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Abstract: The article is devoted to the investigation of ultrasonic inspection techniques suitable for de-
tecting hydrogen-induced cracking (HIC) and a high-temperature hydrogen attack (HTHA), which are
of great importance in petrochemical and refinery industries. Four techniques were investigated: total
focusing method (TFM), advanced velocity ratio (AVR) measurement, advanced ultrasonic backscatter
technique (AUBT) and time of flight diffraction method using ultra low angle ultrasonic transducers
(TULA). The experimental investigation has been carried out on two carbon steel samples cut off from a
heat exchanger of an oil refinery and potentially affected by HIC. It was shown that the AVR technique
did not reveal any damage and was not effective in the case of the investigated samples due to a thin
damage zone with respect to the total thickness of the samples. The AUBT method enabled us to
indicate and classify the presence of the hydrogen-induced damage; however, it is complicated to use in
practise due to the need perform measurements exactly at the same position using two transducers of
different frequencies. The method is more suitable for the verification of damage at a particular position,
rather than for scanning. Both other methods—TFM and TULA—enabled us to identify the presence of
HIC in large areas of samples. The obtained results have been verified using a metallographic analysis
of the section cut from the side of the sample. The results of metallographic examinations have been
compared with indications observed using above mentioned techniques and a good correspondence
was obtained. It was demonstrated, that the TFM method can detect cracks with dimensions close to
200 µm, while larger cracks of 2 mm were observed very evidently using a 7.5 MHz phased array.
Overall, the results suggested that the TULA method is the most suitable method for the primary
detection of hydrogen-induced cracking, while the TFM is recommended for the precise assessment
of the extent of the detected cracking.

Keywords: hydrogen induced cracking; high temperature hydrogen attack; ultrasound; non-destructive
testing; material characterisation

1. Introduction

Pipelines and pressure vessels carrying hazardous substances in petrochemical and
refinery industries are subjected to hydrogen-rich environments and thereby suffer from
progressive structural degradation called hydrogen-induced cracking [1]. According to
the internal pressure theory, atomic hydrogen is absorbed on the surface of the steel and
diffuses inside the lattice in the form of protons [2–4]. When diffused into the metal,
atomic hydrogen accumulates at interstitial locations–voids, grain boundaries, dislocations,
and manganese sulphide inclusions [5,6]. At such trap sites, hydrogen recombines to a
molecular form, creating high internal pressure in the immediate vicinity. Depending on
the temperature of the environment, the main two types of damage can be distinguished:
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hydrogen-induced cracking (HIC), which occurs at room temperature, and a high tempera-
ture hydrogen attack (HTHA), which occurs at temperatures above 200 ◦C.

In sour environments such as oil or acid gases, corrosion of carbon and low alloy steels
may start due to the influence of atomic hydrogen. Such corrosion leads to embrittlement
of steel constructions [7,8]. Atomic hydrogen originates during the chemical reaction of
hydrogen sulphide H2S, which is present in crude oil with water [7]. After some time,
atomic hydrogen becomes an ion, which, due to smaller dimensions, moves into steel and
accumulates in internal cavities [9]. This hydrogen creates pressure inside the cavities and
may cause defects such as laminations or cracks. The type of appearing defects depends on
how the steel can sustain plastic deformation under tensile stress before failure.

In the case of ductile steels, the developed cracking is called hydrogen-induced crack-
ing (HIC) [10]. Hydrogen-induced cracking appears in the unstressed zones of a bulk
material. Once the cracks are established, they can incorporate even more hydrogen, lead-
ing to successive crack growth and connection in a stepwise appearance. The growth of the
established internal cracks is known to be assisted by weakened interatomic bonds in the
host metal, increased dislocation mobility and promoted vacancy formation [11].

In cases where the steel is not ductile, for example, the high strength steel or heat
affected zones close to a weld, multiple cracks in a base metal join each other, producing
a through-thickness crack which is perpendicular to the surface of the steel wall. Such
cracking is produced by high stress and is therefore called Stress Oriented Hydrogen-
Induced Cracking (SOHIC) [8]. SOHIC starts from the hydrogen-induced cracking and
later, due to the stress, links separate laminations in a through the wall thickness cracks.
Such surface breaking cracks are considered the most dangerous.

