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Abstract: Cement stabilized soil (CSS) yields wide application as a routine cementitious material
due to cost-effectiveness. However, the mechanical strength of CSS impedes development. This
research assesses the feasible combined enhancement of unconfined compressive strength (UCS)
and flexural strength (FS) of construction and demolition (C&D) waste, polypropylene fiber, and
sodium sulfate. Moreover, machine learning (ML) techniques including Back Propagation Neural
Network (BPNN) and Random Forest (FR) were applied to estimate UCS and FS based on the
comprehensive dataset. The laboratory tests were conducted at 7-, 14-, and 28-day curing age,
indicating the positive effect of cement, C&D waste, and sodium sulfate. The improvement caused
by polypropylene fiber on FS was also evaluated from the 81 experimental results. In addition, the
beetle antennae search (BAS) approach and 10-fold cross-validation were employed to automatically
tune the hyperparameters, avoiding tedious effort. The consequent correlation coefficients (R) ranged
from 0.9295 to 0.9717 for BPNN, and 0.9262 to 0.9877 for RF, respectively, indicating the accuracy and
reliability of the prediction. K-Nearest Neighbor (KNN), logistic regression (LR), and multiple linear
regression (MLR) were conducted to validate the BPNN and RF algorithms. Furthermore, box and
Taylor diagrams proved the BAS-BPNN and BAS-RF as the best-performed model for UCS and FS
prediction, respectively. The optimal mixture design was proposed as 30% cement, 20% C&D waste,
4% fiber, and 0.8% sodium sulfate based on the importance score for each variable.

Keywords: cement stabilized soil; fiber-reinforced soil; mechanical strength; waste utilization; Back
Propagation Neural Network; Random Forest; beetle antennae search

1. Introduction

Cement stabilized soil (CSS) is a routine cementitious material that yields wide appli-
cations including leakage-stopping, slope reinforcement, and foundation treatments [1].
However, weak strength and large deformation impede its extensive development. Con-
struction and demolition (C&D) waste resolve the imperfection by physical and bonding
strength enhancement. C&D waste particles evolve mechanical support in the CSS matrix
due to higher hardness, resulting in better unconfined compressive strength (UCS) perfor-
mance. The CSS mechanical property is further improved by grinding-incineration treated
C&D waste, which represents a positive effect on mortar bonding strength [2,3]. Moreover,
C&D waste demonstrates stronger enhancement potential under the excitation of saline
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solution. Previous literature explores ion activation, proving SO4
2− ions as outstanding cat-

alysts in cement hydration which reduce the initial setting time by 81.1% [4,5]. In addition,
Na+ provides an alkali situation, leading to compact hydration products. Furthermore,
C&D waste endows CSS with corrosion resistance. Sulfate attack remarkably declines the
CSS durability as evidenced by structure failure and sulfate heaving. C&D waste mitigates
the deterioration by introducing corrosion-resistant particles [6,7]. On the other hand, the
incorporation of C&D waste concurrently renders CSS more prone to crack. The non-
homogeneous surface forms weaken the interfacial transition zone (ITZ) compared to
that between cement, resulting in undesirable mechanical properties [8–11]. Increasing
cement dosage has been proven to be an enhancer, while the specimens conduct brittle
destruction [3]. Therefore, the combinatorial strategies that best improve the mechanical
performance of CSS have been thoroughly investigated.

Polypropylene fiber yields the widest application range given its potent improvement
in mechanical performance and durability. First, the distributed fiber generates random in-
tersection in the specimen, which represents characteristics of preventing crack generation
and suppressing brittle destruction [12–14]. Mechanical strengths, therefore, enhance sig-
nificantly as evidenced by the 115% increment of UCS [15,16]. Previous studies have proven
likewise promotion with various fibrous materials [17,18]. Second, polypropylene fiber
mitigates the sulfate attack. Dobrovolski et al. [19] summarized that fiber bridge entraps
more air, where the voids compensate for the formation of the hydrate phase and expansion.
However, previous literature has not extensively explored the coupling effect of cement,
C&D waste, and polypropylene fiber on CSS performance as theoretically prediction is
always feeble against many variables.

Machine learning (ML) models have therefore been proposed as a potential con-
tender to tackle the hindrance [20–22]. ML techniques yield the ability of information
extraction and pattern generation based on the given dataset and consequently output
the predicted value [23,24]. The prediction demonstrates outstanding accuracy with the
multi-variable dataset, which renders the ML approach being extensively explored in recent
decades [25–27]. Moreover, a conventional laboratory test costs a large amount of time and
money to achieve accuracy, while ML techniques forecast the results without laborious work
and explicit programming. The baseline models including K-Nearest Neighbor (KNN),
logistic regression (LR), and multiple linear regression (MLR) are the most widely used ML
models owing to their ease of understanding. However, the simplicity impedes their wider
application in the cementitious material domain. Specifically, baseline models emerge
with insignificant computing power to address the non-linear relationship between mul-
tiple variables (treatment, proportion, etc.) and mechanical properties (UCS, FS, etc.) [28].
Complex ML models are therefore introduced to adequately predict the strength. Arti-
ficial Neural Network (ANN), Random Forest (RF), Gaussian process regression (GPR),
and Support Vector Machines (SVM) are all ML models that yield wide application in
engineering material science. Among these, ANN and RF possess imperative potential
as standalone and ensemble models, respectively, due to their successful prediction of
concrete compressive strength and conductivity [29–32].

