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Abstract: A new construction scheme was recently developed for precast segmental concrete beams
by replacing steel tendons with internal unbonded carbon-fiber-reinforced polymer tendons. The
discontinuous behaviors of the opening joints and unbonded phenomenon of tendons made their
flexural behaviors more complicated than those of monolithic beams and members with bonded
tendons. Currently, the knowledge on the structural performance of precast segmental concrete
beams with internal unbonded carbon-fiber-reinforced polymer tendons is still limited. An efficient
numerical model is urgently needed for the structural analysis and performance evaluation of this
new construction scheme. In this paper, a new beam–cable hybrid model was proposed accounting
for the mechanical behaviors of open joints and unbonded tendons. The numerical model was
implemented in the OpenSees software with the proposed modeling method for joint elements and a
newly developed element class for internal unbonded tendons. The effectiveness of the proposed
model was verified by comparisons against two simply supported experimental tests. Then, the
numerical model was employed to evaluate the flexural performance of a full-scale bridge with a
span of 37.5 m. Compared with the precast segmental concrete beam with external steel tendons,
the scheme with internal unbonded carbon-fiber-reinforced polymer tendons significantly improved
the flexural capacity and ductility by almost 54.6% and 8.9%, respectively. The span-to-depth ratio
and prestressing reinforcement ratio were the main factors affecting the flexural behaviors. With the
span-to-depth ratio increasing by 23%, the flexural capacity decreased by approximately 38.6% and
the tendon stress increment decreased by approximately 15.7%. With the prestressing reinforcement
ratio increasing by 65.4%, the flexural capacity increased by 88.7% and the tendon stress increment
decreased by approximately 25.2%.

Keywords: precast concrete segmental beam; internal unbonded tendons; CFRP; numerical model;
flexural capacity; ductility

1. Introduction

Precast segmental concrete beams (PSCBs) have become a popular construction option
in recent decades due to their significant advantages in construction speed and quality
control [1–3]. As the most critical component to ensure the integrity of the assembled
concrete segments, the reliable prestressing scheme is of great concern for PSCBs.

Nowadays, steel tendons constitute the most widely adopted prestressing solution
in PSCBs, including internal fully bonded steel tendons, external unbonded steel tendons,
and hybrid tendons [4]. Numerous studies have been performed on the flexural and shear
behaviors of steel tendon prestressed PSCBs [5–10]. The internal bonded steel tendons
are beneficial to improving structural load-carrying capacity and ductility, but they are
vulnerable to corrosion at the joint locations [11,12]. Once corrosion occurs, deterioration
is inevitable, and the embedded steel tendons are almost impossible to be replaced. The
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application of external steel tendons is a solution option due to their property of being
easier to handle, monitor, and replace during their service life [13]. However, the flexural
capacity of PSCBs with external steel tendons is reduced due to the decreased tendon
effective depth at the ultimate states [14–17]. A better prestressing scheme thoroughly
considering both the tendon durability and structural load-carrying capacity is greatly
needed for PSCBs.

Fiber-reinforced polymer (FRP) composites have the remarkable advantages of high
strength and free corrosion [18,19], which are favorable for use in prestressing applications
as alternatives to steel tendons. Previously, carbon-fiber-reinforced polymer (CFRP) tendons
were usually applied to monolithic beams [20]. Le et al. first proposed the scheme of the
precast segmental concrete beam with internal carbon-fiber-reinforced polymer tendons
(PSCB-IUCFRPs) [21,22]. This new system has two main expected advantages compared
with previous ones. First, the pipe grouting and epoxy joints are no longer needed, due
to the noncorrosion property of the CFRP material, contributing to rapid construction
and maintenance [23]. Second, the flexural capacity can be improved due to the better-
maintained tendon eccentricity and high tensile strength of CFRP tendons. However, the
structural performance of the PSCB-IUCFRP was only tested in two scaled experiments by
Le et al. [21,22]. The knowledge on the flexural behaviors of the full-scale PSCB-IUCFRP
is still limited. There is a need to develop the applicative numerical model and verify the
structural performance of the full-scale PSCB-IUCFRP.

