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Abstract: High-performance organic semiconductors should have good spectral absorption, a
narrow energy gap, excellent thermal stability and good blend film morphology to obtain high-
performance organic photovoltaics (OPVs). Therefore, we synthesized two IDTz-based electron
acceptors in this research. When they were blended with donor PTB7-Th to prepare OPV devices, the
PTB7-Th:IDTz-BARO-based binary OPVs exhibited a power conversion efficiency (PCE) of 0.37%,
with a short-circuit current density (Jsc) of 1.24 mA cm−2, a fill factor (FF) of 33.99% and an open-
circuit voltage (Voc) of 0.87 V. The PTB7-Th:IDTz-BARS-based binary OPVs exhibited PCE of 4.39%,
with Jsc of 8.09 mA cm−2, FF of 54.13% and Voc of 1.00 V. The results show the strong electronega-
tivity terminal group to be beneficial to the construction of high-performance OPV devices. High-
lights: (1) Two new acceptors based on 5,5′-(4,4,9,9-tetrakis (4-hexylphenyl)-4,9-dihydro-s-indaceno
[1,2-b:5,6-b′] dithiophene-2,7-diyl) dithiazole (IDTz) and different end groups (BARS, BARO) were
synthesized; (2) BARS and BARO are electron-rich end groups, and the electron acceptors involved
in the construction show excellent photoelectric properties. They can properly match the donor
PTB7-Th, and show the appropriate surface morphology of the active layer in this work; (3) Compared
with IDTz-BARO, IDTz-BARS has deeper LUMO and HOMO energy levels. In combination with
PTB7-Th, it shows 4.39% device efficiency, 8.09 mA cm−2 short-circuit current density and 1.00 V
open circuit voltage.

Keywords: organic photovoltaics; end group; electronegativity; energy gap; electron-rich

1. Introduction

In recent years, bulk heterojunction structure organic photovoltaics (OPVs) have
become a research hotspot in new energy studies because of their low cost [1], solution
processability [2] and device flexibility [3,4] for large-area and high-volume production [5].
Over the years, from the ITIC structure [6] and their derivatives [7–9] to Y6 [10] and Y6
derivatives [11–13], the narrow band gap non-fullerene acceptors (NFAs) were found
to have excellent OPV device performance [14–16], with the result that the maximum
efficiency of organic solar cells constantly updated. At present, the power conversion
efficiency (PCE) of OPV devices based on Y6 derivatives as the acceptor has exceeded
17% [17,18], which exhibits promising prospects for industrialization.
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High-performance OPV devices mainly come from molecular acceptors with high
charge transport mobility, which are usually small molecular acceptors with high conjuga-
tion planes [19,20]. In recent years, non-fullerene electron acceptors have been continuously
developed to improve the device efficiency of OPVs to satisfactory performance [14]. How-
ever, high-planar-conjugated aromatic structures are complex in organic synthesis, and
a large number of synthesis steps may reduce cost-effectiveness, affecting the further
industrialization of OPVs [21]. In 2012, Huang et al. [22] proposed the concept of confor-
mational lock, in which a non-covalent bond was introduced into the acceptors of organic
solar cells for the first time. This method promoted the synthesis of high-performance
planar-conjugated electron acceptors [23,24]. Subsequently, Cao et al. [25] reported that
4,9-dihydro-sindaceno [1,2-b:5,6-b′]-dithiophene (IDT) was the core structural unit, and
F-substituted benzothiadiazole was the electron acceptor of the bridging unit. At the
same time, some reports had used non-covalent conformational locks (NoCLs), such as
S· · ·O [26–28], S· · ·N [29,30] and Se· · ·O [31], to construct molecular structures. Since then,
NoCLs have played an important role in the design and synthesis of high-performance or-
ganic semiconductors [32]. In addition, Guo et al. reported a high-performance n-type semi-
conductor using F· · ·H and F· · · S in their work on organic thin-film transistors (OTFTs) [33].
A variety of NoCLs have gradually become some of the principal ways to construct electron
acceptors [34]. Specifically, in the work of Huang et al., the carbon atom in the original
molecule was replaced with a nitrogen atom, resulting in a thiazole unit that induces N-S
non-covalent conformation lock, with the goal of obtaining high-performance electron
acceptors. Compared with Zhan et al.’s work in 2015 [6], Huang et al.’s work in 2017 [24]
replaced the thiophene unit in IDT-T with thiazole, designed and synthesized the non-
fullerene small-molecule acceptor IDT-Tz, and improved the device performance from
4.1% to 8.4% after mixing with donor PTB7-Th. Therefore, in this research, we employed
this non-covalent construction method to develop new narrow-band-gap, non-fullerene
electron acceptors to further expand the device performance of OPVs.