At temperatures above 200 ◦C, HTHA takes place, which is assisted by high tem-
perature and pressure. It is associated with carbon or low alloy steel, where diffused
hydrogen in contact with dissolved carbon at temperatures above 200 ◦C promotes internal
decarburization of the structure, producing methane gas [5,12]. As methane molecules are
too large to diffuse out of material, they build-up internal gas cavities with pressures up
to two orders of magnitude higher than that of hydrogen itself [13]. When the pressure
exceeds the fracture toughness of the material, the resulting gas-filled cavities cause the
plastic deformation of the surrounding lattice, thereby forming internal microcracks [11].
Eventually, the microcracks coalesce to fissures and blisters, compromising the structural
integrity of the pipeline networks.

Hydrogen cracking is an internal damage that develops for a while before it can
be detected. Early attempts to mitigate the risks of hydrogen damage established the
so-called Nelson curves that specify safe operational conditions in terms of temperature
and hydrogen pressure for different types of steel [14]. However, early failures reported
with C-0.5Mo steel [15] and a quite recent accident where HTHA caused carbon steel heat
exchanger failure at the Tesoro Anacores refinery in 2010 [16] raised significant concern
about the reliability of the Nelson curves. In fact, new Nelson curves for non-welded
PWHT (post weld heat treatment) and welded non-PWHT carbon steel were established in
2016, yielding a significant amount of existing piping to operate above the “safe” zone [17].

Hydrogen damage is a complex phenomenon that, in addition to temperature and
hydrogen pressure, is a function of carbide stability, applied/residual stress, grain size,
type of weld and time in service [16,18]. Given that for most in-service assets the above-
mentioned parameters such as grain size or carbide stability cannot be defined owing to the
mechanical, physical and chemical nature, early stage hydrogen damage detection is of vital
importance to ensure mechanical integrity and prevent equipment damage. The successful
identification of HTHA at the infantile stage is highly dependent on the non-destructive
testing (NDT) techniques employed.

Different ultrasonic techniques are frequently used as a primary tool for determining
the extent of hydrogen damage, namely, acoustic emission, non-linear ultrasonic testing,
Crack Indication Density (CID) method, tri-lateral phased array scanning, advanced veloc-
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ity ratio (AVR), advanced ultrasonic backscatter technique (AUBT), time of flight diffraction
(TOFD), TULA (TOFD ultra low angle) and total focusing method (TFM) [17,19–27].

Currently, API RP 941:2016 accepts AVR, classic TOFD and AUBT techniques for the in-
field inspection of HTHA. However, it clearly states that the velocity ratio technique should
be used for advanced stage HTHA detection, pattern recognition and frequency dependence
AUBT are recommended as complimentary or in set with other techniques, while TOFD can
be used to detect developed cracks rather than HTHA fissures [28]. Other techniques, such
as CID and tri-lateral phased array scanning are more associated with cold HIC, while newly
developed approaches such as TULA and TFM have not been widely explored.

This introduces some confusion as non-destructive techniques applied for detection of
defects caused by HIC or HTHA are rather different. On the other hand, it is not always
known, a priori, what kind of impact hydrogen has in particular cases. This means that for
practical purposes, it would be useful to have universal non-destructive techniques suitable
both for detecting the damage caused by HIC and HTHA. In this paper, we investigate,
experimentally, the detection capabilities of defects caused by HIC, applying techniques
used in the case of HTHA. Experimental investigations were carried out using steel samples
affected by HIC.

Therefore, the objective of this work was to compare common non-destructive testing
techniques for the detection of HIC on samples and select the most suitable method for
use in practical cases. For this purpose, we selected AVR, AUBT, TULA and TFM as the
methods that can provide best outcome.

