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Abstract: The purpose of this paper is to develop a constitutive description and to numerically
simulate a propagating instability phenomenon called the Portevin–Le Chatelier (PLC) effect, which
is observed for metallic materials. It manifests itself by moving plastic shear bands in the sample and
serrations in the stress–strain diagram. In this paper, the PLC is modeled by geometrically non-linear
thermo-visco-plasticity with the hardening function of the Estrin–McCormick type to reproduce a
serrated response. To regularize softening, which in this model comes from thermal, geometrical and
strain-rate effects, the viscosity and heat conductivity are incorporated. Plasticity description can
additionally include degradation of the yield strength, and then the model is enhanced by higher-
order gradients. Simulations are performed using AceGen/FEM. Two tensioned specimens are tested:
a rod and a dog-bone sample. The first specimen is used for general verification. The results obtained
for the second specimen are compared with the experimental results. Studies for different values
of model parameters are performed. The results of the simulations are in good agreement with the
experimental outcome and the sensitivity to model parameters is in line with the expectations for the
pre-peak regime. In the presented tests, the gradient enhancement does not significantly influence
the results.

Keywords: PLC effect; visco-plasticity; thermo-mechanical coupling; gradient enhancement; FEM

1. Introduction

The Portevin–Le Chatelier (PLC) effect is an instability phenomenon that manifests
itself in bands of localized plastic strain rate, propagating along a stressed specimen. It is
related to stress jumps (serrations) in the load-displacement diagram, which represents
a specimen response under tension or shear. The source of this behaviour lies in the
microstructure evolution, in particular at the level of dislocation motion. It is specifically
exhibited by steel and aluminium alloys and occurs for a certain range of strain rates and
temperatures. The PLC can reduce ductility and formability of alloys; hence, its analysis is
of both theoretical and practical importance.

The plastic flow in metals and alloys can be explained by nucleation and motion of
dislocations. The motion can be blocked by other dislocations, causing dislocation pile-up
which can be unlocked by a sufficiently large strain. In solid solutions, dislocations can also
be stopped by diffused solute atoms. The dislocation pinning by the solutes, repeatedly
followed by unpinning, produces instabilities in the plastic flow. They occur as serrations
in the stress–strain diagram, related to the motion (or repeated occurrence and vanishing)
of localized strain-rate bands along a stressed specimen.

The micro-structural phenomenon responsible for the PLC effect is so-called Dynamic
Strain Aging (DSA) [1,2]. As explained above, DSA is related to dynamic interactions
between the motion of mobile dislocations and the diffusion of solute atoms. The recur-
ring decrease in the concentration of solute atoms at temporarily arrested dislocations is
represented by a reduction in solute contribution to the flow stress.
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The PLC effect was first reported by [3]. Experimental studies and analytical models
of propagative instabilities, in particular of Lueders bands and the Portevin–Le Chatelier
effect, were discussed in [4]. An extensive numerical study of the phenomena using small-
strain isothermal elasto-plasticity models is provided in [5,6]. Finite element models of
the PLC effect are analyzed there in the context of regularized dynamics. An overview of
the experiments showing the PLC phenomenon, including a classification of its types, is
presented in [7]. Experimental analysis and modeling of the three types is performed in [8].
A review of modeling options for the phenomenon is provided in [9].

The PLC effect can be described, among others, by the Estrin–McCormick model [10–13].
In [10], the model is derived; in [11,12], it is applied in small-strain FE simulations of the
phenomenon. In [13], the model is implemented within a large strain model of elasto-
plasticity, including parameter identification for an aluminium alloy based on experiments
on tensile specimens under loading with different rates.

In recent years, several scientists have considered the phenomenon in their theoret-
ical, experimental and numerical studies. In particular, steel specimens were examined
in [14–18] (the last paper covers an experimental study of the PLC phenomenon in high-
strength steel) and aluminium alloys in a larger number of works; for instance, [13,19–22].

The majority of specimens used in the studies were rectangular or dog-bone shape ten-
sile plates (see [8,13,15,19,20,23]), sometimes notched (e.g., [17]), and tensile rods with circu-
lar cross-section (see for instance [23]). Some studies concerned shear specimens [21,24,25].
Several papers compare the experimental response (in some cases monitored using the
DIC technique) with simulation results; see, for instance [17,19,22,26–28]. The final failure,
involving necking and fracture, was examined in [15]. Moreover, in some papers, the
influence of loading/strain rate has been examined, see [8,13,20,24,29].

A few studies considered temperature dependence of the PLC effect. These
were [20,25,30,31]. The simulation of the temperature-dependent process zone at the crack
tip was in the focus of [14]. Finally, it is mentioned that a constitutive model of discontinu-
ous plastic flow for materials deformed at cryogenic temperatures was developed in [32]
and further considered in [33]. In fact, these papers and the present one belong to the
broad field of research on thermo-mechanics of heterogeneous/composite materials and
structures. The thermo-mechanical couplings are constantly a subject of intensive scientific
activity; see, for instance [34–41].

In the present paper, the PLC effect is simulated using a formulation of geometri-
cally non-linear thermo-plasticity developed in [42,43]. The model includes full thermo-
mechanical coupling involving thermal expansion, plastic heating, thermal softening in
the plasticity function, and Fourier’s law in the deformed configuration. Following [44,45],
the thermo-elastic coupling is neglected in the energy balance because it is relatively
insignificant for the metallic materials under consideration.

The plasticity description is based on [46] and includes the Huber–Mises–Hencky
yield criterion. This model was recently extended to visco-plasticity and was employed by
the authors to simulate Lueders bands in [47]. The rate-dependent hardening function of
the Estrin–McCormick type, described in [13], is used to simulate DSA and the serrations
induced by strain-rate softening, but it is enhanced with temperature dependence of the
characteristic time of solute diffusion.

The models are implemented in an AceGen code generator developed in [48] within
Wolfram Mathematica. One of the aims of the research is to examine the influence of
temperature and strain rates on the PLC phenomenon, and the importance of regularization
in the models involving recurring strain-rate-softening phases. It is stressed here that the
stabilizing effect is provided by viscosity and heat conduction, but can also be provided by
a gradient enhancement.