The electron acceptor IDTz, based on IDT core and thiazole, achieved 8.4% PCE when
PTB7-Th was used as the electron donor, which is higher than the device performance of
an electron acceptor based on IDT core and thiophene. However, the ultraviolet–visible
spectroscopy (UV-Vis) absorption peaks of IDTz-based electron acceptors 2,2′-((2Z,2′Z)-
(((4,4,9,9-tetrakis (4-hexylphenyl)-4,9-dihydro-s-indaceno [1,2-b:5,6-b′] dithiophene-2,7-
diyl) bis (thiazole-2,5-diyl)) bis (methaneylylidene)) bis (3-oxo-2,3-dihydro-1H-indene-
2,1-diylidene)) dimalononitrile (IDT-Tz) and 2-((E)-5-((2-(7-(5-((E)-((Z)-2-(cyano (isocyano)
methylene)-3-ethyl-4-oxothiazolidin-5-ylidene) methyl) thiazol-2-yl)-4,4,9,9-tetrakis
(4-hexylphenyl)-4,9-dihydro-s-indaceno [1,2-b:5,6-b′]dithiophen-2-yl) thiazol-5-yl) methylene)-
3-ethyl-4-oxothiazolidin-2-ylidene) malononitrile (IDTzCR) in solution were 649 and 603 nm,
respectively, lower than that of ITIC (664 nm). In this work, we synthesized two A-π-D-π-A
non-fullerene small-molecule acceptors, in which IDT was used as a D unit and thiazole
as a π bridge unit. Known building blocks 1,3-diethyl-2-thiodihydropyrimidine-4,6 (1H,
5H)-dione (BARS) [35] and 1,3-dimethylpyrimidine-2,4,6 (1H, 3h, 5H)-trione (BARO) [36]
monomers participated in the molecules as A units. We synthesized a series of OPV electron
acceptors IDTz-BARS and IDTz-BARO with IDTz and different end groups. The molecular
structure is shown in Scheme 1. The acceptors were mixed with donor PTB7-Th to pre-
pare OPVs. The related properties and device results show that BARS exhibited excellent
performance as the end group unit of IDTz structure in this work.

Compared with the ITIC, the UV-Vis absorption spectrum of the IDTz structure was
blue-shifted. We anticipate that a satisfactory electron acceptor structure can be constructed
through appropriate end group building blocks to obtain wider spectral absorption and a
narrower optical bandgap (Eg

opt).
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2. Materials Synthesis

The two chemical structures and synthetic routes of the new acceptors IDTz-BARS
and IDTz-BARO are shown in Scheme 1. In recent years, the Knoevenagel reaction, which
combines aldehyde group and end group units, has been widely used in the synthesis
of organic semiconductors, and will likely continue to be used in organic synthesis in
the future. In this work, the 2,2′-(4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno
[1,2-b:5,6-b′] dithiophene-2,7-diyl) bis (thiazole-5-carbaldehyde) (IDTz-CHO) and end
group (BARS or BARO) were added to the reaction system, and pyridine was added to
the mixture as a catalyst. Meanwhile, the synthetic route of IDTz-CHO in this research
refers to the report of Huang et al. [25]. The intermediate IDT-SnBu3 was purchased from a
commercial organization. These compounds were characterized by 1H-NMR and elemental
analysis (Test data was shown in Figures S1–S3).