Hyperparameters on the other hand, hinder the more extensive application of ML
approaches. ML models represent reliable workability depending on several hyperpa-
rameters. Appropriate ML models consume a large amount of time and effort to conduct
trial-and-error methods, locating the accurate parameters. Consequently, swarm intelli-
gence (SI)-based metaheuristic algorithms, including firefly algorithm (FA) [33,34] and
particle swarm optimization (PSO) [35,36], are proposed to avoid tedious tuning. However,
SI concurrently brings undesired computation intensity [37,38]. Therefore, the beetle anten-
nae search (BAS) algorithm is applied to mitigate the problem. BAS demonstrates benefits
comprising easy implementation and convergence, yielding the capability of automatically
tuning the hyperparameters [39]. The construction of the algorithm originated from the
beetle foraging behavior, leading to the order movement of the group and the optimal
hyperparameter combination [40,41].
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The purpose of this paper is to experimentally investigate the CSS performance
enhancement by C&D waste, polypropylene fiber, and sodium sulfate. C&D waste was
incorporated by 10%, 20%, and 30% to substitute cement. The dosing level of polypropylene
fiber and sodium sulfate were 1%, 2%, 4% and 0.2%, 0.4%, 0.8%, respectively. UCS test,
flexural strength (FS) test, and direct shear test were conducted to examine the coupling
enhancement on CSS mechanical properties. The Back Propagation Neural Network
(BPNN) and FR with BAS algorithm tuning hyperparameters were employed to predict the
UCS and FS performance of CSS.

2. Experimental Programs
2.1. Materials

The soil and C&D waste within this research were sourced from the construction site
of Zhushan Road metro station in Nanjing. All particles were pre-dried and ground to
sizes less than 5 mm. The physical and mechanical properties of soil are summarized in
Table 1. The Portland cement 42.5 was utilized as a stabilizer and cementitious binder.
Polypropylene fiber with a length and density of 10 mm and 0.91 g/cm3, respectively, was
employed to enhance mechanical performance. Table 2 listed the detailed mechanical prop-
erties. Moreover, the air gun was applied to refrain fibrous material from agglomeration.
Sodium sulfate was used to provide alkali catalysis.

Table 1. Physical and mechanical properties of soil sample.

Soil Properties Value

Specific gravity 2.69
Liquid limit (%) 38.87
Plastic limit (%) 21.55
Plasticity index 17.32

Maximum dry unit weight (kN/m3) 1.51
Optimum moisture content (%) 25.37

Table 2. Physical and mechanical properties of polypropylene fiber.

Polypropylene Fiber Properties Value

Diameter (µm) 10
Cut length (mm) 10
Density (g/cm3) 0.91

Tensile strength (MPa) 486
Stretching limit (%) 15

Acid resistance Excellent
Alkali resistance Excellent

2.2. Mixture Design

The variables in this research were the content of Portland cement, C&D waste,
polypropylene fiber, and sodium sulfate. Each dosing level was determined based on
its weight ratio to the pre-dried soil. Particularly, Portland cement and C&D waste to
soil ratios were defined as 10%, 20%, and 30%. Polypropylene fiber was incorporated,
accounting for 1%, 2%, and 4% of the soil weight. The dosing proportions of sodium sulfate
were 0.2%, 0.4%, and 0.8%. As for water, the weight ratio was maintained constantly at
80%. The consequent 81 combinations along with 3 control groups (conventional CSS) were
cast for experiments.

2.3. Mechanical Tests

UCS, FS, and direct shear tests were conducted to estimate the CSS mechanical perfor-
mance. The procedure for all mechanical tests was prepared strictly in accordance with
GB/T50123-1999 [42]. Soil samples for direct shear tests were shaped as 61.8 mm × 20 mm
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(diameter × height) particularly. The normal stress was applied vertically at σn = 50,
100,150, and 200 kPa to examine the shear strength parameters. The single-doped speci-
mens used for the direct shear test contained C&D waste at 10%, 20%, and 30% content,
while the variable dosage design for UCS and FS specimens was consistent with the afore-
mentioned. Cubic (50 mm × 50 mm × 50 mm) and cuboid (40 mm × 40 mm × 160 mm)
specimens were cast, respectively, for UCS and FS tests. After vibrating, mortar samples
were wrapped in a thin membrane and cured in the standard curing condition (20 ± 2 ◦C
temperature and 95% relative humidity) until tests were conducted at 7-, 14-, and 28-days
of the curing period. On the day before the tests, specimens were shifted from the curing
chamber and soaked in 24 ◦C water for 24 h to pattern the humid working situation. YAW-
4206 and DY-208JX automatic pressure testers were employed to conduct the UCS and FS
tests with a 0.04 MPa/s loading rate. The average data of three replicated specimens after
eliminating the error was recorded as the ultimate test result, listed in Appendix A.

2.4. Machine Learning Models
2.4.1. Baseline Models

Baseline models including LR, MLR, and KNN were selected, in contrast to BPNN
and RF to assess the prediction accuracy. Regression models (LR and MLR) identify the
relationship between predictor and output, possessing the benefits of minimum computation
and easy implementation. Equations (1) and (2) display the principles of LR and MLR models.

Ln
p

1− p
= b0 + ∑n

k=1 bkxk (1)

Y = β0 + β1x1 + β2x2 + · · ·+ βnxn (2)

Within the proposed equations above, xk and p represent independent and dependent
variables; b0 and bk stand for constant coefficients; Y is the predicted strength of CSS; xi and
βi (where i = 1, 2, 3, . . . , n) denote the considered variables in laboratory test design and
regression coefficient, respectively.