The paper is organized as follows. In Section 2, the theory of large strain thermo-visco-
plasticity is summarized and then extended to include the Estrin–McCormick component
of the yield strength, which makes it possible to simulate the PLC effect. Interest is limited
to tension and moderate temperatures (20–200 degrees Celsius). A gradient enhancement
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of the model is optionally incorporated to regularize the softening involved in the model.
In Section 3 the coupled balance equations are presented in local and weak forms, and then
the implementation of the model in AceGen/FEM for Mathematica is briefly discussed.
In Section 4, the simulation results are presented. First, a one-dimensional rod model is
considered and detailed response is shown for one serration. Then, a series of simulations
for a dog-bone specimen under tension is presented. The computed model is based on
the experimental research on aluminium dog-bone-type specimens, presented in [49].
Comparisons with laboratory test results are made, and some parametric studies are
performed. Finally, in Section 5 some conclusions are drawn and directions of future work
are proposed.

2. Brief Description of Constitutive Models
2.1. Thermo-Visco-Plasticity

The material models used in this paper for the simulation of the PLC-type instabilities are
described below. They are based on the large-strain description of elasto-plasticity [13,45,50,51].

The starting point of the formulation is standard. We consider a continuous deformable
body and its material is assumed to be initially isotropic. Vector X identifies the reference
location of a body particle at time t = 0 and in initial temperature T0 (T0 is assumed to be
the reference temperature for a strain-free state), vector x points to the current position of
the particle at time t and in temperature T. The motion of the body is described by function
x = ϕ(X, t, T). The classical definition of the deformation gradient F is recalled:

F =
∂ϕ(X, t, T)

∂X
. (1)

A multiplicative decomposition of F into mechanical and thermal parts denoted by
Fm and Fθ , respectively, is performed [45,52]. In turn, Fm is decomposed into elastic and
plastic factors Fe and Fp (see [53–55])

F = FmFθ = FeFpFθ . (2)

The thermal factor Fθ is assumed to be purely volumetric and defined as

Fθ = (Jθ)1/3I , Jθ = det(Fθ), (3)

where I is the second-order identity tensor. The volumetric deformation caused by the
temperature change T − T0 is represented by [55]

Jθ = exp[3αT(T − T0)], (4)

where αT is the coefficient of linear thermal expansion. Based on Equations (2) and (4) the
mechanical part of the deformation gradient is derived as

Fm = exp[−αT(T − T0)]F. (5)

For the classical thermo-plasticity theory, the Helmholtz potential calculated per
unit volume in the reference configuration is decomposed into elastic, plastic, and purely
thermal components (see [45,50])

ψ(be, α, T) = ψe(be) + ψp(α) + ψθ(T). (6)

The following definitions of the potential parts are employed.

ψe(be) =
1
2

G
[
tr(det(be)−1/3be)− 3

]
+

1
2

Kln(Je)2, (7)

ψp(α) = (σy f − σy0)

[
α +

exp(−δα)

δ

]
, (8)
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ψθ(T) = c
[
(T − T0)− T ln

(
T
T0

)]
. (9)

In Equation (7), G and K are shear and bulk elastic moduli, be = Fe(Fe)T is the elastic
left Cauchy–Green tensor, and Je = det(Fe).

The second component of the free energy represents plastic hardening and is assumed
in the form relevant for saturation-type hardening with a scalar equivalent plastic strain α,
σy0 is an initial yield strength, σy f is a final yield strength, and δ is a saturation constant. In
general, ψp depends on adopted hardening specification. Moreover, in Equation (9), c is

the heat capacity per unit of volume. According to [46] it can be defined as c = −T ∂2ψ

∂T2 and
therefore for the adopted form of free energy, c is constant.

The Kirchhoff stress tensor τ and hardening function h(α) are derived from the free
energy potential

τ = 2
∂ψ

∂be be, h =
∂ψ

∂α
. (10)

The constitutive relation for heat conduction is the classical Fourier law for isotropic
materials. It is formulated according to [46] using the Kirchhoff heat flux vector q

q = −k∇T, (11)

where k is a heat conduction coefficient specified in the reference configuration and∇T is a
spatial gradient of temperature.

Further, the plasticity formulation is specified. The yield function is defined as

Fp(τ, α, α̇) = f (τ)− σy(α, α̇) ≤ 0, (12)

where f (τ) is the Huber–Mises–Hencky (HMH) stress measure and σy represents the
evolving yield strength (flow stress) for the rate-dependent (viscoplastic) model, which is
the starting point of the derivation. The viscoplasticy formulation follows the consistency
concept, cf. [5]. The particular forms of σy will be discussed in the next section for the
Estrin–McCormick visco-plasticity model and a gradient-enhanced version of the model.
The following definitions are used

f (τ) =
√

2J2, (13)

J2 =
1
2

τ2
dev · I, (14)

where τdev is deviatoric part of the Kirchhoff stress tensor and I is the second order
unit tensor.

The yield function presented in Equation (12) has a general form which can easily be
modified to apply another yield criterion. The Huber–Mises–Hencky function is chosen
in the work because it describes the behaviour of metals satisfactorily. This form of stress
measure is independent of the hydrostatic pressure, which implies the isochoric plastic
flow. In this approach, the volumetric-deviatoric split of large-strain measures does not
need to be incorporated in the description. It is worth mentioning that the volume of the
material can change due to thermal expansion and elastic deformation.

Following [50], the associated flow rule is adopted for the Lie derivative of be

− 1
2
Lvbe = γ̇

∂Fp

∂τ
be, (15)

where γ̇ denotes the plastic multiplier satisfying the standard Kuhn–Tucker conditions:

γ̇ ≥ 0, Fp ≤ 0, γ̇Fp = 0. (16)
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According to [56], the plastic multiplier plays the role of the plastic strain measure
according to the relation

α̇ =
√

2/3γ̇. (17)

2.2. Estrin–McCormick Model with Optional Gradient Enhancement

The Estrin–McCormick model (further called the McCormick model or the EMC model
in brief) is a phenomenological description of DSA based on an internal variable called
effective strain aging time ta, cf. [10,12,13]. The evolution of ta introduces repeated nega-
tive strain-rate dependence, causing the serrations related to nucleating and propagating
localization bands.