Compared with monolithic beams [20,24–27], the PSCB-IUCFRP system showed more
complicated flexural behaviors, including the discontinuous behaviors of open joints and
the unbonded phenomenon of the internal unbonded CFRP tendons. Le et al. [28] and
Tran et al. [29] conducted the only numerical model for the PSCB-IUCFRP. In their models,
concrete segments and internal tendons were modeled using the 3D solid finite elements
(FE) model. The joint connection and unbonded behavior of tendons were modeled using
contact elements. The proposed 3D FE method was verified against the experiments but
came at a high computational cost. It was inconvenient for application to the full-scale
beam. Lou et al. [30,31] and Pang et al. [32] proposed a higher-efficiency numerical model,
in which the concrete beam was modeled by layered beam elements, and FRP tendons were
modeled by the equivalent loads. However, their models could only be used for monolithic
concrete beams, and two inadequacies were revealed. First, the discontinuous behaviors of
the open joints were not considered. Then, the unbonded CFRP tendon was only modeled
by equivalent loads by neglecting the stiffness, which decreased the numerical convergence
for highly nonlinear solutions. To date, there is still no available high-efficiency numerical
model for the structural analysis of the full-scale PSCB-IUCFRP.

In this paper, a new high-efficiency nonlinear analysis model is proposed for the
analysis of the PSCB-IUCFRP, accounting for the discontinuous behaviors of open joints and
the unbonded phenomenon of internal CFRP tendons. The concrete segment is modeled
by the fiber beam element. The segmental joints are modeled by the “plain concrete” fiber
beam element using the smeared strain method. The unbonded CFRP tendons are modeled
by the proposed multi-node slipping cable element with complete formulations of the
stiffness matrix and resistance vector, which improves the numerical convergency. The
numerical model is implemented in the OpenSees software (version 2.5.0) [33] with newly
developed element types and verified against experimental tests. Then, the numerical
model is applied to evaluate the flexural capacity, ductility, and failure mode of a 37.5 m full-
scale PSCB-IUCFRP. The effects of the main factors, including loading types, span-to-depth
ratio, and prestressing reinforcement ratio, on the flexural behaviors of the PSCB-IUCFRP
are discussed. To the best of the author’s knowledge, this is the first time to evaluate the
flexural performance of the PSCB-IUCFRP in full-scale bridges.
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2. Numerical Model Description
2.1. Modeling Schemes

The PSCB-IUCFRP system mainly comprises three components, namely, concrete
segments, segmental joints, and internal unbonded CFRP tendons, as shown in Figure 1.
The discontinuity of the opening joints and the unbonded phenomenon of prestressing
tendons lead to more complicated flexural behaviors than monolithic or bonded prestressed
concrete beams.
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Figure 1. Schematic diagram of a PSCB prestressed with internal unbonded CFRP tendons.

For the segmental joints, once decompressing at the dry joints or reaching the cracking
strain at epoxy joints, the joints will open and the joint width will increase quickly due
to the lack of bonded reinforcements. The segments adjacent to the open joints become
discontinuous, which is the first issue that should be considered in the numerical model.

For the internal unbonded tendons, the friction forces between the unbonded tendons
and the adjacent concrete are smaller than tendon traction [16,34]. Therefore, the frictionless
assumption is usually adopted for unbonded tendons to simplify analysis [28–30]. With
this assumption, internal unbonded tendons behave as a slipping cable with equal traction
anywhere between two anchorages. The elongation of the unbonded tendons is member-
dependent rather than exhibiting only section-dependent behavior. The interaction between
internal unbonded tendons and concrete beams exists within the entire beam length. They
have the same vertical deformation but different longitudinal deformation, which is the
second issue to consider.

Tran et al. conducted the first numerical model study for the PSCB-IUCFRP using
the 3D solid element FE model [29]. The CFRP tendon and concrete beam were modeled
by solid elements and specified no-friction contact elements between them to model the
unbonded phenomenon. The joints were simulated using the contact elements with a
friction coefficient of 0.7 to model the discontinuous behaviors of the opening joints. The
solid FE model showed good accuracy but came at a high computational cost due to the
large amounts of elements and complex contact interactions that existed, decreasing the
computational efficiency and convergence for the analysis of full-scale beams.

In this paper, we propose a one-dimensional beam–cable hybrid element model to
improve the analysis efficiency and convergence. Based on the experimental tests and
observations [21,22], the following reasonable assumptions are considered:

• The structural deformation and capacity are dominated by flexural behaviors. The
effects of the shear deformation on the beam are neglected.

• The direct shear failure of joints will not occur before the structural flexural failure.
• Previous tests [16,34] showed that the friction between the unbonded tendons and

surrounding concrete is usually small. For simplification, we neglect the friction effects
in this work and assume that the traction of the internal unbonded tendon is constant
between the anchorages [28–30].

With the above assumptions, the proposed modeling scheme is established, as shown
in Figure 2. The main characteristics of the proposed model are concluded as follows:
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(1) The segmental concrete beam is modeled by the nonlinear fiber beam element to
improve the analysis efficiency. In particular, the segmental joints are modeled by the
“plain concrete” fiber beam element with a specified element length lse. The discon-
tinuous joint behaviors are converted into the deformation of equivalent continuum
elements based on the smeared strain method, which is described in Section 2.2.