KNN algorithm estimates mechanical performance through similitude between in-
putting values. Specifically, KNN models detect the most similar observations in the dataset
and output the average value as the ultimate prediction [43]. The pre-defined function
calculates the distance between neighbors with Euclidean distances, assigning all neighbors
with the same weight (Equation (3)) [44,45]. KNN models, therefore, possess the superiority
of effective prediction among large datasets [29].

d(i, j) =
√(

yi1 − yj1
)2

+
(
yi2 − yj2

)2
+ · · ·+

(
yin − yjn

)2 (3)

where i and j represent the detected points and d is the abbreviation of Euclidean distance.

2.4.2. Back Propagation Neural Network (BPNN)

BPNN, as one type of ANN algorithm trained by the Back Propagation (BP) technique,
has been employed to successfully develop the prediction pattern for the mechanical strength
of cementitious materials. The ANN model is essentially a neural network, consisting of
an input layer, output layer, and hidden layer(s). As illustrated in Figure 1, each neuron
yields the ability of a processing unit, merging information from the former layer to transport
the combination to the subsequent nodes [46]. The following equation presents the neuron
connection between upper and lower layers in the mathematical version.

y = max
(

0, ∑i wixi + b
)

(4)

where y represents the output value from the lower layer; wi stands for the weight; xi is the
received data from the former layer, and b denotes the bias between neurons. The neuron
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loop iterates until the mean squared error (MSE) reaches the pre-set value, ending the
training process [47].

MSE =
1
n ∑n

i=1(yi − ŷi)
2 (5)

where yi denotes the model prediction, and ŷi is the result estimated by labels.

Figure 1. Structure of ANN network.

Figure 2 represents the BP flow, which is the research approach to updating the bias
and weights in the neuron network by calculating the difference between the predicted
output and the actual strength from the dataset [48,49]. The BP technique endows the
BPNN models with sensitivity to hyperparameters which affect the ultimate accuracy.

Figure 2. BP procedure.

2.4.3. Random Forest (RF)

As illustrated in Figure 3, RF generates multiple decision trees (RT) in which each
RT is built based on a new training set oriented from the bagging and voting method [50].
The bagging method yields characteristics of independently training predictors through
bootstrap and aggregation. Bootstrap indicates that RF models allow the duplicate value,
which randomly resamples the original dataset by the number of predictors. Each split is
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built from the random subset selected from the input predictor variables, improving the
diversity to achieve accurate estimation. Equation (6) shows the training set as Rn where X
and Y, respectively, denote the input and output vector. The average result of RTs will be
output as the ultimate prediction using the aggregation approach [50].

Rn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} (6)

Figure 3. Structure of RF.

2.4.4. Beetle Antennae Search (BAS)

The BAS algorithm was proposed from the behavior of beetles, evolving the function
to avoid the tedious effort of optimizing hyperparameters manually. The beetles cannot
locate the accurate position while looking for food. As a result, beetles move towards
the side which receives the greater intensity of odor. Inspired by the principle, the BAS
algorithm simulates the goal hyperparameter as the food, rendering the ML models with
the capability of automatically tuning [39]. As explained by Equation (7), the first step of
BAS is to generate a random vector as the beetle antennae, where V indicates the direction
and k represents the space dimensionality [40].

V = rand(k, 1)/||rand(k, 1)|| (7)

Secondly, the algorithm determines the antennae coordinate based on the direction vector:

Xl = Xi + D·V (8)

Xr = Xi − D·V (9)

where Xl , Xr, and Xi, respectively, denote the coordinate of left, and right antennae and
their centroid at the ith iteration; D is the distance between the left and right antennae. The
concentration is then compared by the normalized function represented as the following:

Xi+1 = Xi + S·normal(Xl − Xr) f (Xl) < f (Xr) (10)

Xi+1 = Xi − S·normal(Xl − Xr) f (Xl) > f (Xr) (11)

where S represents the length of steps. The comparison iterates 50 times during the model
training process to optimize the hyperparameters.

2.4.5. Cross-Validation

Figure 4 illustrates the 10-fold cross-validation which was applied in this research
to mitigate the overfitting during the training and testing stages caused by the finite
database. Firstly, the input variable is randomly resampled as training and test set, which,
respectively, account for 70% and 30% of the original dataset. Then, the training set is
separated into 10 equal folds. The 90% of folds yield the function of training the ML models,
and the last fold validates the prediction performance by calculating the root means square
error (RMSE) [51]. The 10 folds will take turns to be the validation fold. Specifically, in
each cross-validation, the BAS algorithm is used to optimize the hyperparameters within
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50 iterations. In each iteration, the RMSE is calculated for hyperparameter adjustment.
Finally, the ML model with the minimum RMSE will be saved in each cross-validation
(a total of 10 models). By comparing the RMSE values from each fold, the ML model with
the lowest RMSE value and optimal hyperparameters will be chosen as the final ML model.

Figure 4. A 10-fold cross validation.

2.4.6. Performance Evaluation

Two evaluation indicators are applied in this study, aiming to estimate the precision of
the baseline, BPNN, and RF models: correlation coefficient (R) and RMSE. The indexes are
defined by the following equations:

R =
∑n

i=1(y
∗
i − y∗)(yi − y)√

∑n
i=1
(
y∗i − y∗

)2
√

∑n
i=1
(
y∗i − y

)2
(12)

RMSE =

√
1
n ∑n

i=1

(
y∗i − yi

)2 (13)

where n represents the quantity of data groups; y∗i and yi, respectively, denote the estimated
and actual output; y∗ and y are the mean values of y∗i and yi.