In this paper, the model is extended to include temperature dependence, cf. [9,25]. The
yield function is defined as

Fp(τ, α, α̇, ta, T) = f (τ)−
√

2/3σy(α, α̇, ta, T) ≤ 0. (18)

It is assumed for simplicity that the standard hardening has a saturation character,
viscosity does not depend on temperature, and thermal softening is linear. The yield
strength σy depends on equivalent plastic strain α, its rate α̇, strain aging time ta, and
temperature T. It has three components related to strain hardening σH , strain rate sensitivity
σV , and dynamic strain aging σB:

σy(α, α̇, ta, T) = σH(α, T) + σV(α̇) + σB(α, ta, T). (19)

The first component represents the saturation hardening scaled by a thermal softening factor

σH(α) =
[
σy0 + (σy f − σy0)(1− exp (−δα)

]
[1− HT(T − T0)]. (20)

The part (1−HT(T− T0)) corresponds to linear thermal softening, and HT is a thermal
softening modulus. Alternative formulae for thermal softening and their discussion in the
context of strain localization simulations can be found in [57].

The second component of the yield strength introduces positive strain rate influence
(ξ is viscosity parameter)

σV(α̇) = ξα̇. (21)

It is noted that the time derivative of α in the viscous term ξα̇ in Equation (21) is
computed using the backward Euler scheme as follows

α̇ =
αn − αn−1

∆t
, (22)

where αn and αn−1 denote the values of the equivalent plastic strain at the current and
previous time moments, respectively, and ∆t is a time step.

The third component represents the influence of the DSA according to [13]

σB(ta, α) = σB0(α)

[
1− exp

(
− ta

t0

)n]
. (23)

The formula particularly expresses the solute concentration at temporarily stopped
mobile dislocations, which involves negative strain-rate sensitivity. It is driven by the
strain aging time ta. Moreover, t0 is the characteristic time for the solute diffusion, which
determines how fast the saturation of hardening component σB is reached. The saturation
factor σB0 (the maximum value of contribution σB) is assumed to depend linearly on the
accumulated plastic strain measure α:

σB0 = σB00 + σ′B00α, (24)

where σB00 and σ′B00 are model parameters as well as exponent n in Equation (23).
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The strain aging time ta is related to a waiting time tw (which a dislocation spends at
an obstacle) by the differential equation:

ṫa = 1− ta

tw
, (25)

where the waiting time is related to the plastic strain rate α̇

tw =
Ω(α)

α̇
, (26)

and the plastic strain increment Ω associated with the motion of dislocations between two
obstacles (pinned configurations) is also assumed to depend linearly on α:

Ω(α) = Ω0 + Ω′0α. (27)

In the above equation Ω0 and Ω′0 are model parameters.
Algorithmically, the evolution of ta depends on the plastic strain increment ∆α and

can be computed for time increments as follows [13]:

ta =
tn
a + ∆t

1 + ∆α
Ω(αn+∆α)

, (28)

where the plastic strain rate α̇ has been approximated according to Equation (22).
Now, the model depends on temperature in a couple of ways: due to thermal expan-

sion, plastic heating and thermal softening. It is assumed that only the basic mechanical
parameters (Young modulus, initial and final yield strength) depend on temperature. Addi-
tionally, to examine the sensitivity of the McCormick model to temperature, the following
dependence of parameter t0 on temperature is assumed:

t0(T) = t02 exp(t01T). (29)

The parameters of this function t01 and t02 have been determined on the basis of
experimental results presented in [25].

It is emphasized that, next to thermal softening assumed in Equation (20) and strain-
rate softening present in Equation (23), geometrical softening due to large deformations is
also present in the description; see, for instance, [58]. This version of the McCormick model
incorporates two regularizing effects, i.e., rate dependence and heat conduction.

In more detailed material modeling, the first component of the yield strength can
additionally include a damage-type reduction to represent an increasing porosity of the
material related to large strains and leading to fracture. This extension of the model is
here based on [51] where a reducing factor exp(−βz) decays from one to zero with in-
creasing material degradation (β is a ductility parameter) and scales the hardening part
of the yield strength. In the local version of the model, z would be taken equal to α;
however, to control the influence of the degradation coefficient on the plastic strain local-
ization process z is rather an averaged plastic strain measure, obtained from the following
averaging equation [59]

z− l2∇2
0z = α, (30)

in which l is an internal length scale and, since so-called Lagrange averaging is employed
according to [60], ∇0 is the gradient operator in the material description. Homogeneous
natural boundary conditions are assumed for Equation (30).

The yield function then reads

Fp(τ, α, α̇, z, ta, T) = f (τ)−
√

2/3σy(α, α̇, z, ta, T) ≤ 0, (31)
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and the flow stress depends on equivalent plastic strain α, its rate α̇, (non-local) degradation
parameter z, strain aging time ta, and temperature T

σy(α, α̇, z, ta, T) = σH(α, z, T) + σV(α̇) + σB(α, ta, T), (32)

where

σH(α) =
[
(σy0 + (σy f − σy0)(1− exp (−δα))

]
exp(−βz)[1− HT(T − T0)], (33)

represents saturation hardening scaled by the degradation coefficient exp(−βz) and by
the linear thermal softening factor 1− HT(T − T0). This last version of the model thus
incorporates the rate and gradient dependence simultaneously; cf., for instance, [61,62].

3. Balance Equations

Due to the distinction between the reference and the current configurations in the
large strain analysis, the governing equations can be formulated in the material or spatial
description; see, for instance, [46,63], respectively. In the described model, spatial quantities
are used, but they refer to the volume or surface in the reference configuration; see [64].

