sites associated with this
waste. It is worth noting that about 800 million tons of FA are generated annually on a
global scale [53,54]. Due to the huge volume of combustion byproducts and their lack
of usage, the necessity for dry or wet landfill sites to be constructed, maintained, and
secured arises. It is a considerable environmental and public issue since the resulting
contamination of the atmosphere has a detrimental effect on people’s health and well-being
and might contribute to the development of severe environmental infections. Dumping
huge amounts of FA in landfilling is also detrimental, as they are extremely light and fine
in dry conditions, making them easily dispersed by wind. Thus, the substitution of FA
cement is an unambiguously environmentally acceptable alternative.

Moreover, it is necessary to introduce soft computing methods to accurately forecast
the nature and performance/strength of materials. Artificial intelligence (AI) approaches
are gaining more popularity in this aspect which are usually introduced to estimate the
various characteristics of different materials [55–61]. Especially, the estimate of the mechan-
ical characteristics of concrete is very important as it requires a lot of time, effort, and cost
to have the experimental results. To minimize these parameters, numerous AI algorithms
such as random forest (RF), multi-linear perception regression (MLP), artificial neural
network (ANN), neuro-fuzzy regression, AdaBoost, bagging, and boosting are normally
used for the estimate of concrete properties. Shariati et al. [62] research was based on the
anticipation of concrete strength containing waste material (FA and furnace slag). The result
reveals that the ANN approach shows a satisfactory prediction level for the compressive
strength (C-S) of concrete. Han et al. [63] employed the RF algorithm for the anticipation
of high-performance concrete and described that RF could be successfully employed for
the forecast of C-S of concretes. Chaabene et al. [64] represent a comprehensive review
of the number of PML approaches used for the prediction of the strength properties of
concrete. They reported that ML models are more precise, adaptable, and can be retrained
by incorporating the updated dataset.

This study describes the combined effect of experimental and soft computing predic-
tive approaches for the concrete strength containing FA. A detailed investigation of the
material used and mix ratios for preparing the concrete were carried out for the desired
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strength. The novelty of this research is to investigate the precision level of predictive
algorithms (MLP, DT, BR, RF) employed in the experimental and data retrieved from lit-
erature for the strength property of FA-based concrete. The comparative study on the
precision of employed algorithms towards the prediction of C-S would be beneficial for the
scientists and researchers in the field of engineering to adopt the appropriate technique for
the estimate of concrete’s strength.

2. Materials and Methods
2.1. Materials

The materials utilized in this investigation were aggregates with a specific gravity
of 2.79 and water absorption of 0.96% purchased from a local quarry, Ordinary Portland
Cement Type I having a surface area of 380 m2/kg, and class-F fly ash obtained from
a nearby thermal power plant was introduced in the experimental work. The water
absorption for the selected fine aggregate was noted as 2.32%, with its specific gravity of
2.65 obtained from the local source. As per the ASTM standard C494 superplastizers type
A was used in the concrete during experimental work. Table 1 summarizes the physical
properties and chemical composition of cementitious materials. As can be observed, cement
has the highest specific gravity, as opposed to FA. Moreover, the amount of SiO2, Fe2O3,
and Al2O3 in FA is 77.9%, indicating that it is class-F FA. However, the fineness modulus
FM of fine aggregate was noted as 2.65, while the result of fineness modulus for coarse
aggregate and fine aggregate was calculated as 6.93, and 2.65, respectively.

Table 1. Physical properties and chemical composition of the cement and fly ash.