3. Results and Discussion
3.1. Effect of Portland Cement

The UCS and FS test results for control groups are illustrated in Figure 5. It is notable
in Figure 5a that the CSS compressive strength increased with the curing age as evidenced
by the observed increment up to 185.73% for 7- to 14-day curing time. This is mainly
ascribed to cement hydration, which has been proven in Figure 6. Subfigures a and b
illustrate the hardened sample photo taken by scanning electron microscope (SEM) and the
energy-dispersive X-ray spectroscopy (EDX). The silicon content reached 41.14%, which
was higher than that of conventional soil [8]. The results indicate the presence of the hydrate
phase like calcium silicate hydrate (C-S-H). These products render strengthened bonding
between soil particles and cement. The hydration slowed down to maintain a steady rate
during the late curing age (after 14-day), as reflected by the declining increasement ranging
from 7.45% to 36.18% in Figure 5. Meanwhile, the UCS test results increased with Portland
cement content due to the same reason. The maximum increment during all curing ages
is 450.34%, indicating that CaSiO3 and C-S-H significantly promote the CSS compressive
strength. Specifically, the colloidal hydrate products filled the porosity, contributing to
mitigating entrapped air voids. Figure 5b represents a similar trend as FS results at 28-day
increased 91.19% and 176.91%, respectively, when cement content rose 10%.
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Figure 5. Mechanical results of control groups: (a) UCS test, (b) FS test (Note: C represents Portland cement).

Figure 6. Result of (a) SEM, (b) EDX.

On the other hand, increasing Portland cement dosing level causes an undesired alkali–
silica reaction (ASR). It is shown in Figure 7 that brittle destruction occurred in control
groups, leading to the evident fracture surface. Portland cement introduces brittleness along
with compressive strength enhancement, impairing sample deformation to the external
force. The conclusion can be demonstrated by the surrounding debris in Figure 7.

Figure 7. Fracture surface of conventional CSS sample.
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3.2. Effect of C&D Waste

The 28-day UCS results are shown in Figure 8, with subfigures separated based on
Portland cement content. The maximum strength for the three dosing levels as illustrated in
the figures were 0.8048 MPa, 1.5008 Mpa, and 2.6572 Mpa, respectively. All the results were
higher than those of the control groups, indicating mechanical performance increases with
C&D waste incorporation. This is mainly ascribed to the old mortar attached to C&D waste
particles which participate in cement hydration [52,53]. The consequent ITZ represents
bonding strength that anchors the stiff C&D particles in the matrix to support and prevent
soil collapse. Additionally, calcium hydroxide (CH) formed during the hydration process
accelerates the hydration process of old mortar, which will generate more calcium silicate
hydrates (C-S-H) to promote sample strength [5].

Figure 8. A 28-day UCS of CSS specimens with (a) 10% cement; (b) 20% cement; (c) 30% cement (Note: W
represents C&D waste; S represents sodium sulfate; F represents polypropylene fiber).

Figure 9 shows the FS results at the 28-day curing age, indicating that C&D waste
demonstrates a positive effect on FS performance. As shown in Figure 9b,c, C&D waste
displayed better FS enhancement when cement content was high. The maximum improve-
ments reached 56.83% and 57.2%, respectively, while the data in Figure 9a was 21.62%.
This phenomenon can be explained as the increase in cement content enhances the degree
of hydration of old mortar attached to the C&D waste surface. On the other hand, en-
hancement became insignificant when C&D waste content was high (30%). This is mainly
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due to superabundant large particles introduced into the matrix, resulting in porosity and
entrapped air.

Figure 9. A 28-day FS of CSS specimens with (a) 10% cement; (b) 20% cement; (c) 30% cement
(Note: W represents C&D waste; S represents sodium sulfate; F represents polypropylene fiber).

Direct shear tests were also conducted due to their cost-effectiveness and convenient
operation. The relationship between normal stress (σ) and shear stress (τ) with various
C&D waste proportions is illustrated in Figure 10. The inclusion of C&D waste significantly
enhances the shear performance as proven by the increasing cohesion © and material angle
of friction (ϕ). Moreover, the average increments were 33.52%, 43.28%, and 26.34% for each
10% increase in C&D waste dosage, indicating that 20% C&D waste content demonstrated
the best-improving effect.
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Figure 10. DS test result (Note: W represents C&D waste).

3.3. Effect of Polypropylene Fiber

In Figures 8 and 9, UCS and FS increased with polypropylene fiber proportion, demon-
strating the positive effect. The enhancement function on UCS can be attributed to the
higher particle friction provided by fiber than that inside the matrix [54]. Specifically, a
rougher fiber surface prevents particle displacement, which impedes the generation of
microscopic cracks. However, fiber incorporation introduces undesired porosity and com-
pactness descending, leading to a strength reduction of 31.52% in Figure 8c. Figure 11
shows an electron microscope image of the sample fracture surface after the UCS test.
Several porosities exist on the fiber periphery. These entrapped air voids caused by fiber
agglomeration remarkably weaken the fiber enhancement on compressive strength [55].

Figure 11. Microstructure of UCS fracture surface.

Compared with UCS tests, fibrous material promoted FS results more evidently. As
depicted in Figure 9a, the FS of CSS specimens increased up to 82.33% and 150.31% when
the fiber content doubled. A similar trend can be observed in Figure 9b,c. The dominant
enhancement of FS can be attributed to the bridging effect. The randomly distributed
fibers demonstrate the outstanding inhibitory function on crack generation. In addition,
polypropylene fiber will be pulled out of the fracture surface when the failure occurs,
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endowing the relict with certain flexural resistance. However, the bridging effective can be
hindered by cement inclusion. The peak FS was recorded at 30% C&D waste dosed group
when cement content was low (10% and 20%), whereas the 30% cement specimens reached
the maximum at 20% C&D waste proportion. This is mainly ascribed to the excessive
cement hydration that impeded the fibrous bridge formation.