The first governing equation for the analyzed coupled problem imposes static equilib-
rium in the local form

Jdiv(τ/J) = 0. (34)

In Equation (34) div(·) is the divergence computed with respect to spatial coordinates
and body forces have been neglected. The equilibrium Equation (34) is completed with the
boundary conditions for displacement vector u and for traction vector t:

u = û on ∂Bu,
t = τ · n = t̂ on ϕ(∂Bτ),

(35)

where n is the normal to the body surface.
The second governing equation represents the energy balance written in the tempera-

ture form for a non-stationary heat transport, as follows.

c
∂T
∂t
− Jdiv(−q/J)−R = 0. (36)

In Equation (36),R is a heat source density per unit of volume. It includes so-called
plastic heating, i.e., the source density due to plastic dissipation written in the simple
form [45]

R = χσyα̇, (37)

where χ denotes a heat dissipation factor [65], assumed to be constant. The energy balance
Equation (36) is completed with appropriate boundary conditions:

T = T̂ on ∂BT ,
q · n = q̂ on ϕ(∂Bq),

(38)

and an initial condition stating that for t = 0 we have T = T0 in B.
For the gradient-enhanced version of the model, the averaging Equation (30) is an

additional balance equation. The averaged plastic strain z is an additional fundamental
unknown, discretized in addition to displacements and temperature, leading to a three-field
formulation of the coupled BVP.

The weak forms of the governing equations are the basis for the finite element im-
plementation. Multiplication of Equation (34) by test function δu, integration over the
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volume of body B and application of the divergence theorem as well as Neumann boundary
conditions lead to the weak form of the linear momentum balance∫

B
(∇δu : τ)dV +

∫
ϕ(∂Bτ)

δu · t̂da = 0. (39)

The weak form of Equation (36) is obtained using the standard procedure and the
backward Euler scheme for time integration. As a result, the following integral equation is
required to be valid for the current time∫

B

[
δT

c
∆t

(T − Tn) + k∇δT · ∇T − δTR
]
dV +

∫
ϕ(∂Bq)

δTq̂da = 0, (40)

where Tn is the value of temperature at the previous time moment and ∆t is the time
increment. Finally, the weak form of Equation (30) is written as follows∫

B

[
δz(z− α) + l2∇0δz · ∇0z

]
dV = 0. (41)

Equations (39), (40), and optionally (41) are required to be valid for any admissible
weighting functions δu, δT and δz, respectively. After the introduction of finite element
approximations of the two or three fundamental unknowns according to the Galerkin
approach, a set of algebraic equations can be obtained for a monolithic solution algorithm.

4. Implementation and Computational Tool

The numerical implementation and testing of the coupled model is performed in
Wolfram Mathematica packages AceGen and AceFEM, developed by Korelc [66]. The first
package is used to program user-supplied procedures for the finite element method, in
particular the tangent and residual subroutine for the Newton-Raphson algorithm and
the postprocessing subroutine. The code is prepared in a special meta-language and
automatically translated by AceGen. The routine can then be transferred to a chosen finite
element environment (e.g., ABAQUS, FEAP), but an integrated FE engine AceFEM can
also be used, and this is the case here. AceFEM is equipped with convenient pre- and
post-processing tools and perfectly cooperates with AceGen in the computational process.

The main advantage of AceGen, from the researcher’s point of view, is its ability
to perform automatic differentiation of symbolic expressions. It is worth emphasising
that the material model which is developed to simulate the PLC phenomenon results in a
highly non-linear two- (or three-) field problem which is solved using the iterative Newton–
Raphson algorithm which requires linearization of the governing equations. This part of the
model preparation is very often the most challenging part of the implementation process.
The application of automatic differentiation in the AceGen package significantly improves
this step. If the residual (with all explicit and nested dependencies between variables)
is properly defined, then the tangent matrix components are computed automatically as
derivatives of the residual with respect to the unknowns. What is more, the finite element
subroutine produced by AceGen is efficient and robust, since the code generator simplifies
the symbolic expressions and has built-in optimization tools. A detailed description of
AceGen features can be found e.g., in [66].

In fact, following the recommendation of Korelc [66], instead of introducing dis-
cretization into the residual Equations (39), (40) and optionally (41), pseudo-potentials are
formulated for the equilibrium, energy balance and plastic strain averaging, minimization
of which is equivalent to the residual equations. Specific forms of the potentials related
to the governing equations considered in this model can be found in [42]. It should be
mentioned that the model under consideration involves large strain plasticity and requires
a solution of the non-linear set of equations at the level of Gauss points to calculate the
values of internal variables. Thus, the relations between the internal variables and the
global unknown fields are not given as explicit functions and the process of the automatic
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differentiation has to be affected by the definition of appropriate exceptions. For more
details, the reader is referred to [42,66,67].

Discretization is introduced into the pseudo-potentials following the classical Ritz
approach, which yields a more robust solution procedure. An extensive description of the
AceGen implementation of a large strain (gradient-enhanced) thermo-plasticity models can
be found in [42,43]. The codes for thermo-visco-plasticity with the McCormick extension
given in Equation (23) are developed based on the same approach.

The user subroutines in AceGen are prepared for three-dimensional finite elements,
in particular hexahedral elements H8 with linear interpolation of all fields (displacement,
temperature and, if relevant, averaged strain) and eight Gauss points. The linear interpola-
tion is favorable in terms of computational effort, but it is known that plasticity simulations
are affected by volumetric locking if full integration is used. Therefore, the so-called F-bar
enhancement, see e.g., [68], is employed for the mechanical part of the formulation.

5. Simulation of PLC Effect
5.1. Test Description

In the numerical simulations of the PLC effect, two different samples are considered.
First, an example computation for a simple tensile rod sample is made to show how
the propagative instability is reproduced; see Figure 1, left. The rod dimensions are
10 × 10 × 500 mm. One end of the rod is fixed and a longitudinal displacement increasing
to 75 mm (15% of the sample length) is uniformly applied at the other end within 100 s (the
strain rate is 1.5 × 10−3 s−1). Fifty identical hexahedral elements with linear interpolation
of all fields are used and one element is used in the cross section.

Figure 1. Geometry of samples and meshes, rod (left) and bone-shape sample (right).

Then, simulations are performed for a configuration based on the experimental bone-
shape plate sample analyzed in [49]; see Figure 1, right. The dimensions of the computed
configuration are as follows: total length 102 mm, length of the middle part 57 mm,
thickness 4 mm, width of middle part 12.5 mm, radius of fillets 12.5 mm, width of broader
parts 20 mm. The bone-shape sample is uniformly elongated by 14.25 mm in 285 s. The
element size in the central part of the mesh is approximately 2 mm.