2. Overview of the Selected Hydrogen Damage Detection Techniques

Microcracks and the successive build-up of methane molecules at grain boundaries
eventually change the Young and shear modulus of the structure. Hasegawa proposed
measuring the velocity ratio between the longitudinal and shear ultrasonic waves that are
directly dependent on the elastic properties of the medium using the advanced velocity ratio
AVR technique [29]. It was found that the presence of microcracks changes longitudinal
and shear velocities differently, the former being more affected by discontinuities. As a
result, any increase in velocity ratio above 0.55 should indicate the presence of HTHA,
while an obtained ratio value of 0.59 will show advanced stages of HTHA. Owing the
relatively small changes in velocity ratio, the API RP 941:2016 recommends the velocity
ratio technique for inspecting the parent metal in cases where at least 10% of the structure
has been damaged [28]. Given the limitations of coupling, between shear wave transducer
and the sample, the AVR technique is considered as manual and eventually can miss the
signatures of the early stages HTHA, which are highly localised. The advanced ultrasonic
backscatter technique AUBT exploits the scattering of ultrasonic waves at fissures induced
by HTHA. Multiple measures can be used to evaluate the backscatter, namely amplitude,
pattern recognition and frequency dependence [24]. While amplitude backscatter evaluates
the magnitude of noise content, pattern recognition and frequency dependence techniques
exploit the attenuation of the backscattered noise. Wang found that the amplitude of the
backscattered noise rises at the first arrival of the backscattered signal and then decreases
exponentially due to attenuation when the wave travels further through the damaged
region [30]. The frequency dependence of such a phenomenon was perceived for HTHA-
induced defects, showing the appearance of the elongated tail of the backscatter response at
lower inspection frequencies as the attenuation term reduced. Such a phenomenon allowed
us to distinguish between the HTHA and non-HTHA noise caused by inclusions, as the tail
elongation was solely related to HTHA [31]. Another in field accepted HTHA detection
technique—TOFD—implements the detection of diffracted waves produced by HTHA
crack tips with a set of angle beam transmitting and receiving probes facing each other. The
positioning of the detected indications is based on time-of-flight analysis; hence, it allows
quite an accurate assessment of defect size and location [32]. The limitations reported with
TOFD are related to existing blind zones due to the lateral wave and backwall echo, which
shadow diffracted waves near the front and back surfaces. Hence, the TOFD technique is
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reported to be effective for sufficiently penetrating HTHA detection [24]. Recent advances
in TOFD technology introduced TULA probes (TOFD Ultra Low Angle) that consist of
two acoustically isolated piezoelectric elements producing low refraction angles [27]. A
performance evaluation study on blind flange and parent metal samples demonstrated
the robustness of TULA probe in distinguishing HTHA from the localised inclusions. The
investigation, supported by metallographic analysis, demonstrated that in the presence of
inclusions, TULA and TFM can correctly identify the defect type, while the AVR and AUBT
techniques can identify other types of damage such as HTHA [27]. Similarly, in the case of
HTHA, TULA correctly identified the damage, while the AVR technique was the only one
which gave false negative results among all other investigated NDT techniques. Although
the TULA technique has been designed with HTHA detection in mind, to date, it has not
been widely applied, either in the field, or in the research community. Another quite recent
HTHA detection technique is based on the application of ultrasonic phased arrays. The
first attempts to use ultrasonic phased arrays for HTHA detection were demonstrated by
Birring, who showed the typical responses of HTHA and stingers [19]. With the advent
of the total focusing method, high resolution crack detection became possible and was
demonstrated by several authors [33,34].

3. Test Samples and Experimental Techniques

In order to elucidate the HIC detection capacity of each technique discussed above,
experimental investigations were carried out on the set of samples. In this study, two
carbon steel samples cut off from a heat exchanger of an oil refinery and potentially affected
by HIC were investigated. A total of 5 samples were investigated; however, in the article,
we present the results obtained on two—No.4 and No.5—which show the most typical
indications of HIC. The dimensions of the samples were as follows:

• Sample No. 4: 540 × 567 × 46 mm3;
• Sample No. 5: 425 × 535 × 46 mm3.

Both samples contained a circumferential weld, as can be seen from Figure 1. Among
the abovementioned samples, Sample No. 4 was used for the comparison of HIC inspection
techniques—AVR, AUBT, TULA and TFM—while Sample No. 5 was analysed with TULA
and TFM only; the results obtained on this sample were, however, supported with a
metallographic analysis.
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no. 4 and (b) sample no. 5.