3.4. Effect of Sodium Sulfate

The influence of sodium sulfate can be analyzed in Figures 8 and 9. UCS and FS
results share a similar trend that mechanical performances strengthen with sodium sulfate
proportion. The average increment of UCS and FS from 0.2% to 0.8% sodium sulfate
were 16.94% and 16.29%, with the maximum increasement recorded as 59.61% and 69.96%,
respectively. This is attributed to the reaction between sulfate ion and liquid phase (AlO2−,
Ca2+, etc.). The main product is ettringite (AFt phase), revealing enhancing characteristics
on early-age strength [56]. Moreover, metal ions (Na+−, Ca2+, etc.) demonstrate dominant
effectiveness in improving alkalinity, which yields function of the reaction rate catalyzation
along with SiO2 and Al2O3 dissolution. However, samples incorporated with 0.4% sodium
sulfate failed to follow the positive trend. The UCSs of the sample changed irregularly, as
evidenced by the value fluctuating from −14% to 32.59% compared to 0.2% sodium sulfate.
A similar phenomenon was also observed in Figure 9. The error source is probably ascribed
to human error and material composition deviation.

Furthermore, based on Appendix A, the UCS enhancing rate varies from each curing age,
as evidenced by the average increment of 15.41% and 30.49% for early (7-day to 14-day) and late
(14-day to 28-day) curing times. The principle can be explained by Equations (14) and (15) [57].
Sulfate ions modified the conventional hydration reaction, resulting in the formation of
ettringite which promotes the CSS mechanical performance. However, C-S-H exhibits the
capability of absorbing sulfate in the early curing stage and releasing it during the later
period, leading to rapid strength promotion from 14- to 28-day [58–60].

C3A + 2CSH2 + 26H→ C6AS3H32 (14)

2C3A + C6AS3H32 + 4H→ 3C4ASH12 (15)

4. Machine Learning Predicted Results
4.1. Prediction for UCS Performance
4.1.1. Hyperparameter Tuning

In total, 252 data (84 groups of experimental results) constituted the database, which
reached the requirement of the database size for the traditional machine learning task.
During the machine learning process, the contents of cement, C&D waste, fiber, and sulfate,
and the curing age were set as features. The outputs were UCS and FS.

For BPNN models, hyperparameters that needed to be determined include the number
of neurons and layers. BAS and 10-fold CV detected the optimal hyperparameters through
iteration as illustrated in Figure 12. It is evident in Figure 12a,b that the third fold and
BPNN network with three hidden layers obtained the lowest RMSE value. Figure 12c
represents the BAS algorithm conducted in fold 3, indicating the RMSE value reduced
with the iteration and the tuned hyperparameter was gained at the 36th iteration. The
consequent BPNN hyperparameters were therefore determined as numHiddenLayers = 3,
with numNeuronsInEachLayers = 3, 11, 4, respectively.
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Figure 12. Hyperparameter tuning for BPNN: (a) RSME values obtained in 10 validation folds;
(b) RSME convergency with various numbers of hidden layers; (c) Iteration conducted at the 3rd fold.

During the modeling setting, the amounts of trees (ntree) and the minimum number
of leaves (minNumlea f ) are fundamental parameters that needed to be adjusted for the RF
algorithm. In this research, they were detected from the procedure as shown in Figure 13. It
is noted that the RMSE value is basically convergent within 50 iterations for the traditional
machine learning task. From Figure 12b,c and Figure 13b, the RMSE value’s reduction can
be clearly observed within the first 10–30 iterations and maintains the minimum value
after 30 iterations, illustrating that the RMSE reaches the local minimum. Specifically, the
minimum RMSE value was obtained at the 6th fold as 0.1015 which dropped significantly
with iteration progress, demonstrating the obtainment of desired hyperparameters as
numTree = 88, minNumlea f = 1.
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Figure 13. Hyperparameter tuning for RF: (a) RSME values obtained in 10 validation folds; (b) Iteration
conducted at the 6th fold.

4.1.2. Performance of BAS-BPNN and BAS-RF for UCS

Figures 14 and 15 show the prediction performance of BAS-BPNN and BAS-RF, with
subfigures (a) and (b) depicting the training and test sets, respectively. The yellow columns
denoting the error of prediction were minor, so the consequent conclusion can be drawn
that both BPNN and FR estimate the CSS strength accurately.

Figure 14. Scatter plot of predicted and actual UCS of BPNN model: (a) training set; (b) test set.

Additionally, prediction and actual results formed a great correlation as evidenced
by the R value in Figure 16. As depicted in Figure 16a, the correlation coefficient (R) for
the BPNN algorithm were 0.9717 and 0.9594 for the training and test set, respectively,
which were both lower than that for the RF algorithm (0.9877 and 0.9685). Therefore,
BPNN and RF simultaneously provided reliable predictions, whereas RF yielded enhanced
accuracy. Moreover, a similar R value indicated that there was no overfitting problem in
both algorithms.
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Figure 15. Scatter plot of predicted and actual UCS of RF model: (a) training set; (b) test set.

Figure 16. Scatter plot of predicted and actual UCS of training and test sets: (a) BAS-BPNN model;
(b) BAS-RF model.

4.1.3. Comparison of BPNN. RF, LR, MLR, and KNN

Figure 17 is the box diagram representing the various between the actual strength and
prediction. The boxes in the figure indicate the interquartile range for each model by the
height between the upper and lower borders. It can be observed that BPNN yielded the best
accuracy and shared the lowest median (the red line within the box) with the RF algorithm.
Four outliers (read+) were defected in BPNN, which was more than that of other models.
However, as the interquartile range and median affect the accuracy more significantly,
BPNN and RF demonstrated relatively similar reliability among all five algorithms.
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Figure 17. Box diagram of 5 models.