Property/Composition Cement Fly Ash

Physical properties

Initial setting time (minutes) 34 -
Final setting time (minutes) 161 -
Standard consistency (%) 31.9 -
Specific gravity 3.2 2.482
Soundness (mm) 1 -
Blaine fineness (m2/kg) 2950 4300

Chemical
composition

Silica as SiO2 (%) 21.77 48.5
Alumina as Al2O3 (%) 5.5 20.01
Magnesium as MgO (%) 1.24 2.4
Calcium as CaO (%) 63.3 16.45
Iron as Fe2O3 (%) 4.6 8.5
Sulphur as SO3 (%) 1.91 1.72
Loss of ignition (%) 1.68 2.42

2.2. Methods

In the laboratory, cylindrical specimens (100 mm diameter and 200 mm height) were
made. Compaction was accomplished in two layers, with each layer receiving twenty
blows, using a conventional 2.5 kg proctor hammer. This technique has been advocated
over vibration and rodding. The number of random mixes was made with different mix
ratios to obtain the maximum number of data points. Each batch was then subjected to
curing for 7, 28, 56, and 90 days

2.3. Compressive Strength

The C-S of the FA-based concrete specimens was found using the ASTM C39/C
39M-99 standard [65]. The compressive axial load is applied to the specimens at a rate
of 0.15 to 0.35 MPa/s until the failure. Concrete specimens were cured in water and
then tested after 7, 28, 56, and 90 days. The maximum, minimum, and average C-S
obtained from the experimental work in the laboratory were 60.90 MPa, 12.05 MPa, and
31.73 MPa, respectively.



Materials 2022, 15, 3762 4 of 19

2.4. Data Description

The 62 data points (mixes) were prepared from the experimental work in the laboratory,
while 569 data points were retrieved from the literature [66,67] to have a maximum number
of data samples for modeling. To run the selected models, a total of 631 data points with
seven input parameters such as FA, water (W), cement (C), superplasticizers (SP), age,
coarse aggregate (C-A), and fine aggregate (FA), with one output C-S were arranged in the
tabulated form. The required dataset was then incorporated into the anaconda navigator
software, in which the selected models were run one by one with the help of python coding.
The result was obtained in the form of a coefficient of determination (R2) value, which
normally ranges from 0 to 1. The maximum R2 value signifies the superior precision
level of the employed method in forecasting desired outcome. In addition, the explanatory
statistical analysis of the input parameters obtained from experiments and literature used in
the study for the prediction (C-S) purpose can be seen in Table 2. The histograms indicating
the relative frequency distribution in the percentage of each variable of the total dataset
were developed using Jupyter Notebook (6.0.3) of the anaconda software, as depicted in
Figure 1 and the units for each variable in the figure is kg/m3, except age is days and
strength in MPa. Moreover, the detailed schematic representation of this research is shown
in Figure 2.

Table 2. Explanation of the statistical analysis for the input parameters.

Parameters Cement
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

SP
(kg/m3)

C-A
(kg/m3)

FA
(kg/m3)

Age
(days)

Mean values 282.13 77.29 180.95 5.45 1003.76 794.19 44.50
Standard deviation 94.88 61.91 17.97 5.28 72.84 68.18 58.66
Median of input 252.00 100.40 185.70 5.70 1006.40 794.90 28.00
Mode of input 213.50 0.00 192.00 0.00 968.00 613.00 28.00
Standard error 3.78 2.46 0.72 0.21 2.90 2.71 2.34
Range 405.30 200.10 88.00 28.20 324.00 351.00 364.00
Minimum values 134.70 0.00 140.00 0.00 801.00 594.00 1.00
Maximum values 540.00 200.10 228.00 28.20 1125.00 945.00 365.00

Figure 1. Cont.
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Figure 1. Reflection of histograms for inputs indicating the relative frequency distribution.

Figure 2. Flow chart of the research program indicating the step-by-step procedure.
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3. Predictive Machine Learning (PML) Algorithms
3.1. Decision Tree

DT algorithms are well-recognized PML approaches that have been used for a variety
of tasks, most notably classification. DTs are used to partition datasets in a nonparametric
manner. Alternative data extracting methods include regression models, which depict
variables’ relations as cross-products. The DTs used in this research were chosen for
their capacity to transform enormous, complex datasets into simple-to-understand yet
knowledge-rich graphic presentations. More precisely, the resulting graphical tree image
was deemed beneficial for rapidly elucidating the essential parameter value combinations
that result in unacceptable product loss, which could then be turned into a set of rules. A
DT employs a tree-like graph to describe a flowchart-like structure, with the “root” as the
starting point. Each internal node of the tree corresponds to a test on a particular attribute
or subset of attributes. Each branch from the node reflects the result of the test, while the
final node represents a class label via a “leaf”. A simple DT can be constructed manually.
However, designing an algorithm that learns the tree from data is straightforward. As with
other types of PML, supervised learning uses labeled samples to construct a classifier by
computing the sequence of branch options. The flow chart of the DT model indicating the
execution process for predicting the required outcome is shown in the Figure 3.