For both specimens, insulation thermal boundary conditions are applied. The basic
set of material model parameters for our study are taken from [13,25,49] for room tem-
perature 25 ◦C and listed in Table 1. The results of the simulations are compared with the
experimental results from [49].

The two variants of the material model described in Section 2 are used: the thermo-
visco-plastic model and the thermo-visco-plastic model with the gradient enhancement.
For comparison with experiments, two options for the characteristic time of solute diffusion
t0 (called solute diffusion time in brief) are considered: either constant or depending on
temperature. After the comparison with experiments the parametric study is performed.
For the thermo-visco-plastic model, four sets of computations are made for different values
of viscosity, heat conductivity, solute diffusion time, and maximum tension time. For the
gradient-enhanced model, two sets of computations are carried out for different values of
internal length and ductility parameter.

In Figure 2, the relations between the strain aging time ta and the relative extension
∆L/L are plotted for the two analyzed tests and selected points in the configurations,
showing abrupt jumps of ta according to the McCormick model, representing the DSA
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phenomenon. The left plot is obtained for the tensile rod, and the right one for the bone-
shape sample.

Figure 2. Strain ageing time vs. longitudinal displacement for rod benchmark at the right end of the
sample (left) and for the bone-shape plate in tension at the centre of the sample (right).

To avoid convergence problems, the thermo-plastic model with the gradient enhance-
ment is not used without the viscosity part. Since the McCormick part of the yield strength
introduces recurring strain rate softening stages, the non-linear simulation algorithm fails
without viscosity and it seems the gradient term is insufficient to prevent this.

Table 1. Basic set of mechanical, thermal and McCormick model parameters

Property Symbol Value Unit

Young modulus E 68.56 GPa
Poisson ratio ν 0.3 -

Initial yield strength σy0 367.5 MPa
Final yield strength σy f 488.8 MPa
Saturation constant δ 16 MPa

Viscosity ξ 40 MPa · s
Conductivity k 121 J/(s·K·m)
Heat capacity c 2,423,750 J/(m3·◦C)

Thermal expansion
coeff. αT 23.2 × 10−6 1/◦C

Thermal softening
modulus HT 0.0016 1/◦C

Heat dissipation
factor χ 0.9 -

Solute diffusion time t0 0.125 s
EMC model param. Ω0 13.62 × 10−4 -
EMC model param. Ω′0 7.2 × 10−4 -
EMC model param. σB00 18.9 MPa
EMC model param. σ′B00 567.78 MPa

EMC model exponent n 3−1 -
EMC model param. t01 0.051355 1/◦C
EMC model param. t02 0.03462 s

5.2. Tensile Rod Benchmark Test

To simulate the PLC effect in a one-dimensional tension benchmark a simple 3D rod
test is performed, see Figure 1 left.

In Figure 3 stress vs. the rod extension is plotted for the whole process (left plot) and
the magnification of a one serration (right plot). The place of the arbitrarily chosen serration
is marked by the red box on the left plot. Small serrations are visible at the beginning of the
process and they gradually grow. After the diagram peaks, the serrations grow extensively,
when they actually should vanish. Obviously, the model needs some modification to
prevent this kind of behavior at the final (failure) stage, but proper modeling of this stage is
outside the focus of this work.
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Figure 3. Stress vs. relative longitudinal displacement for rod benchmark: whole process (left) and
one selected serration (right).

In the right diagram in Figure 3 selected states are numbered in red. In Figure 4 two
columns of plots are presented for the serration and those states. Each plot shows the
distribution of equivalent strain rate γ̇ along the rod. For steps 2 and 3 before the peak, the
band has a distributed form, while in the previous step 1, the band is localized. In the steps
after the peak, γ̇ localizes again at a different position.

1

1 2

3 4

5 6

7 8

Figure 4. Distributions of γ̇ at numbered states of selected serration for tensile rod test.
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5.3. Comparison with Experiments for Bone-Shape Sample

The comparisons with experiments from [49] are made for the thermo-visco-plastic
model and for its gradient-enhanced version, for three initial temperatures: 25 ◦C, 100 ◦C,
and 200 ◦C. Table 2 contains the values of the Young modulus, initial and final yield strength
for the three temperatures.

Table 2. Parameters for different temperatures

Property Symbol 25 ◦C 100 ◦C 200 ◦C Unit

Young
modulus E 68.56 65.56 46.62 GPa

Initial yield
strength σy0 367.5 360.3 312.9 MPa

Final yield
strength σy f 488.8 466.2 383.2 MPa

Figure 5 presents the results obtained for the former model and Figure 6 for the latter
one. The EMC material model parameters are fitted for the case without the dependence
of the solute diffusion time t0 on temperature. The small differences in the elastic part of
the response can be caused by neglecting the elongation of the broader sample parts in
the computational experiment. Notice that the level of the yielding initiation is reduced
with temperature, which is related to thermal softening, and the numerical model correctly
reproduces the behaviour.

Figure 5. Stress vs. relative extension for thermo-visco plastic model for 25 ◦C (left, top), 100 ◦C
(right, top), 200 ◦C (left, bottom).

When the constant value of t0 = 0.125 s is assumed according to [13], we can observe
in Figure 5 a good agreement in terms of global load–deformation response for the tempera-
ture equal to 25 ◦C and a partial agreement for higher temperatures. For 100 ◦C and 200 ◦C
the blue lines are close to the experimental black lines at the beginning of the process, but
they do not mimic the failure at the end for a similar extension as in the experiments. The
red line for the model with the solute diffusion time depending on temperature enters soft-
ening a bit earlier for room temperature, but it shows a much softer response, far from the
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experimental diagrams, for higher temperatures. For the temperature equal to 100 ◦C and
200 ◦C the softening stage is entered much earlier than in the experiment. In the latter case,
all serrations have been smoothed, which is similar to the findings presented in [25]. The
values of model parameters t01 and t02, which control the dependence of t0 on tempera-
ture, are based on [25], but obviously the exponential character of function t0(T) is not a
suitable choice.