The Taylor diagram was also applied to evaluate the model performance through
three assessment criteria including R, RMSE, and standard deviation, as shown in Figure 18.
The dot denoted for RF was the nearest to the actual point with the minimum standard
deviation, maximum R, and minor RMSE. Table 3 listed the specific value of R and RMSE
for each algorithm, proving RF as the best-performed model in UCS prediction.

Figure 18. Taylor diagram of 5 models.

Table 3. Evaluation of 5 ML models on UCS test group.

Evaluation Index
Model

LR MLR KNN BPNN RF

RMSE (MPa) 0.3694 0.2014 0.3242 0.1727 0.0280
R 0.9598 0.9462 0.8599 0.9594 0.9685

4.2. Prediction for FS Performance
4.2.1. Hyperparameter Tuning

A similar procedure with UCS estimation was applied to optimize hyperparameters
for FS prediction. The 3rd fold outputs the minimum RMSE value during the CV process
as shown in Figure 19a. Moreover, the numHiddenLayers was examined as 1 because the
RMSE reduced remarkably and reached the minimum when the iteration was processed for



Materials 2022, 15, 4250 17 of 26

three times. The phenomenon can be ascribed to the effectiveness of BAS on hyperparameter
tuning. The other desirable hyperparameter numNeuronsInEachLayers defected as 1.

Figure 19. Hyperparameter tuning for BPNN: (a) RSME values obtained in 10 validation folds;
(b) RSME convergency with various numbers of hidden layers; (c) Iteration conducted at the 3rd fold.

For the RF algorithm, the 9th fold had the minor RMSE as evidenced by Figure 20a.
The hyperparameters optimized by this iteration were therefore applied to predict the FS
performance. Figure 20b shows the RMSE scatter plot, indicating the decline of RMSE
value until it maintained a minimum at the 41st repeat. The final tuned hyperparameters
were numTree = 29, minNumlea f = 1.

4.2.2. Performance of BAS-BPNN and BAS-RF for FS

After being automatically tuned in the 70% training set, hyperparameters were applied
in the 30% test set to predict the FS property of CSS. Figures 21 and 22 present the scatter
plot of FS prediction from BPNN and RF models with the actual strength of the training and
test set, respectively. It is noted from the figures that the prediction and the actual results
fitted well, as the contract ratio of red and blue lines were relatively high. Furthermore, error
bars located on the horizontal line proved that BPNN and RF algorithms demonstrated
similar accuracy in FS prediction.
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Figure 20. Hyperparameter tuning for RF: (a) RSME values obtained in 10 validation folds; (b) Itera-
tion conducted at the 9th fold.

Figure 21. Scatter plot of predicted and actual FS of BPNN model: (a) training set; (b) test set.

Figure 22. Scatter plot of predicted and actual FS of RF model: (a) training set; (b) test set.

Detailed RMSE and R value are illustrated in Figure 23, where subfigure (a) depicts the
BPNN model, and (b) depicts the RF model. The RMSE values were ranging from 0.0841
to 0.1583, indicating that BPNN and RF models estimated the strength accurately. The
training set of the RF algorithm defected the hyperparameters with the highest R and the
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lowest RMSE. However, the test set output the worst-performed value, which manifested
that the RF model had a higher risk of overfitting compared with BPNN.

Figure 23. Scatter plot of predicted and actual FS of training and test sets: (a) BAS-BPNN model;
(b) BAS-FR model.

4.2.3. Comparison of BPNN. RF, LR, MLR, and KNN

For FS prediction, MLR demonstrated high accuracy as evidenced by the condensed
interquartile range in Figure 24a. However, BPNN exhibited better-integrated reliability
because of fewer outliers and the lower median value. Figure 24b integrated R, RMSE
and standard deviation into polar coordinates, obtaining the same conclusion owing to the
closest distance between BPNN and the actual FS result. In addition, based on evaluation
standards listed in Table 4, BAS-BPNN was also considered the most effective algorithm
due to the least error and best degree of fitting.

Figure 24. Prediction evaluation: (a) box diagram; (b) Taylor diagram.
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Table 4. Evaluation of 5 ML models on FS test group.

Evaluation Index
Model

LR MLR KNN BPNN RF

RMSE (MPa) 0.2386 0.1677 0.2498 0.1347 0.1583
R 0.9341 0.9107 0.7678 0.9446 0.9262

5. Optimal Mixture Design

The RF algorithm defined the effect factor of each variable as depicted in Figure 25,
which contributed to proposing the optimum mixture design. The consequent importance
score for each content was similar to that obtained from laboratory tests. Water and soil
proportion exhibited no influence on the mechanical property owing to the constant dosing
level in all specimens. C&D waste and sodium sulfate had a similar introduction effect. It
is noted that cement content, curing age, and fiber content yielded the best effectiveness on
CSS mechanical strength. Combined with the UCS and FS results listed in Appendix A,
specimens prepared with 30% cement, 20% C&D waste, 4% polypropylene fiber, and 0.8%
sodium sulfate were considered the best performed. The conclusion can be attributed to
the high ranking of the 28-day UCS and FS performance among all mixture designs.

Figure 25. Importance score of influential variables: (a) UCS; (b) FS.