Figure 3. Execution process of the DT model [66].

3.2. MLP Algorithm

An MLP is a form of feedforward ANN that generates outputs based on a collection
of inputs. Amongst the output and input layers, many layers of input nodes are linked
through a targeted graph. Backpropagation is used to train the network in MLP. A MLP is
a type of network (neural) that links many laps in a targeted graph, with signals traveling
one way across the nodes. Except for the input nodes, each node has a nonlinear activation
function, which is unique to it. MLPs are a type of supervised learning that makes use
of backpropagation. Due to the number of laps of neurons in MLP, it is usually called
a deep learning approach. MLP is commonly used in supervised learning applications
and imputation pure science and parallel dispersed processing studies. Applications have
machine translation, image perception, and speech realization. Initially, the algorithm
selects predictors to employ during the regression phase to identify the variance inflation
component (VIF). The VIF then evaluates the variance increase of an estimated regression
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coefficient due to collinearity. Finally, the algorithm eliminates variables with high VIFs in
order to get the optimal forecasting solution as shown in the Figure 4.

Figure 4. Flow chart of the MLP model showing the complete execution process.

3.3. Bagging Algorithm

BR, also known as bootstrap aggregation, is a technique for merging many editions of a
predicted model. Every model is individually skilled and then averaged. The fundamental
purpose of BR is to achieve a smaller deviation than any single model. Bootstrapping
is the process of generating bootstrapped samples from a given dataset. The samples
are generated by randomly picking and replacing data points. The resampled data have
qualities that are unique from the original data in their entirety. It illustrates the data
distribution and also tends to reserve divergence among bootstrapped samples, i.e., the
data dispersal must remain together while maintaining distinction across bootstrapped
samples. This helps to construct strong models. Furthermore, bootstrapping supports
preventing the overfitting problem. When several training datasets are used to build the
model, it becomes resistant to error creation and hence runs in a better manner with the test
data, minimizing variation by creating a strong footing in the test set. Testing the model
with numerous permutations guarantees that it is not partisan for an incorrect result. The
flow chart of the bagging model can be seen in the Figure 5.

Figure 5. Flow chart of the bagging algorithm indicating the execution process.
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3.4. Random Forest

An RF is a special kind of PML method that is utilized to deal with classification and
relapse issues. It constructs the use of ensemble learning, a practice for settling complex
problems through the application of various classifiers. An RF algorithm is made up of
a huge number of decision trees. The RF approach creates a ‘forest’ that is trained using
either backward regression or bootstrap aggregation. BR is an ensemble meta-algorithm
that is used to improve the accuracy of PML systems. The RF technique creates the result
based on the predictions of the DTs. Forecasting is accomplished by summing or scaling the
output of distinct trees. Expanding the number of trees enhances the accuracy of the result.
An RF algorithm solves the disadvantages of a deep learning system. It reduces overfitting
and increases the accuracy of datasets. It makes predictions without needing the user to
configure multiple packages (such as sci-kit-learn). A DT is composed of three components:
decision nodes, leaf nodes, and root nodes. A DT technique partitions a training set into
branches that subsequently split into additional branches. This method is continued till
reaching a leaf node. It is not feasible to further segregate the leaf node. The nodes of the
DT show the attributes that are used to anticipate the result. The decision nodes link the
leaves together. The execution process of the RF model is depicted in the Figure 6.