(2) The newly developed multi-node slipping cable element is employed to model the
unbonded behavior of internal unbonded tendons. The deformation compatibility
is satisfied and the strain is equal anywhere within the element, as presented in
Section 2.3.

(3) The interaction between the concrete beam and unbonded tendon is simulated by the
rigid beam, which transfers the translational and rotational deformations of beam
nodes to the translation of tendon nodes, as presented in Section 2.4.
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Figure 2. Modeling schemes of the proposed model.

The proposed modeling method and derived FE formulations are implemented in the
OpenSees software [33] for simulation. The mechanical characteristics of the PSCB-IUCFRP,
including nonlinear material behaviors, discontinuous joint behaviors, and the unbonded
phenomenon of CFRP tendons, are all thoroughly considered using one-dimensional
element types, improving the analysis efficiency.
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2.2. Fiber Beam Element for Segmental Concrete Beam

The modeling method for the segmental concrete beam in this paper is shown in
Figure 3, in which each concrete beam segment can be generally modeled by three elements.
Two joint elements are arranged at two ends of the segment and one RC beam element is
placed in the middle. Both the joint element and the RC beam element are modeled by the
fiber beam element in the OpenSees software [35]. The cross-section of this element is di-
vided into many small regions, which are called “fibers” in the OpenSees software [35]. The
region for concrete is called “concrete fiber” and the region for reinforcement is called “rein-
forcement fiber”, as shown in Figure 2d. Each fiber contains a uniaxial material constitutive
model, an area, and centroid coordinates (y, z). For the Euler–Bernoulli beam, the axial
deformations of the fibers within the cross-section satisfy the plane section assumption.
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The nonlinear state updating process of the element can be concluded as follows. With
the specified element deformation, the axial deformation of each fiber in the cross-section is
first calculated. Then, the stress and tangent modulus of each fiber are updated according
to the uniaxial nonlinear constitutive model. Then, the sectional resistance and stiffness
can be calculated by the sum of all of the fibers’ axial forces and tangent stiffness. The
element resistance and stiffness are subsequently calculated with the sectional resistance
and stiffness using the Gauss–Lobatto numerical integration method. The detailed FE
formulations and algorithmic implementation of this element can be seen in [36]. The
corotational coordinate transformation is adopted to consider the geometrically nonlinear
behavior of the element.

The main issue that should be emphasized here is the difference in fiber section
definition between the joint and RC beam elements, as shown in Figure 2d. The fiber
section of the RC beam element includes concrete fibers and reinforcement fibers, while
in joint elements, only concrete fibers are included as reinforcements are cut-off at the
joint locations. With the increasing load up to ultimate states, the bottom fiber of the joint
will be open, and the compression region will be crushed. In the numerical model, we
define the length of the joint element as lse. The actual deformations of the joint and the
adjacent concrete (as shown in Figure 4a) are averagely smeared into the joint element. The
concrete constitutive model in the joint element is equivalently modified according to the
fracture and crushing band theory [37,38], as shown in Figure 4b. Based on this equivalent
smeared strain method, the effects of the joint element length can be normalized. Generally,
specifying lse as no greater than one-fourth of the segment length is applicable.
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According to the concept of smeared strain, the unified concrete constitutive model
is adopted, as shown in Figure 4c. For epoxy joints, the tensile strength of the fiber in the
joint element is set to be equal to that of the concrete segments. For dry joints, the tensile
strength of the fiber is set to be zero. The shadows under the tensile and compressive
curves in Figure 4c denote fracture energy GF (N/mm) and crushing energy GFc (N/mm)
of the concrete per unit length, respectively. The slopes of the compression-softening
and tension-stiffening curves are adjusted according to GFc (N/mm) and GF (N/mm),
as shown in Equations (1) and (2). The values of GFc (N/mm), GF (N/mm), and GF0
(N/mm) are calculated according to the specifications of CEB-FIP [39]. Then, the crack and
crushing bands are smeared into the whole element length lse (mm) to reach normalization.
Furthermore, the joint opening width can be approximatively predicted by the product
of tensile strain and joint element length lse (mm). In this way, the discontinuous joint
behaviors are converted to the equivalent “continuous behavior”.

εcu = 2GFc/( fclse) + εc0, GFc = 8.8
√

fc (1)

εtu = 2GF/(lse ft), GF = GF0( fc/10)0.7 (2)

2.3. Multi-Node Slipping Cable Element for Internal Unbonded Tendons

In the traditional FE model, the prestressing tendons are usually modeled by the truss
element, which is a 2-node line element. For internal unbonded prestressed members,
the tendon needs to be divided into many truss elements to apply the interaction with
the beam along the whole span. However, the strain compatibility cannot be satisfied by
the traditional truss elements, which are not suitable for the simulation of the free-slip
behaviors of internal unbonded tendons.