6. Conclusions

In this research, the inclusion effects of Portland cement, construction and demolition
(C&D) waste, polypropylene fiber, and sodium sulfate on the mechanical properties were
assessed through laboratory tests. Moreover, machine learning (ML) techniques were ap-
plied based on the 84 experimental results, predicting the unconfined compressive strength
(UCS) and flexural strength (FS) of cement stabilized soil (CSS). Primary conclusions are
drawn as follows:

(1) Portland cement demonstrates outstanding enhancement of mechanical strengths
through cement hydration. The maximum increase in sample strength on 28-day
when the curing time and admixture amounts were 450.34% and 176.91%.

(2) The C&D waste has a positive effect on both the compressive and flexural properties
of the samples, with the largest increase in performance being 57.2%. A 20% C&D
waste content demonstrates the best-improving effect.

(3) Polypropylene fiber brings a 150.31% increase in the flexural properties of the samples.
However, the increase in compressive properties is not significant.
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(4) Higher levels of sodium sulphate increase the mechanical properties of the cement
soil by 59.61% and 69.96%, respectively. However, the 0.4% sodium sulphate fails to
change the properties regularly, with a range of −14% to 32.59%.

(5) The influencing factors of each variable on CSS performance are ranked in descending
order as: Portland cement, polypropylene fiber, C&D waste, sodium sulfate. The mix-
ture design of 30% cement, 20% C&D waste, 4% fiber and 0.8% is considered as the
best-performed combination.

(6) BPNN and RF acquired the most accurate prediction for UCS and FS, respectively.
Baseline models generally are inferior to Machine Learning models with hyperparam-
eters in mechanical strength prediction.

The research output from this article could lead to a wider application of CSS as an
engineering material. Moreover, the concluded enhancement can be treated as a baseline
model. Future research can extend the experiments to explore other properties such as slump,
or to consider alternative aggregate ratios. Meanwhile, RF and BPNN can be employed to
predict whether the designed proportion will achieve the mechanical strength requirements
or to optimize the proportioning for a given strength.

Author Contributions: Conceptualization, X.W. and G.Z.; methodology, G.Z., Y.W. (Yufei Wang)
and X.W.; writing—original draft, Z.D.; writing—review & editing, G.F., Y.W. (Yufei Wang), X.Z.
and C.X.; formal analysis, Z.D. and X.L.; investigation, G.F., X.L. and Y.W. (Yan Wang); software,
Y.W. (Yan Wang) and Y.Z.; resources, Y.Z., X.Z. and C.X. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was supported by Key Project of Hunan Education Department (grant number
21A0511), National Natural Science Foundation of China (grant numbers 51908201 and 51978254),
Natural Science Foundation of Hunan Province (grant numbers 2020JJ5024; 2021JJ50142), and Hunan
Provincial Science and Technology Plan (grant number 2021NK4273). This research is also supported
by Academic Research Council of Australia Linkage Projects for Asset Intelligence: Maximising
Operational Effectiveness for Digital Era, (Grant No. LP180100222). The study was also supported by
State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of
Mining & Technology/China University of Mining & Technology, Beijing (SKLGDUEK2105).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Mixing proportion for all variable combinations.

ID
UCS (MPa) FS (MPa)

7-Day 14-Day 28-Day 7-Day 14-Day 28-Day

Control 1 0.0876 0.2503 0.3408 0.1242 0.1403 0.1571

Control 2 0.4820 0.5676 0.7560 0.1451 0.2375 0.3003

Control 3 1.2340 1.7832 1.9160 0.3891 0.5912 0.8316

CWFS-1112 0.4612 0.3225 0.3783 0.1645 0.1537 0.1943

CWFS-1114 0.4476 0.3439 0.4128 0.1544 0.1481 0.1904

CWFS-1118 0.5304 0.4448 0.5220 0.1684 0.1918 0.2886

CWFS-1122 0.4212 0.3862 0.5092 0.2006 0.2064 0.3543

CWFS-1124 0.4128 0.4212 0.5544 0.2584 0.3167 0.3715
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Table A1. Cont.

ID
UCS (MPa) FS (MPa)