Figure 6. Predictive process of the RF model [63].
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3.5. K-Fold Cross-Validation (C-V) Method

C-V is a statistical approach that is used to assess the prediction power of PML models.
It is commonly applied in PML to match and select models for specific projecting modeling
issues since it is simpler to understand and use and gives skill estimates that are typically
less biased than those given by other approaches. C-V is a strategy for assessing PML
models on a short sample of data. The method accepts a single parameter, k, which indicates
how many groups a given data sample should be split into. As a result, the procedure is
usually abbreviated as k-fold C-V. When an exact value for k is supplied, it may be used in
place of k in the model’s reference; for example, k = 10 becomes 10-fold C-V.

C-V is mostly utilized in applied PML to determine the skill of a PML model on
formerly unknown data. That is, to assess the model’s overall operation when employed to
produce forecasts on data that were not used during the model’s training. It is a popular
method because it is simple to understand and offers a more accurate evaluation of model
competency than other strategies, such as a simple train/test split. The general procedure
is as follows: randomize the dataset, divide it into k distinct groups, treat one group as
a reserve or test data collection, use the remaining groups as a source of training data on
the training set, fit a model and evaluate it on the test set, keep the evaluation score and
discard the model, and summarize the model’s ability by examining a sample of model
evaluation scores. Notably, each observation in the data sample is assigned to a unique
group and remains assigned to that group throughout the process. This means that each
sample is used just once in the hold outset and then used k times to train the model.

4. Result and Discussions
4.1. Decision Tree Model Outcome

The correlation amongst the experimental results and the findings found from the DT
model (predicted) shows appreciable relation and gives the R2 value equal to 0.88, as shown
the Figure 7. However, Figure 8 depicts the spreading of errors from the predicted and
experimental C-S results. This distribution ranges from 0 and gives the maximum value
equal to 13.8 MPa, while the average result of this distribution was 3.09 MPa. In addition,
23.62% of the data were lying among 0 and 1 MPa, and 58.26% of the data were lying
among 1 MPa and 5 MPa. However, only 18.11% of the error values were lying above
5 MPa.

Figure 7. Correlation between the experimental C-S and projected C-S for the DT model.
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Figure 8. Difference between the experimental C-S and predicted C-S of the DT model.

4.2. MLP Model Outcome

The statistical result obtained from the MLP model between the experimental and
predicted can be seen in Figure 9. The R2 value equals 0.90 for the MLP model, showing a
better predictive precision for C-S of concrete as opposed to the DT model. The difference
(errors) between the experimental and forecasted C-S results for FA-based concrete are
shown in Figure 10. This difference gives the maximum value equal to 15.22 MPa, while
the minimum value was reported as 0.009 MPa, while this distribution shows the average
value equals 3.74 MPa. Moreover, it was reported that 14.17% of data were lying up to
1 MPa, and 56.69% of data were lying among 1 MPa and 5 MPa. However, 29.13% of the
data were lying above 5 MPa.

Figure 9. Correlation between the experimental C-S and the estimated C-S for the MLP model.
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Figure 10. Difference between the experimental C-S and predicted C-S of the MLP model.

4.3. BR Model Outcome

The relationship between the experimental results of the C-S and the anticipated
outputs of the concrete containing FA are shown in Figure 11. The results of the difference
(errors) among the forecasted and experimental can be seen in Figure 12. The results of
these differences give the highest, lowest, and average values of 9.01 MPa, 0.004 MPa, and
2.77 MPa, respectively. Moreover, 23.62% of the data were lying up to 1 MPa, 59.05% of
data were found among 1 MPa, and 5 MPa, while only 17.32% of the data were lying above
5 MPa.

Figure 11. Correlation between the experimental C-S and projected C-S for the BR model.
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Figure 12. Difference between the experimental C-S and predicted C-S of the BR model.