To model the free-slip effects of internal unbonded tendons, a new type of element
called the multi-node slipping cable element is proposed by the authors. The schematic
diagram of the proposed element is shown in Figure 5. The element consists of several
nodes and segments, and the nodal as well as segmental numbers are arbitrary without
limitation. In this paper, we assume the slipping cable element as a configuration with np
nodes and np−1 segments. Each node has two translational DOFs, and each segment can
only transmit only axial force. The axial forces in the segments are equal anywhere.
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Figure 5. Schematic diagram of multi-node slipping cable element for internal unbonded tendon.

At step t, we express the element displacement vector Ut as Equation (3).

Ut =
[
u1,t ui,t · · · unp ,t

]T
2np×1, (3)

where ui,t =
[
ui,t vi,t

](
i = 1 ∼ np

)
is the displacement vector of node i at step t; ui,t

and vi,t denote the displacement along the x and y direction of the global coordinate
system, respectively.

For each segment, we define the element local coordinate system xOy along the
deformed element axis based on the corotational theory. Then, the element displacement
vector Ul

t in the local coordinate system can be denoted as Equation (4).

Ul
t = RPtUt

Pt =


−1 0 1

−1 0 1
−1 0 1

. . . . . . . . .
−1 0 1


(2np−2)×(2np)

, R = diag
([

r1 rj · · · rnp−1

])
(2np−2)×(2np−2)

rj =

[
cos X cos Y
− cos Y cos X

]
, cos X =

xj+1,0−xj,0
lj,0

, cos Y =
yj+1,0−yj,0

lj,0

(4)

Then, the tendon strain at step t can be calculated using the definition of the engineer-
ing strain, as shown in Equation (5).

εt = Lt/L0 = UT
t PT

t Υt
[
PtUt + RTL0

]
/L0

Υt = diag
([

l−1
1,t I2×2 l−1

j,t I2×2 · · · l−1
np−1,tI2×2

])
L0 =

[
LT

1,0 LT
j,0 · · · LT

np−1,0

]T
, Lj,0 =

[
lj,0 0

]T
(5)

where L0 denotes the initial sum length of all segments and Lt denotes the sum length of all
segments at step t.

Through the virtual work equations and variational derivation, the stiffness matrix
Kt and resistance vector ft of the slipping cable element can be obtained and expressed as
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Equations (6) and (7), respectively. kg
t and km

t denote the geometric and material stiffness
matrix of the element, respectively. Ep is the tangent modulus of the material and Ap is the
cross-sectional area of the tendon. σt denotes the stress in current analysis step t.

Kt = kg
t + km

t

kg
t = σt ApPT

t (Υt − Γt)Pt

km
t = Ep Ap/L0PT

t ΓtRTL0LT
0 RΥtPt

(6)

ft = σt ApLT
0 RΓtPt ft = σt ApLT

0 RΓtPt (7)

In the current OpenSees version, there are no suitable element types for the simulation
of internal unbonded tendons. Based on the above-derived equation, the slipping cable
element is added into the OpenSees software by the authors as the newly developed element
type. Meanwhile, the Tcl command interpreters are also programmed into OpenSees for
the definition of the element. It should be pointed out that the element and developed
procedure have no limitation on the tendon shape profiles.

2.4. Rigid Beam Connection

The interactions between the concrete beam and tendons are modeled by a rigid
beam connection, as shown in Figure 6. The node of the concrete beam has three degrees
of freedom (DOFs), and the nodal displacement vector is denoted as uc = [uc, vc, θc]T.
The node of the tendon element has two DOFs, whose displacement vector is denoted as
ut = [ut, vt]T. Taking the concrete beam node as the master node and the tendon node as
the slave node, the rigid beam connection builds a transformation of displacements of the
beam node to the displacements of the tendon node. The transformation relation of the
rigid beam is presented in Equation (8). ∆x and ∆y denote the projection distances from
the master node to the slave node in the x and y-directions, respectively.

ut =

[
1 0 ∆y
0 1 −∆x

]
uc (8)Materials 2022, 15, x FOR PEER REVIEW 9 of 22 
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2.5. Constitutive Model

The nonlinear constitutive models of materials used in this paper are presented as follows:

(1) Concrete Model

The concrete model for the RC beam element and joint element uses a parabolic-
ascending linear-descending form for the compressive stress–strain relation. The tensile
stress–strain relation is modeled by a linear-elastic before cracking and linear-descending
form after cracking. The diagram can be seen in Figure 4c. ft (MPa) and fc (MPa) are the
tensile and compression strength of concrete, respectively. εtu and εcu denote the ultimate
tensile and compression strain of concrete, respectively. Ec (MPa) represents the initial
modulus of concrete. For dry joint elements, the tensile strength of concrete is set to be
zero and the built-in material Concrete01 in OpenSees without tension is adopted. For
the epoxy joint, the built-in material Concrete02 in OpenSees is used and the tension
softening stiffness is adjusted by the fracture energy, as presented in Equation (2). The
compression-soften slope is adjusted by the crushing energy, as presented in Equation (1).