Figure 6. Stress vs. relative extension for thermo-visco plastic model with gradient enhacement for
25 ◦C (left, top), 100 ◦C (right, top), 200 ◦C (left, bottom).

A similar behaviour as for the thermo-visco-plastic model can be observed for the
variant with the gradient enhancement for the internal length l = 5 mm and ductility
parameter β = 0.1, see Figure 6. It seems that the gradient enhancement of the model with
the assumed material parameters, related to an additional yield strength reduction, has a
minor influence on the simulated stress-relative elongation diagrams. This aspect is further
analyzed in the parametric study, as follows.

5.4. Parametric Study

Parametric studies for the two model variants, without and with the gradient enhance-
ment, are performed. Six parameters are taken into account. For the thermo-visco-plastic
model, the following parameters are varied: viscosity ξ (5, 40, 80 MPa·s), conductivity
k (0, 50, 121, 200 J/(s·K·m)), solute diffusion time t0 (0.01, 0.025, 0.125, 0.5, 5, 1000 s), and
the duration of the elongation process tMAX (28.5, 285, 2850 s).

For the gradient-enhanced model, the ductility β (0.1, 0.5, 1, 2 [-]) and the internal
length l (0, 5, 10, 20 mm) are changed. The parametric studies are carried out for the
reference temperature equal to 25 ◦C; thus, the mechanical material parameters (Young
modulus, the initial and ultimate yield strengths) are appropriate for this assumption
and are taken from [49]. As given in Table 1, the default values of varied parameters are:
viscosity ξ = 40, conductivity k = 121, and solute diffusion time t0 = 0.125. Moreover, the
maximum tension time tMAX = 285.

5.4.1. Thermo-Visco-Plastic Model

In Figure 7, stress–strain diagrams for different values of viscosity (left, top), conduc-
tivity (right, top), solute diffusion time (left, bottom) and maximum tension time (right,
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bottom) are shown. The experimental diagram (black) for 25 ◦C is added for reference.
There are no significant differences between the plots for different values of viscosity in the
examined range of values; however, in the case when the viscosity ξ is equal to zero (not
displayed here), the computation stops at the beginning of the process.

Figure 7. Stress vs. relative extension for different values of viscosity (top, left), conductivity (top,
right), solute diffusion time (bottom, left) and maximum tension time (bottom, right).

In the second plot, it can be observed that the response is more brittle for smaller
values of heat conductivity and no significant differences can be observed for higher values
of k than 50 J/(s·K·m). The conductivity equal to 121 J/(s·K·m) is the value characteristic
for the aluminium alloy used in the experiments described in [49].

The characteristic time of the solute diffusion affects the diagram smoothness and the
load-carrying capacity. For high and low values of t0, the diagrams are smoother and there
are no excessive serrations at the end of the process. The diagrams are ordered from the
largest value of t0 (the most brittle response) to the smallest value (most ductile), which
means the yield strength is lower for higher values of the solute diffusion time.

The last diagram in Figure 7 shows that the response is rate dependent and the higher
the load rate (the smaller tmax is), the smaller the predicted load-carrying capacity. The
diagram for the largest value of tmax is smooth and does not exhibit serrations at the end of
the process contrary to the other diagrams.

The next Figures 8 and 9 are plotted for ξ = 40 MPa·s, k = 121 J/(s·K·m), t0 = 0.125 s
and tmax = 285 s. In Figure 9, two columns with distributions of γ̇ along the central
longitudinal axis of the dog-bone sample are shown for the numbered states in the load–
displacement plot part for the selected serration shown in Figure 8. In Figure 10 the
distributions of γ̇ in the sample are shown corresponding to the results presented in
Figure 9. Before the serration peak, a band is visible on the right-hand side of the sample;
see Figure 9, first row left. Then, when the peak is approached, the band on the right starts
to disappear and a band on the left-hand side appears. After the peak, see Figure 9 third
row left, the traces of the right band vanish completely and only the left band is visible.
The same sequence of states can be observed in Figure 10.
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Figure 8. Stress vs. relative extension for one serration with step numeration (ξ = 40 MPa·s,
k = 121 J/(s·K·m) and t0 = 0.125 s).

1

1

3 4

65

2

Figure 9. Distributions of γ̇ along the specimen axis at numbered states for ξ = 40 MPa·s, k =

121 J/(s·K·m) and t0 = 0.125 s.

Figure 10. Distributions of γ̇ at numbered states (ξ = 40 MPa·s, k = 121 J/(s·K·m) and t0 = 0.125 s).
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5.4.2. Thermo-Visco-Plastic Model with Gradient Enhancement

In Figure 11, diagrams for different values of the ductility parameter (left) and the
internal length (right) are shown. For comparison, two additional diagrams are added; the
black line is the experimental diagram for 25 ◦C, and the gray line is for the thermo-visco-
plastic model with the following parameters: ξ = 40 MPa·s, k = 121 J/(s·K·m), t0 = 0.125 s
and tmax = 285 s.

Figure 11. Stress vs. relative extension for different values of ductility and l = 5 mm (left) and for
different internal lengths and β = 0.1 (right).

When the value of the ductility grows, the influence of the exponential reduction
factor increases. It can be observed in Figure 11 (left) that for larger values of ductility, the
load-carrying capacity is smaller and softening starts to dominate faster. The diagrams
for different values of the internal length are presented in Figure 11 (right). There are no
significant differences for the values of internal length larger than zero. The diagrams
are close to the diagram obtained for the thermo-visco-plastic model. The diagram for
l = 0 (blue line ) is slightly more brittle and ends for ∆L/L ≈ 22 due to divergence of
the simulation.

In Figure 12, the distributions of the plastic strain rate are compared for a series of
states in the deformation history. The plots on the left are for l = 0 and the right ones
for l = 20 mm. For small deformation, a uniform distribution of γ̇ is observed, then
a localized band is formed, which resembles a cross pattern of shear bands diffused by
regularization and/or re-hardening. The reason can also be a too-coarse finite element
mesh used for the simulation. The band travels through the process zone of the sample in a
similar way irrespective of the assumed internal length. The plots do not show the expected
influence of the length scale on the widths of the propagating localization zones. This
is probably caused by the fact that the viscosity and heat conductivity provide sufficient
regularization and the gradients active on the softening parts of the serrations merely
counteract the additional softening source related to the yield stress degradation involved
in the gradient-enhanced model.