Chemical composition of sample no. 4, measured with an Olympus Vanta XRF spec-
trometer, is presented in Table 1.



Materials 2022, 15, 4551 5 of 24

Table 1. Elemental composition of sample no. 4 obtained using X-ray fluorescence spectrometer.

Element Symbol Percentage (%) +/−3σ

Fe 97.06 0.16
Mn 1.112 0.083
Si 0.94 0.11
S 0.354 0.037

Cu 0.244 0.049
Ni 0.159 0.044
Ti 0.053 0.046
P 0.029 0.033

Cr 0.025 0.020
Nb 0.021 0.005

To acquire data for the analysis, the entire surface of both mock-ups was scanned with
phased array using the full matrix capture (FMC) approach and then the internal volume of
the structure was reconstructed using TFM. As a result, a TFM cartography of both samples
was obtained. While other available techniques, such as AVR and AUBT, are more localised
according to their nature, measurements using the AVR and AUBT techniques were taken
at discrete locations and subsequently compared with TFM cartography data. The TFM
scan resolution along the axial direction was set to 1 mm, while the scanner increment
at circumferential direction was fixed at 3 mm. The axial scan was performed using a
single axis belt scanner with an encoder resolution of 16 pts/mm. The circumferential scan
increment was manual according to the prepared scale on the test piece holder, where 0.25◦

corresponded to a 3 mm position shift (see Figure 2). The axial and circumferential scan
distances were different and determined by the physical dimensions of each test piece.
They are summarised in Table 2.
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Table 2. Circumferential and axial scan lengths for each test piece under inspection.

Test Piece Reference No. Parameter Value

Test piece no. 4 Axial scan length 400 mm
Circumferential scan length 462 mm

Test piece no. 5 Axial scan length 165 mm
Circumferential scan length 339 mm
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The defined axial and circumferential scanning positions established a measurement
grid, so each measurement using AUBT, TULA or AVR techniques at discrete positions
could be compared both to each other and to TFM. The experimental set-up for full surface
TFM scan acquisition is presented in Figure 2.

4. Experimental Evaluation of Ultrasonic NDT Techniques for Detection of HTHA

In this section, HIC detection capacity between the TFM, AVR, AUBT and TULA tech-
niques will be compared on sample no. 4. The section starts with the acquisition of TFM
cartography data, which are used as the reference for other techniques. The section continues
with AVR, AUBT and TULA measurements and a comparison with TFM reconstruction at the
same location. Finally, the section summarizes the findings on each technique.

4.1. The Total Focusing Method (TFM)

The Total Focusing Method (TFM) is an ultrasonic array technique which is used
to synthetically focus an ultrasonic beam at every point on a region of interest. The data
acquisition is performed using the FMC approach, which means that each element of the
transmitting array is excited one by one. The signals received by all array elements after
each shot are recorded and the full matrix of the received ultrasonic signals is stored in a
memory. After that, by means of signal processing, the ultrasonic wave is focused on every
point of interest and a high-resolution image is obtained.

To obtain TFM cartography data, the measurements were taken using Eddyfi Gekko
PAUT system and 7.5 MHz 64 element phased array (Imasonic 64L7.5-G3). The array had
0.5 mm pitch, interelement spacing of 0.1 mm and active area of 31.9 mm × 9 mm. The
bandwidth of array was approximately 55% at −6 dB. The cylindrically concave Plexiglas
wedge with dimensions of 73 mm × 37 mm × 20 mm and a longitudinal wave velocity of
2700 m/s was used as an interface between the test piece and the array. To ensure proper
acoustic contact, the water supply system and special O-ring adjusters were used (see
Figure 3c). The array and the wedge configuration are shown in Figure 3a,c.
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The array was driven with 100 V bipolar square pulse, and the signals were sampled
with 16bit ADC at 100 MHz frequency. The TFM reconstruction was performed using LL
wave mode. At each increment, the TFM reconstruction zone was 60 mm wide and 45 mm
high, as illustrated in Figure 3b. Each TFM reconstruction plane had 94k points, which
corresponds to a pixel size of 0.17 mm (λ/46). In each experiment, the 1st element of the
array faced the weld, as shown in Figure 3d. Throughout the experiments, the 1st scan axis
corresponded to the axial pipe direction, while the second scan axis to the circumferential
direction (see Figure 3d). The main parameters used in the experiment are summarised in
Table 3. Each TFM image largely overlapped with the previous one, as the 1st scan axis
coincided with the axis of the phased array and the scanning was performed with the step
1 mm. So, to improve the signal to noise ratio (SNR), the final B-scan image along the first
scan axis was obtained by combining TFM images at all scanning positions and averaging
overlapping image points. The averaged B scan images afterwards were combined with
other ones obtained at different scan position along the second axis into the 3D TFM data
set, which can be analysed in different cross-sections.