(2) Reinforcements Model

The Steel01 Model in the OpenSees software is adopted to model the material behaviors
of reinforcements, as shown in Figure 7a. The model is linear-elastic before reaching the
yield strain and then linear strain-hardening up to ultimate stress. Es (MPa) denotes the
initial elastic modulus and fy (MPa) is the yield strength of reinforcement. b represents the
strain-hardening ratio and is set to be 0.005 in this paper. The reinforcements model is only
used in the RC beam element.
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(3) Steel tendon

The material behavior of the prestressing steel tendon is modeled by the Steel02 model
in OpenSees, as shown in Figure 7b. fspy (MPa) is the yield strength of the steel tendon. Esp
(MPa) denotes the initial elastic modulus and bsp represents the strain-hardening ratio. In
this paper, bsp = 0 and R0 = 18 are employed in the Steel02 model definition and the default
values are used for the other parameters (see http://opensees.berkeley.edu/ (accessed
on 1 March 2020)). At the same time, the initial prestress σpe (MPa) is defined in the
Steel02 model.

(4) CFRP tendon

The CFRP tendon has no yield states and behaves linear-elastically until rupture.
The adopted material model for the CFRP is shown in Figure 7c. In OpenSees, there
is no available material model for the CFRP. Therefore, we develop the new material
constitutive model for the CFRP, which is linear elastic for a strain less than εpu and stress,
and zero otherwise.

http://opensees.berkeley.edu/
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2.6. Novelty of the Proposed Model

Compared with previous studies, the novelty of the proposed model can be divided
into three aspects as follows.

• This work proposes the first one-dimensional numerical model for the newly de-
veloped precast segmental concrete beam with internal unbonded CFRP tendons.
Compared with the solid element model, the analysis efficiency and numerical conver-
gence can be improved.

• Accounting for the discontinuous behaviors of the opening joint, a novel model-
ing idea, the “plain concrete” fiber beam element with the smeared strain method,
is proposed.

• Accounting for the unbonded phenomenon of the internal unbonded tendon, a multi-
node slipping cable element is proposed. In contrast to the equivalent load method, the
complete formulations containing resistance and stiffness matrices are strictly derived,
improving the numerical convergence for highly nonlinear solutions. The derived
formulations are further developed in the OpenSees software as a newly developed
element class.

3. Verification of Numerical Model
3.1. Verification for Tests of Monolithic Beam Prestressed with Internal Unbonded CFRP Tendon

Heo et al. tested the flexural behaviors of the monolithic beam prestressed with the
internal unbonded CFRP tendon [24,40], in which the specimens RU50 and RO50 were
designed with the same dimensions but different prestressing reinforcement ratios. These
two specimens are employed here to verify the effectiveness of the proposed model for the
simulation of internal unbonded tendons. Figure 8 shows the structural details and material
parameters of RU50 and RO50. In the numerical model, the concrete beam is modeled by
18 fiber beam elements of 150 mm in length, and the internal tendon is modeled by only
one slipping cable element. Prestressing and self-weight are applied to the beam first, and
then the external load is applied up to failure.
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The analysis results and the comparisons with the tests are shown in Figure 9. Figure 9a
shows the load versus mid-span deflection curves. The specimen BO50, with larger prestressing
reinforcement ratios, shows greater cracking load and flexural capacity than BU50. The predicted
deviations in the flexural capacity for BU50 and BO50 are −7.3% and −0.15%, respectively. The
numerical model shows fairly good agreements with the tests overall. Meanwhile, it should be
noted that the load–deflection curves of the monolithic beam with internal unbonded CFRP
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tendons show three feature points, namely, cracking, the yield of rebar, and concrete crushing.
The sectional curvature at the ultimate state is extracted from the numerical results and the
distributions along the beam length are shown in Figure 9b. It can be seen that a plastic region
with a certain length is formed at the mid-span of both RU50 and RO50. The numerical model
shows similar failure modes to the tests.
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3.2. Verification for Tests of PSCBIU-CFRP