4.4. RF Model Output

The statistical output for the RF model between the experimental C-S and predictive
C-S of concrete containing FA is depicted in Figure 13. The RF model shows a much better
predictive result when compared to other employed ML algorithms, as illustrated by the
high R2 value that equals 0.96. The errors distribution between the experimental C-S and
forecasted C-S of concrete is shown in Figure 14. The RF model’s error distribution gives
the highest, lowest, and average values equal to 7.183 MPa, 0.056 MPa, and 2.170 MPa,
respectively. Moreover, it was observed that 24.40% of the data were lying up to 1 Mpa,
67.71% of the data were lies among 1 MPa, and 5 MPa, while only 7.87% of the data were
lying above 5 MPa.

Figure 13. Correlation between the experimental C-S and projected C-S for the RF model.
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Figure 14. Difference between the experimental C-S and predicted C-S of the RF model.

4.5. K-Fold Outcome

C-V is a statistical approach that is used to analyze or approximate the factual perfor-
mance of PML models in real-world situations. It is crucial to understand the effectiveness
of the models that have been chosen. In order to accomplish this, a validation technique
must be used to determine the level of correctness of the model’s data. The k-fold validation
test necessitates the randomization of the dataset as well as the division of the dataset into
k-groups. According to the research detailed here, the data from experimental samples
are separated into ten equal groups. It makes use of nine out of ten subsets, with the
exception of one subset that is used for model validation purposes. The same approach
used in this process is then replicated ten times in order to get the average precision of
the ten replications carried out. It has been extensively established that the k-fold C-V
approach accurately depicts the decision and correctness of the PML models, and this has
been thoroughly confirmed.

The use of k-fold C-V might be employed to determine whether or not there is a bias
or a variance reduction for the test set. As shown in Figure 15a–d, the outcomes of C-V
are assessed using the R2, the mean absolute error (MAE), the mean square error (MSE),
and the root mean square error (RMSE). The RF model indicates the lower result of the
proposed errors and high result of the R2 as opposed to the other three employed models
(BR, MLP, DT). RF shows the average value of R2 equals 0.46, while the maximum and
minimum values were equal to 0.88 and 0.07, respectively. The BR model’s average R2

value was noted as 0.63, and the highest and lowest value was reported as 0.87 and 0.25,
respectively. Likewise, the average, least, and high value of R2 for the MLP model was
noted as 0.47, 0.07, and 0.88, respectively. However, the same result of the R2 value for the
DT model was reported as 0.57, 0.01, and 0.88, respectively.
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Figure 15. Statistical indicators of k-fold CV for the employed models; (a) RF model, (b) BR model,
(c) MLP model, and (d) DT model.

5. Sensitivity Analysis (SA)

This analysis helps to find out the contribution level of each input factor employed for
modeling to predict the C-S of FA-based concrete. It is also important to test the effect of
each variable for the required outcome. SA reveals that the highest contribution towards
the prediction of C-S was reported by cement and shows the 31.24 percent contribution,
while the other variables contributed the least. The minimum contribution was reported by
the superplasticizers, which contributed only 4.69 percent towards the anticipation of C-S
of concrete, as shown in Figure 16.

Figure 16. Parameter’s effect on the strength property of FA-based concrete.
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6. Discussion

This research described the comparative investigation of experimental results obtained
in the laboratory and forecasted results acquired from the various modeling techniques for
the C-S of concrete containing FA. It is the worth known fact that obtaining the strength
of concrete must take a number of days (time), which is a time-consuming effort for
researchers. To minimize time, effort on experiments, and cost, the application of such soft
computing methods which can predict the desired strength initially are of great interest.
The ML algorithms employed in this study also showed satisfactory outcomes when the
experimental C-S result of the various mixes was compared with the forecasted C-S result.
The comparison of four different types of ML approaches gives the anticipated result with
a certain precision level based on the execution process of each approach. The RF ML
technique gives the effective, precise result for C-S of FA-based concrete when compared
to other employed ML algorithms (DT, MLP, and BR). The precision level of these models
is normally evaluated from the R2 value, which normally ranges from 0 to 1; the higher
R2 value of the model indicates a better precise result in terms of predictions. The high
accuracy of the RF and BR is due to the execution process for the data and splitting of the
model into the sub-models. The detailed information on the sub-models of RF and BR can
be seen in Figure 17a,b, respectively. An RF is composed of a huge number of independent
DTs that involve collaboration. Each tree in the RF produces a forecast for a class, and the
class with the most choices becomes the model’s prediction. The high accuracy of the RF
model over the others has also been reported in the literature [68]. The applied statistical
checks also give confirmation of high accuracy for the RF model. The lesser value of MAE,
MSE, and RMSE shows that the R2 value for the said model will be higher and vice versa.

