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1. General Equations for the Eulerian-Eulerian Approach

The general form of governing equations for the fluid and solid phase in the Eulerian-Eulerian 

framework is as follows.  

The fluid phase continuity equation is: 
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where � and � indicate the fluid and solid phases, respectively, � is time, � is volume fraction, � is density, and ��⃗  

is velocity. �� which is the net mass transfer rate between phases, in the case of PWG, could be the result 

of evaporation, cracking, or char production. 

A similar expression can be written for the solid phase mass conservation equation because they are 

also considered as fluids: 

�

��
(����) + � ⋅ (������⃗ �) = ��,�→� (S2)

One of the important transport phenomena in the reactor scale, especially for the fluidized bed 

technologies is the momentum transfer, formulated as the following equations for the fluid and solid 

phases, respectively: 
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In these equations, a few parameters are added compared to the continuity equations, including � which is 

pressure, �̿ which is the stress-strain tensor, �⃗ which is the gravity acceleration, and �� which is momentum 

transfer between phases. �⃗, which is the other forces exerting on the phase, can encompass different 

forces such as drag, lift, virtual mass, etc. The stress-strain tensor is defined as the following equations: 

��̿ = ��������,�����⃗ � + ���⃗ �
�� −
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where ���� is the effective kinematic viscosity which is the sum of molecular viscosity and turbulent 

viscosity and ��,� is the solid bulk viscosity. 

The energy equation for the fluid phase (temperature-based): 
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where �� is specific heat capacity, � is thermal conductivity, � is temperature, and �� is heat transfer 

between phases, and ��  is the generated or consumed heat due to reaction. Similar to the effective 

viscosity, the effective thermal conductivity is obtained from the molecular and turbulent terms, 

according to the following equation: 
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where ������  is the turbulent Prandtl number. 

Similarly, the energy equation for the solid phase is expressed as: 
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where ����,� is formulated as: 
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The species transport equation in the fluid phase is formulated as: 
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where � is the species mass fraction, � is the net production rate, and �� indicates the species transfer 

between phases. The effective diffusivity consists of molecular and turbulent diffusivities, as: 
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 (S12)

where ������ is the turbulent Schmidt number. For the solid phase, the species transport is expressed as: 
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Note that the diffusion term is omitted in equation S13 since transport of the species in the solid phase 

is assumed to be solely due to convective transport of the solid-phase particles. 

It is worth mentioning that the equations above are written to transfer between fluid and solid phases. 

Hence, in the case of considering more than two phases, transfer terms that appear in these equations 

should be expressed as the sum of the transfers of binary phases. 

2. General Equations for the Eulerian-Lagrangian Approach 

The following equations demonstrate the general expression for the governing equations in the discrete 

phase in the Eulerian-Lagrangian framework. 

The particle phase mass balance equation is: 
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where � is the particle mass and �� is the particle-based version of the source terms that appear in 

equations S1 and S2. In the Eulerian-Eulerian framework, the equations are cell-based, while in the 

Lagrangian, they are particle-based. Hence, in coupling the equations in the E-L approach, this should 

be taken into account. This way, the mass source term, ��,�→�, which appears in equation S1, is defined 

as [1]: 
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where �� is the number of particles in the fluid cell.  

If the pyrolysis and devolatilization reaction is considered as a single-step process with its defined 

kinetic parameters, the mass evolution is expressed as the following equation [1]: 
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where � is the pre-exponential factor, � is the activation energy, and � is the universal gas constant. It 

is worth mentioning that different models could be implemented in defining the mass balance of the 

particles. As an example, for the char gasification reaction, different models coupled to the mass transfer 

limits can be applied, which is demonstrated by Xie et al. [1] 

The particle phase momentum equation is: 
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where �⃗ is gravity acceleration and �⃗�, �⃗�, and �⃗�� are the drag, contact, and pressure gradient forces. 

The energy balance for the particle is: 
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where �� is the specific heat capacity, � is temperature, and ����� , �����, and ���� are conductive, 

convective, and radiative heat transfer, while �����  is the heat released/absorbed by the reaction. 

The species balance equation in the particle phase is: 
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where  � is the species mass fraction, � is the net production rate of species, and � is the particle-based 

species transfer. 
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