3. Results and Discussion
3.1. Optical and Thermal Property of Acceptors

The UV-Vis absorption spectra of IDTz-BARS and IDTz-BARO as thin films (spin-
coated from 1 × 10−3 M CF solutions) are shown in Figure 1a. The relevant data, including
absorption maximum (λmax), absorption edge (λonset) and optical bandgap (Eg

opt), are
shown in Table 1. In the film, the maximum absorption peaks of the UV-Vis spectra of
IDTz-BARO and IDTz-BARS were 598 nm and 624 nm, respectively.

Compared with IDTz-BARO, the spectral absorption in the film of IDTz-BARS was red-
shifted by 26 nm, indicating a strong intermolecular-packing solid state [37]. In Figure 1a,
the absorption boundary of IDTz-BARS is 691 nm and the optical bandgap is 1.79 eV, which
is 0.07 eV lower than that of IDTz-BARO (1.86 eV). The HOMO levels of IDTz-BARS and
IDTz-BARO are −5.59 eV and −5.75 eV, respectively. The more electron-rich end group
unit of BARS brings a higher HOMO energy level and narrower Eg

opt. This narrower
band gap led to better exciton dissociation, with IDTz-BARS showing the highest Jsc [38].
The following formula was used to calculate the data in this work: Eg

opt = 1240/λonset eV,
ELUMO = EHOMO + Eg

opt and EHOMO = −e (Eox
onset + 4.80) eV, with the results shown in

Table 1. In addition, the absorption red shift and wider absorption range of IDTz-BARS
film beyond 600 nm, as well as the full-coverage absorption between 400 and 700 nm,
show IDTz-BARS’s capture ability of photons. The absorption results show that BARS and
BARO, as the end group unit of the molecule, can significantly reduce the band gap of
A-D-A-type NFA molecules based on IDTz. Compared with IDTz-BARO, the energy level
of IDTz-BARS indicates that it may be a high-performance electron acceptor.
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Figure 1. (a) Optical absorption spectra of IDTz-BARS and IDTz-BARO films spin-coated from
chloroform solutions (10−3 M). (b) CV curves of acceptors IDTz-BARS and IDTz-BARO. (c) Energy
levels of IDTz-BARS and IDTz-BARO.

Table 1. Optical absorption properties and electrochemical properties of IDTz-BARS and IDTz-BARO.

Molecule λmax (Sol)
(nm)

λmax (Film)
(nm)

λonset (Film)
(nm) EHOMO (eV) ELUMO (eV) Eg

opt (eV)

IDTz-BARO 598 605 665 −5.75 −4.22 1.86
IDTz-BARS 624 641 691 −5.59 −4.34 1.79

The stability of the acceptor was determined by thermogravimetric analysis (TGA) in
N2, where the weight loss of the semiconductor was 5%. Under these conditions, IDTz-
BARS and IDTz-BARO showed stability up to 238.0 ◦C and 378.0 ◦C, respectively. Data
from thermogravimetric analysis (TGA) experiments are shown in Figure 2a. According
to the TGA results, the higher decomposition temperatures of IDTz-BARO may offer a
wider annealing operation window in the subsequent preparation of OPV devices, while
there were some deficiencies in the thermal stability of IDTz-BARS. According to the re-
port, the main reason for the poor thermal stability of IDTz-BARS may be the insufficient
thermal stability of the end group [35]. Changing the annealing temperature of devices
is one important method to improve the performance of electronic devices. High thermal
stability can render IDTz-BARS and IDTz-BARO promising excellent semiconductor mate-
rials for OPVs. Differential scanning calorimetry (DSC) spectra showed that IDTz-BARS
has a glass transition near 45 ◦C, while IDTz-BARO exhibited glass transitions near 190 ◦C,
with the result that the devices annealed at 200 ◦C had a more stable film state, which
improved their charge transfer efficiency.
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3.2. Electrochemical Properties