Figure 17. Coefficient of determination result of the 20 sub-models for; (a) RF, (b) BR models.
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7. Conclusions

This research reported the comparative study of experimental C-S and the results
from the various modeling approaches for concrete containing fly ash (FA). The 61 mixes
were prepared in the laboratory with the random mix ratios to have the number of data
points for further investigation in the modeling techniques. A similar database was also
collected from the literature to make the database appreciable for modeling. The following
conclusion can be drawn from the study.

• The RF model was more effective in predicting the C-S of concrete having FA as
opposed to DT, MLP, and BR.

• RF gives the R2 value equal to 0.96, which is the highest of the DT (0.88), MLP (0.90),
and BR (0.93), indicating the highest precision level for forecasting the C-S of concrete.

• Statistical checks and the CV approach also validate the superior exactness level of the
RF model as opposed to other employed models.

• The RF also gives a lesser result for the evaluated errors MAE (2.17 MPa), MSE
(7.45 MPa), and RMSE (2.73 MPa) when compared with the error value of the DT, MLP,
and BR. This lesser value of the error also confirms the high precision of the RF model.

Further studies can also be conducted using other supervised ML algorithms such
as boosting regressor, Adaptive neuro-fuzzy inference system, and XGBoost technique to
investigate their predictive performance. Furthermore, the experimental approach can
also be enhanced to obtain the maximum number of data points to avoid overfitting the
data. It is also recommended that the strain model can also be included in the study along
with the use of supervised machine learning algorithms to strengthen the overall quality of
research work. To compare the results with a database with restricted input parameters,
the number of input variables might be expanded. The dimensions of the tested specimens,
temperature, and humidity effects can also be considered to investigate the difference in
the required outcome.
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66. Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F.J.C.; Materials, B. Predicting the compressive
strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 2021, 308, 125021. [CrossRef]

67. Song, Y.; Zhao, J.; Ostrowski, K.A.; Javed, M.F.; Ahmad, A.; Khan, M.I.; Aslam, F.; Kinasz, R. Prediction of Compressive Strength
of Fly-Ash-Based Concrete Using Ensemble and Non-Ensemble Supervised Machine-Learning Approaches. Appl. Sci. 2022,
12, 361. [CrossRef]

68. Chun, P.-j.; Ujike, I.; Mishima, K.; Kusumoto, M.; Okazaki, S.J.C.; Materials, B. Random forest-based evaluation technique for
internal damage in reinforced concrete featuring multiple nondestructive testing results. Constr. Build. Mater. 2020, 253, 119238.
[CrossRef]

http://doi.org/10.1680/jstbu.18.00159
http://doi.org/10.1016/j.conbuildmat.2019.07.315
http://doi.org/10.1016/j.conbuildmat.2020.119889
http://doi.org/10.1016/j.conbuildmat.2021.125021
http://doi.org/10.3390/app12010361
http://doi.org/10.1016/j.conbuildmat.2020.119238

	Introduction 
	Materials and Methods 
	Materials 
	Methods 
	Compressive Strength 
	Data Description 

	Predictive Machine Learning (PML) Algorithms 
	Decision Tree 
	MLP Algorithm 
	Bagging Algorithm 
	Random Forest 
	K-Fold Cross-Validation (C-V) Method 

	Result and Discussions 
	Decision Tree Model Outcome 
	MLP Model Outcome 
	BR Model Outcome 
	RF Model Output 
	K-Fold Outcome 

	Sensitivity Analysis (SA) 
	Discussion 
	Conclusions 
	References