Le et al. [21,22] conducted the first experiments on the flexural behavior of a precast
segmental concrete beam with internal unbonded CFRP tendons. The specimens named C2
and C4 are analyzed to verify the numerical model. The structural dimensions are shown
in Figure 10 and the material parameters of the rebar and tendon are listed in Table 1. Two
φ12 rebars are employed for bottom longitudinal reinforcement. Four φ10 rebars are placed
at the top slab. φ10 reinforcements are used as the steel stirrups, with a 100 mm spacing for
the middle segments and 75 mm for the end segments. The cylinder compressive strength
of the concrete is 44.0 MPa on the testing day. The specimens C2 and C4 adopt the multiple
shear-keyed epoxied joints, and the pre-tension control stress is set as 0.4 fpu for the CFRP
tendon. After the completion of post-tensioning, specimen C2 is grouted as the bonded
members and specimen C4 is not grouted as the unbonded PSCBs.
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Figure 10. Structural dimensions of specimens C2 and C4 (unit: mm).

Based on the structural dimensions, two different models are built using OpenSees
software. In the numerical model, the concrete segment element is modeled by the joint and
RC beam element presented in Section 2.2. The length of the joint element is set as 100 mm
and the concrete constitutive model is modified by the mentioned smeared strain method.
The main differences between the two models are the modeling method for the CFRP
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tendons. For specimen C2, the bonded CFRP tendon is modeled by several traditional
truss elements, and the tendon nodes are connected to the beam element by the rigid
beam. Under loading states, the forces of the tendon elements in C2 are different and the
maximum tendon forces usually occur in the tendon element adjacent to the failure region.
For specimen C4, the unbonded CFRP tendon is modeled by the proposed slipping cable
element. The tendon force is equal anywhere in the whole tendon. The analysis results
and comparisons with the tests are shown in Figure 11. Figure 11a shows the curves of the
applied load versus the mid-span deflection. Figure 11b shows the curves of the applied
load versus the tendon stress increment. The tendon stress increment is equal within the
internal unbonded tendon in specimen C4. For specimen C2, the tendon stress increment is
obtained from the middle segment where the tendon stress is the maximum. Figure 11c
shows the curves of the applied load versus the joint opening width at mid-span. The
schematic diagrams of the numerical models for C2 and C4 are shown in Figure 11d.

Table 1. Properties of material used in specimens C2 and C4.

Type Diameter (mm) Area (mm2) f y (MPa) f u (MPa) E (GPa)

Steel rebar 12.0 113.0 534 587 200
Steel rebar 10.0 78.5 489 538 200

CFRP tendon 12.9 126.7 — 2450 145
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Overall, the analysis results show good agreements with the tests of structural capacity,
deformation, tendon stress increments, and joint opening width. The bonded prestressed
member C2 has a larger capacity but the unbonded prestressed member C4 shows better
ductility. The conventional truss element could only be used for the simulation of the
bonded CFRP tendon and the proposed slipping cable element could be employed to
analyze the effects of the unbonded phenomenon. Moreover, the joint element length is
taken as a discussed parameter. With the normalized constitutive model based on the
fracture and crushing energy, the analysis results of models with joint element lengths of
lse = 50 mm and lse = 100 mm are almost the same. It can be concluded that the proposed
method can be effectively used to model the joint behavior and the effects of the joint
element length can be eliminated.

To compare the failure mode differences, the curvature distributions along the beam
axial line are extracted from the last analysis step and plotted in Figure 12. The comparisons
show that the bonded member C2 has a certain length of the plastic region at mid-span, as
with the monolithic beam in Figure 8. However, this is quite different for the unbonded
beam C4. Figure 12b shows that a concentrated plastic hinge is formed at the mid-span of
C4 and the other regions are almost elastic. The PSCBIU-CFRP shows different behaviors
to the bonded beam.
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However, the specimens by Le et al. [21,22] have only one joint at mid-span, which is
different from the practice bridge. The flexural performances should be further evaluated
in the full-scale bridge and the proposed model could be employed as a highly efficient
analysis tool.

4. Flexural Performance Evaluation of PSCBIU-CFRP in Full-Scale Bridge
4.1. Flexural Performance Evaluation

Compared with the scaled beam, the full-scale PSCB consists of more segments with
larger dimensions. The scale of the shear keys is very small compared with the concrete
segment length, requiring significant numbers of elements in the 3D solid model during
the mesh generation. The application of the 3D solid element model to the full-scale bridge
is sometimes limited. The verified and high-efficiency numerical model in this paper
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provides an optional analysis tool for evaluating the flexural performance of the full-scale
PSCBIU-CFRP system.