Figure 13 presents parts of the stress-strain diagrams of one selected serration for two
values of internal length l = 0 (left) and l = 20 mm (right). Further, Figure 14 shows the
evolution of the distribution of the plastic strain rate γ̇ for the two values of the internal
length scale within one selected serration presented in Figure 13. The plots for l = 0 show
disappearing and reappearing localization zones, while the plots for l = 20 mm present a
moving band. However, also for one serration the maps show a negligible influence of the
length scale on the widths of the propagating bands.
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Figure 12. Distributions of γ̇ at selected states in the deformation history for l = 0 (left column) and
l = 20 mm (right column). For the rows of figures from top ∆L/L is equal to 3, 5, 7.5, 10, 12.5, 15,
17.5, 20.

Figure 13. Stress vs. relative extension for selected serration and two values of internal length l = 0
(left) and l = 20 mm (right).
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Figure 14. Distributions of γ̇ at selected states in the deformation history, marked by numbers in
Figure 13, for l = 0 (left column) and l = 20 mm (right column).

6. Conclusions

The Portevin–Le Chatelier (PLC) effect has been simulated using two versions of
the large strain thermo-plastic Estrin–McCormick model. The model is capable of repro-
ducing the results of the Dynamic Strain Aging (DSA) phenomenon: serrations in the
load–displacement diagrams (repetitive changes of softening and hardening) and propa-
gating localization zones. The model takes into account visco-plasticity and the second
version also includes a gradient enhancement via an averaging equation for the equivalent
plastic strain.

Two different configurations are used in simulations. A simple rod is considered
first to show how the adopted constitutive model represents the PLC phenomenon. Then,
tension of the experimental bone-shape sample from [49] is simulated, instability formation
and propagation are studied, and a comparison with experimental results is performed.
For both tests, detailed analyses of the evolution of the plastic strain rate for a selected
serration have been presented. It seems that the localization band moves, but it rather
gradually disappears and then reappears at a different position.

Further, a parametric study is performed. Different values of viscosity, conductivity,
the time of solute diffusion in the DSA model, and the maximum tension time (loading
rate) have been considered for the thermo-visco-plastic model. For the model with the
gradient enhancement, the ductility parameter and the internal length have varied.

On one hand, the results of simulations are quite satisfactory: the simulated load–
extension diagrams are quite close to the experimental results and the sensitivity to model
parameters is in agreement with expectations. On the other hand, excessive post-peak
serrations are visible for most of the computation, so a method to reduce them is needed.
The adopted dependence of the parameters of the McCormick model on temperature led
to results far from the experimental ones for higher temperatures, so this aspect requires
further research and model improvement. Moreover, experimental studies are necessary to
compare the shear band evolution in PLC simulations (and not only load–displacement
plots) and to identify material model parameters in a similar way to [13,25].

Finally, the distributions of the equivalent plastic strain rate in the specimen for the
gradient-enhanced model are examined for two values of the internal length scale l = 0 and
l = 20 mm. They are compared for a series of states showing no significant differences in
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the size of the localization bands. This can be caused by the relatively coarse discretization
used, or by the fact that viscosity and heat conduction provide some regularization, which
manifests itself in smoothing of the simulated bands and in a weak influence of gradients.

Author Contributions: All authors worked on the concepts of the research, formulation of the
models and preparation of the manuscript. M.M. and B.W. programmed the models in AceGen, M.M.
performed all computations and provided numerical results. The research outcomes were discussed
by all authors. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the National Science Centre of Poland within grant number
2018/31/N/ST8/03573.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: The authors acknowledge valuable discussions on the research with A. Menzel
from TU Dortmund, Germany/Lund University, Sweden.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EMC Estrin–McCormick model.
PLC Portevin–Le Chatelier.
DSA Dynamic Strain Aging.
HMH Huber–Mises–Hencky.
BVP Boundary Value Problem.
FE Finite Elements.

References
1. Cottrell, A.; Bilby, B. Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sect. A 1949, 62, 49–62. [CrossRef]
2. Bergstrom, Y.; Roberts, W. The application of dislocation model to dynamic strain ageing in α-iron containing interstitial atoms.

Acta Metall. 1971, 19, 815–823. [CrossRef]
3. Portevin, A.; Le Chatelier, F. Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. Comput.

Rend. Acad. Sci. Paris 1923, 176, 507–510.
4. Estrin, Y.; Kubin, L. Spatial coupling and propagative plastic instabilities. In Continuum Models for Materials with Microstructure;

Mühlhaus, H.B., Ed.; John Wiley & Sons: Chichester, UK, 1995; pp. 395–450.
5. Wang, W.M. Stationary and Propagative Instabilities in Metals—A Computational Point of View. Ph.D. Thesis, Delft University

of Technology, Delft, The Netherlands, 1997.
6. Wang, W.M.; Sluys, L.J.; de Borst, R. Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int. J. Numer.

Meth. Eng. 1997, 40, 3839–3864. [CrossRef]
7. Yilmaz, A. The Portevin–Le Chatelier effect: A review of experimental findings. Sci. Technol. Adv. Mater. 2011, 12, 063001.

[CrossRef]
8. Jiang, H.; Zhang, Q.; Chen, X.; Chen, Z.; Jiang, Z.; Wu, X.; Fan, J. Three types of Portevin–Le Chatelier effects: Experiment and

modelling. Acta Mater. 2007, 55, 2219–2228. [CrossRef]
9. Tamimi, S.; Andrade-Campos, A.; Pinho-da Cruz, J. Modelling the Portevin-Le Chatelier effects in aluminium alloys: A review. J.

Mech. Behav. Mater. 2015, 24, 67–78. [CrossRef]
10. McCormick, P.G. Theory of flow localization due to dynamic strain aging. Acta Metall. 1988, 36, 3061–3067.

10.1016/ 0001-6160(88)90043-0. [CrossRef]
11. McCormick, P.G.; Ling, C. Numerical modelling of the Portevin–Le Chatelier effect. Acta Metall. Mater. 1995, 43, 1969–1977.