Table 3. The phased array, wedge, pulser, scanner and reconstruction parameters used in the experiments.

Parameter Value Parameter Group

Array frequency 7.5 MHz

Phased array

Number of elements 64
Array pitch 0.5 mm
Interelement spacing 0.1 mm
Active length 31.9 mm
Elevation 9 mm
Bandwidth at −6 dB ≥55%

Wedge material Plexiglas

WedgeWedge dimensions
37 mm × 73 mm × 20 mm(width × length × thickness)

Longitudinal wave velocity 2700 m/s

Excitation 100 V bipolar square pulse
Pulser/receiverSampling frequency 100 MHz

Axial scan step 1 mm
ScannerCircumferential scan step 3 mm

Encoder resolution (axial scan) 16 pts/mm

TFM reconstruction
zonebreak//(width × height) 60 mm × 45 mm

TFM reconstructionNumber of pixels 94 k
Pixel size 0.17 mm (λ/46)

The TFM C-scan results on sample No. 4 are presented in Figure 4. The first part
of the figure (Figure 4a) shows the aggregated TFM response over the depth range of
32.5–44.5 mm. The second part of the figure (Figure 4b) presents the likely indications of
subsurface blisters (depth range of 42.5–44.5 mm). Here, 44.5 mm corresponds to the overall
thickness of the mock-up No. 4.

The results presented above suggest that the HIC damage is distributed non-uniformly.
There is a wide non-regular zone close to the weld and an extensive, concentrated region
around the circumference 400 mm away from the weld. The TFM B-scan images corre-
sponding to the first (0 mm), middle (229 mm) and the last (457 mm) circumferential scan
positions are presented in Figure 5. The results clearly indicate concentrated reflectors,
likely voids and cracks, that could be a result of HIC damage at approximately 40 mm
depth or 5 mm above the backwall.
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4.2. Advanced Velocity Ratio (AVR) Measurement

The AVR technique is based on the measurement of the ratio of shear and longitudinal
wave velocities in damaged and undamaged zones. The main problem is to measure ultra-
sound velocities, for which it is necessary to know or to measure the object’s local thickness,
which, in the case of in situ inspections, is impractical and usually even impossible. Instead
of absolute velocity measurement, the AVR technique estimates the time-of-flight ratio
between the longitudinal and shear wave, which is dimensionless and independent of the
object thickness. If this ratio is close to 0.55 in different areas of the object, the material is
considered to be unaffected by HIC. In contrast, if such a ratio becomes higher than 0.55,
then this part of the sample under a test is likely to be affected by HIC. The effectiveness of
the AVR method essentially depends on the HIC penetration depth. The subsurface defects
will have a minor influence on wave velocity, hence AVR is recommended for inspection
when at least 10% of the structure has been affected by HIC.

To investigate HIC detection capacity, the AVR technique was explored on sample
no. 4. The measurements were performed with the medium frequency ultrasonic system
ULTRALAB (Ultrasound Institute, Kaunas University of Technology, Lithuania). For
generation and reception of longitudinal and shear waves, the Panametrics-NDT Olympus
5MHz transducers (V109, 5 MHz/0.5′′ and V155, 5 MHz/0.5′′) were used. The excitation
voltage was 20 V and the total system gain−42 dB. Both transducers were placed at selected
locations on the surface of sample no. 4. In total, five locations were investigated. The
positions of each AVR measurement location are summarised in Table 4.