7-Day 14-Day 28-Day 7-Day 14-Day 28-Day

CWFS-1128 0.4024 0.4236 0.5544 0.1904 0.2996 0.3488

CWFS-1142 0.4212 0.3225 0.4320 0.2519 0.2890 0.3356

CWFS-1144 0.4448 0.4236 0.5728 0.3581 0.3670 0.5117

CWFS-1148 0.4984 0.4876 0.6208 0.3692 0.3423 0.4967

CWFS-1212 0.3676 0.4104 0.5116 0.1643 0.1817 0.2264

CWFS-1214 0.4076 0.3811 0.5116 0.1700 0.1581 0.2094

CWFS-1218 0.4448 0.4636 0.6316 0.1832 0.2064 0.2761

CWFS-1222 0.3648 0.3462 0.4556 0.1589 0.1567 0.1893

CWFS-1224 0.3488 0.3597 0.4664 0.2232 0.2314 0.2285

CWFS-1228 0.5144 0.5464 0.7272 0.2398 0.3235 0.3210

CWFS-1242 0.4848 0.4664 0.5892 0.3698 0.4548 0.4739

CWFS-1244 0.3488 0.4716 0.5568 0.3774 0.3058 0.4289

CWFS-1248 0.4048 0.5676 0.6980 0.3274 0.4652 0.5195

CWFS-1312 0.3860 0.4392 0.5836 0.1674 0.1772 0.2363

CWFS-1314 0.3352 0.4156 0.5436 0.1517 0.1904 0.1998

CWFS-1318 0.3116 0.3676 0.5276 0.1195 0.1615 0.2421

CWFS-1322 0.2900 0.3890 0.5196 0.2296 0.3000 0.2977

CWFS-1324 0.2796 0.3304 0.4984 0.1799 0.3218 0.3270

CWFS-1328 0.3940 0.5220 0.6556 0.2710 0.2516 0.3739

CWFS-1342 0.3888 0.4368 0.5596 0.3164 0.4713 0.3691

CWFS-1344 0.3752 0.4528 0.6020 0.3032 0.4713 0.5394

CWFS-1348 0.4904 0.5436 0.8048 0.4861 0.5032 0.4442

CWFS-2112 0.6100 0.6848 0.9860 0.2753 0.3355 0.3807

CWFS-2114 0.6476 0.8236 1.0316 0.2911 0.3504 0.3821

CWFS-2118 0.7728 0.8500 1.1804 0.3175 0.4010 0.4440

CWFS-2122 0.7700 0.8796 1.2392 0.3898 0.4295 0.4914

CWFS-2124 0.8024 0.8528 1.1512 0.4256 0.4452 0.6076

CWFS-2128 0.8472 0.9888 1.2312 0.8139 0.7081 0.6401

CWFS-2142 0.6500 0.6208 1.0524 0.5446 0.7073 0.7116

CWFS-2144 0.7196 0.7808 1.0552 0.6068 0.6676 0.6396

CWFS-2148 0.7596 0.8528 1.0820 0.5692 0.6123 0.8199

CWFS-2212 0.5916 0.5856 0.9380 0.2905 0.2862 0.3238

CWFS-2214 0.5464 0.6528 0.8872 0.2567 0.3296 0.3459

CWFS-2218 0.7648 0.7300 1.1596 0.3668 0.4259 0.4089

CWFS-2222 0.6100 0.7436 0.9916 0.4029 0.5192 0.4870

CWFS-2224 0.5596 0.6820 0.8528 0.3065 0.3741 0.4079

CWFS-2228 0.7516 0.8100 1.0820 0.4071 0.3687 0.5402

CWFS-2242 0.6584 0.7516 0.9008 0.5067 0.5630 0.8492
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Table A1. Cont.

ID
UCS (MPa) FS (MPa)

7-Day 14-Day 28-Day 7-Day 14-Day 28-Day

CWFS-2244 0.8180 0.8100 1.1432 0.6622 0.7713 0.7164

CWFS-2248 0.7156 0.8436 1.1196 0.5821 0.8092 0.8442

CWFS-2312 0.7516 0.8552 1.0820 0.3391 0.4377 0.5259

CWFS-2314 0.6580 0.9140 1.1404 0.2974 0.4101 0.4568

CWFS-2318 0.7640 0.9702 1.2020 0.2985 0.3597 0.4502

CWFS-2322 0.7408 0.8553 1.0768 0.2919 0.3759 0.4609

CWFS-2324 0.8368 0.8846 1.2128 0.4333 0.4249 0.5002

CWFS-2328 0.9516 0.9931 1.3404 0.4617 0.5216 0.5790

CWFS-2342 0.8648 1.0981 1.4608 0.7216 0.7460 0.7958

CWFS-2344 0.8980 1.0153 1.5008 0.7840 0.7140 0.7119

CWFS-2348 0.9272 1.1304 1.4364 0.7981 0.8484 1.2859

CWFS-3112 1.1968 1.4952 2.0340 0.3985 0.5504 0.6006

CWFS-3114 1.0848 1.4444 1.8388 0.3893 0.5857 0.6095

CWFS-3118 1.5244 2.1324 2.5880 0.5919 0.8247 1.0207

CWFS-3122 1.1032 1.4900 1.8232 0.4669 0.6060 0.7354

CWFS-3124 1.4152 1.7780 2.2816 0.6744 0.8850 0.8449

CWFS-3128 1.3856 1.8444 2.2148 0.6531 0.9415 0.9202

CWFS-3142 1.4180 1.7752 2.2256 1.0989 1.1942 1.6690

CWFS-3144 1.5164 1.7404 2.1032 1.1547 1.4189 1.4320

CWFS-3148 1.3085 1.9538 2.4336 1.2395 1.3497 1.3127

CWFS-3212 1.3140 1.6258 2.0976 0.5497 0.6575 0.7450

CWFS-3214 1.3647 1.5537 2.0656 0.6025 0.6948 0.8935

CWFS-3218 1.2685 1.4820 2.0148 0.4875 0.4820 0.7792

CWFS-3222 1.3192 1.7296 2.0284 0.6980 0.8248 0.8717

CWFS-3224 1.2926 1.7164 2.1592 0.7482 0.8778 0.9954

CWFS-3228 1.3778 1.7780 1.9804 0.6061 0.7348 0.8046

CWFS-3242 1.4253 1.7324 2.1456 1.1684 1.6124 2.0286

CWFS-3244 1.3940 1.7216 2.1376 0.8412 0.8754 1.2671

CWFS-3248 1.5592 1.8868 2.3720 1.0135 1.4556 1.6752

CWFS-3312 1.2182 1.7564 2.1592 1.2259 0.7466 0.8835

CWFS-3314 1.3085 1.6284 2.3084 0.5386 0.7910 0.9581

CWFS-3318 1.0819 1.4632 1.8712 0.4022 0.5725 0.6951

CWFS-3322 1.1595 1.1056 1.7780 0.6079 0.6103 0.8183

CWFS-3324 1.0448 1.4128 1.5808 0.5543 0.5529 0.7040

CWFS-3328 1.4020 1.4100 1.9072 0.4953 0.6974 0.7057

CWFS-3342 1.5276 1.6736 1.9560 0.8984 1.2113 1.4504

CWFS-3344 1.2368 1.9432 1.7964 1.2807 1.2696 1.3083

CWFS-3348 1.9296 2.2656 2.6572 1.2370 1.1690 1.5334
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