[CrossRef]
12. Zhang, S.; McCormick, P.G.; Estrin, Y. The morphology of Portevin-Le Chatelier bands: Finite element simulation for Al-Mg-Si.

Acta Mater. 2001, 49, 1087–1094. [CrossRef]
13. Böhlke, T.; Bondár, G.; Estrin, Y.; Lebyodkin, M. Geometrically non-linear modeling of the Portevin–Le Chatelier effect. Computat.

Mater. Sci. 2009, 44, 1076–1088. [CrossRef]
14. Belotteau, J.; Berdin, C.; Forest, S.; Parrot, A.; Prioul, C. Mechanical behavior and crack tip plasticity of a strain aging sensitive

steel. Mater. Sci. Eng. A 2009, 526, 156–165. [CrossRef]

http://doi.org/10.1088/0370-1298/62/1/308
http://dx.doi.org/10.1016/0001-6160(71)90138-6
http://dx.doi.org/10.1002/(SICI)1097-0207(19971030)40:20<3839::AID-NME245>3.0.CO;2-6
http://dx.doi.org/10.1088/1468-6996/12/6/063001
http://dx.doi.org/10.1016/j.actamat.2006.10.029
http://dx.doi.org/10.1515/jmbm-2015-0008
http://dx.doi.org/10.1016/0001-6160(88)90043-0
http://dx.doi.org/10.1016/0956-7151(94)00390-4
http://dx.doi.org/10.1016/S1359-6454(00)00380-3
http://dx.doi.org/10.1016/j.commatsci.2008.07.036
http://dx.doi.org/10.1016/j.msea.2009.07.013


Materials 2022, 15, 4327 20 of 21

15. Berdin, C.; Wang, H. Local approach to ductile fracture and dynamic strain aging. Int. J. Fracture 2013, 182, 39–51. [CrossRef]
16. Sarkar, A.; Maloy, S.A.; Murty, K.L. Investigation of Portevin-Le Chatelier effect in HT-9 steel. Mater. Sci. Eng. A 2015, 631, 120–125.

[CrossRef]
17. Ren, S.; Morgeneyer, T.; Mazière, M.; Forest, S.; Rousselier, G. Effect of Lüders and Portevin-Le Chatelier localization bands

on plasticity and fracture of notched steel specimens studied by DIC and FE simulations. Int. J. Plasticity 2021, 136, 102880.
[CrossRef]

18. Kozłowska, A.; Grzegorczyk, B.; Morawiec, M.; Grajcar, A. Explanation of the PLC Effect in Advanced High-Strength Medium-Mn
Steels—A Review. Materials 2019, 12, 1–14. [CrossRef]

19. Benallal, A.; Berstad, T.; Børvik, T.; Hopperstad, O.; Koutiri, I.; de Codes, R.N. An experimental and numerical investigation of
the behaviour of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect. Int. J. Plasticity 2008, 24, 1916–1945.
[CrossRef]

20. Chen, J.; Zhen, L.; Fan, L.; Yang, S.; Dai, S.; Shao, W. Portevin-Le Chatelier effect in Al-Zn-Mg-Cu-Zr aluminum alloy. Trans.
Nonferr. Metals Soc. China 2009, 19, 1071–1075. [CrossRef]

21. Coër, J.; Manach, P.; Laurent, H.; Oliveira, M.; Menezes, L. Piobert–Lüders plateau and Portevin–Le Chatelier effect in an Al–Mg
alloy in simple shear. Mech. Res. Commun. 2013, 48, 1–7. [CrossRef]

22. Reyne, B.; Manach, P.Y.; Moës, N. Macroscopic consequences of Piobert–Lüders and Portevin–Le Chatelier bands during tensile
deformation in Al-Mg alloys. Mater. Sci. Eng. A 2019, 746, 187–196. [CrossRef]

23. Mazière, M.; Besson, J.; Forest, S.; Tanguy, B.; Chalons, H.; Vogel, F. Numerical aspects in the finite element simulation of the
Portevin–Le Chatelier effect. Comput. Methods Appl. Mech. Engrg. 2010, 199, 734–754. [CrossRef]

24. Manach, P.; Thuillier, S.; Yoon, J.; Coër, J.; Laurent, H. Kinematics of Portevin–Le Chatelier bands in simple shear. Int. J. Plasticity
2014, 58, 66–83. [CrossRef]

25. Mansouri, L.Z.; Thuillier, S.; Manach, P.Y. Thermo-mechanical modeling of Portevin–Le Châtelier instabilities under various
loading paths. Int. J. Mech. Sci. 2016, 115, 676–688. [CrossRef]

26. Lebyodkin, M.; Dunin-Barakowskii, L.; Bréchet, Y.; Estrin, Y.; Kubin, L.P. Spatio-temporal dynamics of the Portevin–Le Chatelier
effect: Experiment and modelling. Acta Mater. 2000, 48, 2529–2541. [CrossRef]

27. Rizzi, E.; Hähner, P. On the Portevin–Le Chatelier effect: Theoretical modeling and numerical results. Int. J. Plasticity 2004,
20, 121–165. [CrossRef]

28. Graff, S.; Forest, S.; Strudel, J.L.; Prioul, C.; Pilvin, P.; Béchade, J.L. Strain localization phenomena associated with static
and dynamic strain ageing in notched specimens: Experiments and finite element simulations. Mater. Sci. Eng. A 2004,
387–389, 181–185. [CrossRef]

29. Darowicki, K.; Orlikowski, J.; Zieliński, A. Investigation of changes in the type B PLC effect of Al–Mg–Cu type alloy for various
strain rates. Mater. Sci. Eng. A 2008, 496, 478–482. [CrossRef]

30. Mazière, M.; Forest, S. Strain gradient plasticity modeling and finite element simulation of Lüders band formation and
propagation. Continuum Mech. Thermodyn. 2015, 27, 83–104. [CrossRef]

31. Xu, J.; Chen, G.; Fu, S. Complexity analysis of the Portevin-Le Chatelier in an Al alloy at different temperatures. Theor. Appl.
Mech. Lett. 2021, 11, 100233. [CrossRef]
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