In this section, three different prestressing schemes for PSCBs are discussed, namely,
the widely used external unbonded tendons, internal fully bonded tendons, and the newly
developed internal unbonded CFRP tendons. The models are loaded by four-point loading
(as shown in Figure 13f) up to failure; then, the flexural capacity and ductility of the
different schemes are compared.
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Figure 13a,b present the structural design details of PSCBs with external steel tendons
(called Beam-1) and internal unbonded CFRP tendons (called Beam-2), respectively. Mean-
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while, Beam-3 is designed to have the same structural dimensions as Beam-2, but replaces
the internal unbonded CFRP tendons with internal bonded steel tendons (as shown in
Figure 13c). The supported span is 37.5 m, consisting of 14 concrete box beam segments and
prestressed by 8 tendons with symmetrical layouts. The dimensions of the cross-section are
shown in Figure 13e. There are 120 and 60 conventional rebars φ12 in the top and bottom
flanges, respectively. Furthermore, φ10 reinforcements are placed in the segment at 150 mm
spacing to increase the shear strength of the segments. The concrete strength is 40.0 MPa,
and the other material properties are listed in Table 2.

Table 2. Material properties of Beam-1 and Beam-2.

Type Area (mm2) f y (MPa) f u (MPa) E (GPa) Post-Tensioning
Stress (MPa)

Steel rebar φ12 113.0 350 380 200 -
Steel tendon 2100 1748 1860 195 1000
CFRP tendon 2100 - 2450 145 1000

The calculated flexural capacity, deformation, and tendon stress of the three models
are compared in Figure 14, and the results are listed in Table 3. Some observations are
concluded below:

(1) As shown in Figure 14a, the load–deflection curves of these beams show different
shape styles. For Beam-3, prestressed with internal fully bonded steel tendons, the
load–deflection curve is a three-broken-line shape with feature points of joint opening,
steel tendon yield, and concrete crushing. However, for Beam-2 and Beam-1, the load–
deflection curve shape is a double broken line with feature points of joint opening
and concrete crushing.

(2) The beam with external steel tendons (Beam-1) shows a minimum flexural capacity of
22.9 × 103 kN·m. The beam with internal fully bonded steel tendons (Beam-3) shows
a maximum flexural capacity of 47.2 × 103 kN·m. The application of the CFRP in the
PSCB as internal unbonded prestressing significantly improves the flexural capacity.
The ultimate capacity of 35.4 × 103 kN·m increases by 54.6% compared with Beam-1
and is close to that of Beam-3, with only a 25% decrease. The comparisons show that
the PSCB-IUCFRP system can be taken as the substitute for an external prestressed
PSCB to improve structural capacity.

(3) Following the adopted ductility indices defined in the references [21,22], µ = ∆u/∆y,
the structural ductility is evaluated and compared. ∆y is the deflection at mid-span
when the joints are open. ∆u is the deflection at mid-span when reaching the maximum
load. The calculated ductility indices are listed in Table 3. All of the beams show good
structural ductility, and the PSCB-IUCFRP system increases ductility indices by 8.9%
compared with the external prestressed beam (Beam-1).

(4) The tendon stress along with the increasing applied load is shown in Figure 14b,
in which the results of Beam-3 are from the tendon at mid-span. The tendon stress
increments are all small before joint opening and then increase quickly once reaching
the cracking load. At the ultimate state, the steel tendon in Beam-3 has been yielded
and tendons in the unbonded beam Beam-1 and Beam-2 are still inelastic. The tendon
stress increments of Beam-2 are larger than those of Beam-1. Meanwhile, the effective
depth of the tendon in Beam-1 reduces by 201.7 mm due to the second-order effects,
leading to a decrease in flexural capacity compared with Beam-2.

(5) Figure 14c shows the curvature distribution curves along the beam length in the
ultimate state. In Beam-1, the curvature is mainly concentrated at mid-span joints
and the other regions are almost still elastic. However, for Beam-2 and Beam-3, the
deformations spread to the other joints, increasing the tendon stress and further
flexural capacity.
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Table 3. Comparisons of indices for PSCB.

Beam ID ∆σp (MPa) σpu (MPa) My (103 kN·m) Mu (103 kN·m) ∆y (mm) ∆u (mm) µ = ∆u/∆y

Beam-1 505 1486 10.2 22.9 18 524 29.1
Beam-2 552 1536 14.1 35.4 20 633 31.7
Beam-3 879 1860 45.5 47.2 20 724 36.2

4.2. Parametric Study

Taking Beam-2 in Figure 13b as the reference beam, the effects of loading types,
span-to-depth ratio L/dp, and prestressing reinforcement ratio ρp = Ap/Ac on the flexural
performance are discussed.