The electrochemical properties of IDTz-BARS and IDTz-BARO were studied by cyclic
voltammetry (CV). Specifically, a layer of IDTz-BARS and IDTz-BARO film was attached to the
glass carbon working electrode, the electrolyte solution was 0.1 M [n-Bu4N]+[PF6]−CH3CN
and the CV spectrum was tested at a potential scan rate of 100 mV·s−1. Ferrocene/ferrocium
(Fc/Fc+) was used as a standard in the test. The CV curves of IDTz-based acceptor are
exhibited in Figure 1b. After the oxidation peak was measured, the HOMO energy levels
of IDTz-BARO and IDTz-BARS were calculated as −5.75 eV and −5.59 eV, respectively,
using EHOMO = −e (Eox

onset + 4.80) eV. The higher HOMO energy level of IDTz-BARS is
provided by the strong electron-absorbing end group and high planarity backbone in the
molecule. Meanwhile, combined with UV-Vis absorption data and ELUMO = EHOMO + Eg

opt,
the LUMO levels of IDTz-BARO and IDTz-BARS were −4.22 eV and −4.34 eV, respectively.
As previously reported, the HOMO and LUMO levels of IDTz-BARS were deeper than
those of IDTz-BARO [39]. From the results, the A-D-A-type NFA molecules can achieve a
suitable band gap and absorption spectrum through different end group building blocks.
Meanwhile, the appropriate LUMO level of the acceptor can bring enough exciton dissocia-
tion to the device, when cooperating with the donor, to obtain high device performance.
NoCLs involved in the construction of NFAs have been widely used in OPVs. Due to the
interaction of S· · ·N, the adjacent molecules present a more planar skeleton, which can
effectively promote charge transfer. At the same time, BARS and BARO have also been
shown to effectively improve the performance of OPV.

3.3. Theoretical Calculation

To investigate the difference between the chemical geometry structure and the molec-
ular frontier orbital of the small molecules, density functional theory (DFT) calculations
were carried out with the G09 version D software package. Geometry optimizations were
carried out with DFT methods B3LYP for geometry. Basis set 6-31G (d) was adopted for
the C, H, O, N and S atoms, as shown in Figure 3. The calculation results show the energy
level band gaps of IDTz-BARO (1.31 eV) and IDTz-BARS (1.24 eV). The HOMO levels of
IDTz-BARO and IDTz-BARS were −4.90 eV and −4.86 eV, respectively. The LUMO levels
of IDTz-BARO and IDTz-BARS were −3.59 eV and −3.62 eV, respectively. From the results,
compared with IDTz-BARO, IDTz-BARS displays a smaller energy gap and higher HOMO
and LUMO levels. As it is generally acknowledged that FMO energy levels of acceptor
material are related to device performance, differences between the two acceptors were
thus expected once embedded in active layers.
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Figure 3. DFT calculation of HOMO energy levels of IDTz-BARO and IDTz-BARS (a,b). DFT
calculation of LUMO energy levels of IDTz-BARO and IDTz-BARS (c,d).

The DFT calculation results indicate that the HOMO energy level of IDTz-BARS was
concentrated in the core of the molecular backbone, while the HOMO energy level of
IDTz-BARO was dispersed within the whole molecular backbone. Compared with the
near-identical LUMO levels of IDTz-BARO and IDTz-BARS, the LUMO level of IDTz-BARS
was more concentrated in the end group units on both sides, and showed a lower LUMO
level. From the results, IDTz-BARS shows the smallest energy level band gap in this work,
in agreement with the UV-Vis absorption spectrum. Compared with IDTz-BARO, the
narrower band gap is conducive to the excitation of electrons. In addition, the HOMO
and LUMO levels of IDTz-BARS may be more easily combined with the donor material
PTB7-Th (−4.86 eV and −3.62 eV) than that of IDTz-BARO and IDTz-BARS, ensuring
effective exciton decomposition. In conclusion, the strong electron-withdrawing end group
directed it towards lower HOMO and LUMO levels.

3.4. Film Morphologies and Organic Solar Cell Performance

In order to study the performance of materials in OPV devices, PTB7-Th was used as
a donor, and the IDTz-BARS and IDTz-BARO were used as acceptors. The device structure
was ITO/ZnO/donor (PTB7-Th):acceptor (IDTz-BARO or IDTz-BARS)/MoO3/Ag, and
the inverted device structure was prepared with 1,2-dichlorobenzene (CB) as solvent. The
current density–voltage (J–V) curves of PTB7-Th:IDTz-BARO and PTB7-Th:IDTz-BARS
are shown in Figure 4, with corresponding data shown in Table 2. The binary OPVs based
on PTB7-Th:IDTz-BARO had PCE of 0.37%, Jsc of 1.24 mA cm−2, FF of 33.99% and Voc of
0.87 V. The PTB7-Th:IDTz-BARS-based binary OPVs exhibited PCE of 4.39%, with Jsc of
8.09 mA cm−2, FF of 54.13% and Voc of 1.00 V.