(1) Loading types

Three loading types as shown in Figure 13e are considered in the simulation and
the analysis results are shown in Figure 15. We find that the loading types have certain
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effects on the flexural capacity. The model under three-point loading obtains the minimum
flexural capacity. The maximum capacity can be carried under four-point loading states.
This finding differs from the conclusions of Le et al. [21,22]. In their analysis model, there
was only one joint placed at mid-span, and no additional joint opened under any loading
types. However, more joints exist in the practice bridge, and the joint opening may not
only occur at one joint. In this simulation, under four-point loading, more joints open in
the pure bending region, as shown in Figure 15c. The joint opening width significantly
influences the tendon stress increment (Figure 15b) and further increases the capacity.
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Figure 15. Effects of loading types on the flexural behaviors of PSCBIU-CFRP.

(2) Span-to-depth ratio L/dp

Based on the design details of Beam-2 in Figure 13b, the tendon effective depth dp
varies from 2.025 and 2.225 to 1.8 m; then, beams with a span-to-depth ratio L/dp of 16.85,
18.5, and 20.8 are obtained to discuss the effects on the flexural performances. All of the
models are applied with three-point loading up to failure and the results are shown in
Figure 16. With L/dp increasing by 23%, the flexural capacity decreases by about 38.6%
and the tendon stress increment decreases by about 15.7%. This reveals that a smaller
span-to-depth ratio L/dp is conducive to flexural performance.
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Figure 16. Effects of span-to-depth ratio L/dp on the flexural behaviors of PSCBIU-CFRP.

(3) Prestressing reinforcement ratio ρp

Based on the referenced beam in Figure 13b, the area of the tendon is taken as the
variable to discuss the effects of ρp on the flexural performance. The cross-sectional area
per tendon is set to 1575, 2100, and 2625 mm2, respectively. Three models are built with
prestressing reinforcement ratios ρp of 0.26%, 0.35%, and 0.43%. Under three-point loading
states, the flexural behaviors are analyzed and the results are presented in Figure 17.
With ρp increasing by 65.4%, the flexural capacity increases by 88.7%. However, we also
observe that the ultimate stress increment and the structural ductility decrease by 25.2%
and 29.6%, respectively.
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5. Conclusions

In this study, a new numerical model was proposed for the flexural analysis of a
precast segmental concrete beam prestressed with internal unbonded CFRP tendons (PSCB-
IUCFRPs). The modeling scheme, finite element formulations, and element implementation
were presented. Two scaled experimental tests, namely, two monolithic beams and two
segmental beams with internal unbonded CFRP tendons, were performed to verify the
effectiveness of the proposed model. The verified numerical model was then applied to
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evaluate the flexural performance of a full-scale PSCB-IUCFRP with a span of 37.5 m. The
influences of loading types, span-to-depth ratios, and prestressing reinforcement ratios on
the flexural behaviors were further discussed. The following conclusions could be drawn:

1. The comparisons of two scaled experimental tests showed that the opening joint
and the bonded condition of the tendons had significant influences on the flexural
behaviors of the beam. The opening joint led to the concentrated plastic deformation
at the joint location. The unbonded phenomenon of tendons caused a lower flexural
capacity but higher ductility. The proposed modeling method for segmental joints and
the developed muti-node slipping cable element for unbonded tendons can efficiently
capture their mechanical behaviors. The effectiveness of the proposed model for the
predictions of tendon stress increments, flexural capacity, and failure modes was fully
verified against the experimental tests.

2. The flexural performances of the full-scale 37.5 m span PSCBs prestressed with three
different prestressing schemes were compared. The PSCB with internal bonded
steel tendons had the highest flexural capacity and ductility. The results for the
PSCB with externally prestressed steel tendons were lowest. Compared with the
externally prestressing scheme, with the same prestressing reinforcement ratio, the
PSCB with internal unbonded CFRP tendons improved the flexural capacity by 54.6%
and ductility indices by 8.9%. The internal unbonded CFRP tendon was a competitive
alternative solution to the external steel tendon for the PSCB.

3. The parametric study showed that the loading types, span-to-depth ratios, and pre-
stressing reinforcement ratios all had certain influences on the flexural behaviors of
the PSCB with internal unbonded CFRP tendons. Under four-point loading states,
more joints opened at the ultimate states, which was different from the analysis results
of scaled specimens. The tendon stress increments and the flexural capacity were
greater than those of the other loading conditions. The larger span-to-depth ratio
L/dp was not conducive to the flexural capacity. With L/dp increasing by 23%, the
flexural capacity decreased by about 38.6% and the tendon stress increment decreased
by about 15.7%. With ρp increasing by 65.4%, the flexural capacity increased by 88.7%.
However, the ultimate stress increment and the structural ductility decreased by 25.2%
and 29.6%, respectively.
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