The high performance of IDTz-BARS is mainly attributed to higher Jsc (8.09 mA cm−2

for IDTz-BARS and 1.24 mA cm−2 for IDTz-BARO). At the same time, the introduction of F
atom strengthens the intermolecular force. Under the same device preparation conditions,
the introduction of S atom is conducive to improving the FF of the active layer. In this work,
when IDTz-BARO and IDTz-BARS were used in organic solar cells with PTB7-Th, the FF of
the active layer was gradually increased (33.99% for IDTz-BARO, 54.13% for IDTz-BARS).
The results reveal that the introduction of strong electron-absorbing end groups is an effective
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way to improve the Jsc, FF and PCE of OPVs. It has been reported that the FMO energy
level of organic semiconductors can affect the Voc of materials in OPV [40]. Meanwhile, the
Voc values of IDTz-BARO and IDTz-BARS were 0.87 V and 1.00 V, respectively. The BARO
end group reduces the LUMO level of the acceptor, so the electron acceptor with higher
electronegativity shows the lowest Voc in this work. Compared with IDTz-BARS, IDTz-BARO
had more blue-shifted spectral absorption, so that the Jsc of OPVs with IDTz-BARO as the
acceptor was smaller than that of IDTz-BARS as the acceptor.
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Table 2. Optimized photovoltaic performances of OPVs under illumination of AM 1.5 G irradiation
(100 mW cm−2).

Molecule Annealing a

Temperature (◦C) VOC (V) Jsc (mA cm−2) FF (%) PCE b,c (%)

IDTz-BARS 100 1.00 8.09 54.13 4.39 ± 0.33 (4.10)
IDTz-BARO 100 0.87 1.24 33.99 0.37 ± 0.05 (0.29)

a Anneal at 100 °C for 5 min. b All weight ratios in this work are donor (PTB7-Th):acceptor (D/A) = 1:1.3. c The
average PCE values were calculated using 10 separate devices and are shown in parentheses.

The AFM height images of PTB7-Th:acceptors are shown in Figure 5 (test area: 2.5× 2.5 µm2),
and the root mean square (RMS) roughness values of PTB7-Th:IDTz-BARO and PTB7-
Th:IDTz-BARS were 0.79 nm and 1.50 nm, respectively. At the same time, the higher
RMS surface roughness increases the contact area between the active layer and interfacial
electrode, thus enhancing charge collection [41]. Among all the blends, PTB7-Th:IDTz-
BARS showed the highest RMS roughness, which was likely attributed to IDTz-BARS
having the strongest aggregation, as revealed by the UV-Vis absorption. Therefore, the
AFM images indicate consistency in the absorption of IDTz-BARS and the performance of
OPV devices.
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4. Conclusions

Due to the introduction of S· · ·N non-covalent conformation lock and thiazole as
a π bridge, two IDTz-based non-fullerene acceptors were synthesized in this research.
IDTz-BARS used BARS as the end group, while IDTz-BARO used BARO. Their solubility
and thermal stability are sufficient for their application in OPV devices. IDTz-BARS had
more red-shifted spectral absorption, a smaller energy gap and better film morphology,
demonstrating a photoelectric conversion efficiency of 4.39% when cooperating with the
donor PTB7-Th. Meanwhile, the two electron acceptors we synthesized have effective
solubility and are easy to process in solution. The results show that the addition of two
terminal groups without strong electron-withdrawing groups could also construct suitable
electron acceptors. This work provides a promising strategy for the design of non-fullerene
acceptors in non-covalent intramolecular conformational locks.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15124238/s1, Figure S1: 1H of compound 1 (r.t., in CDCl3);
Figure S2: 1H of compound IDTz-BARO (r.t., in CDCl3); Figure S3: 1H of compound IDTz-BARS (r.t.,
in CDCl3).
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