Table 4. Coordinates of acquisition points for AVR measurements.

Measurement Point Reference Circumferential Position (mm) Axial Position (mm)

AVR-1 154 20
AVR-2 154 70
AVR-3 205 20
AVR-4 205 120
AVR-5 454 120

The propagation times of longitudinal and shear waves were measured using a cross-
correlation method. The example of longitudinal and shear wave signals obtained at the
first measurement location is presented in Figure 6.
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Figure 6. The measured signals of longitudinal (blue) and shear (red) waves. Horizontal lines indicate
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backwall reflection.

The times of flight (ToF) of longitudinal and shear wave using the cross-correlation
technique were measured using two methods:

1. Using the reference signal;
2. By measuring the time difference between the first and the second reflections.

The advantage of the first approach is that the first bottom reflection is always clearly
visible. However, calibration is required to assess a systematic correction of the method.
The second approach does not require calibration, although it is not applicable in the
absence of the second backwall reflection.

According to the first approach, the propagation time of longitudinal and shear waves
were calculated in the following steps:

1. Two windows in the time domain are selected for the first reflection of the longitudinal
wave [tL1, tL2] and the shear wave [tS1, tS2];

2. The delay time of the longitudinal and shear waves signals with respect to the refer-
ence signals are calculated using the cross-correlation method:

tLcc = arg
{

max
t3[tL1÷tL2]

[
corr

[
uL(t), ure f (t)

]]}
tScc = arg

{
max

t3[tS1÷tS2]

[
corr

[
uS(t), ure f (t)

]]} , (1)

where by “corr” denotes the cross-correlation function; uref(t) is the reference signal.

3. The absolute propagation times of both waves are estimated:

tLW = tLcc + tL1∆tre f

tSW = tWcc + tS1∆tre f
, (2)

where ∆tref is the correction parameter determined for a particular reference signal during
calibration. The reference signal was obtained using V2 calibration block.

According to the second approach, the time differences between the first and second
back-wall reflections were determined as cross-correlation lag.

The obtained velocity ratio is equal 0.548 ± 0.01 and does not depend on the measure-
ment position, what is illustrated by TFM data at Figure 7. According to this method it is
less than 0.55, thus it does not indicate the presence of HIC at these positions in the sample.
However, at the second, fourth and fifth positions, some reflectors can be observed in the
TFM image, likely due to HIC damage (see Figure 7). It can be stated also that indications
are observed at 8mm above the back wall, so it can be assumed that the damage is present
at only 18% of total thickness, so it is completely understandable that the influence of
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the damage on the propagation time will be minor. So, it can be concluded that the AVR
method possess poor sensitivity for the detection of HIC at a depth close to the bottom, at
least in the case of thick samples.
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4.3. The Advanced Ultrasonic Backscatter Technique (AUBT)

The advanced ultrasonic backscatter technique (AUBT) is based on the analysis of
the ultrasonic signals backscattered by fissures and is used to identify the presence of
micro-cracking in a parent material. The method enables the early recognition of potential
HTHA sites. There are a few different versions of this technique and most advanced is
pattern recognition and frequency dependence methods.

The pattern recognition technique is based on a phenomenon where the signal backscat-
tered by HTHA region rises at the beginning of this zone and after that rapidly decreases
due to the additional attenuation of the signal backscattered by fissures located further
from the ultrasonic transducer. This phenomenon depends on a frequency of the ultrasonic
wave. As a result, the backscattered noise after the first reflection from fissures is attenuated
more at higher frequencies. The AUBT technique compares the backscattered noise in the
signals measured at the same point using lower and higher frequency transducers. The
observation of relatively lower noise levels after the first reflection in the case of higher
frequency measurements indicates the presence of the HTHA.

An investigation of this method was performed on sample No. 4. For measurements,
ultrasonic system ULTRALAB and two Panametrics-NDT Olympus ultrasonic transducers
of 5MHz (V126, 5 MHz/0.3755′′) and 20MHz (V116, 20 MHz/0.125′′) were used.

According to the AUBT, the measurements should be carried out using two frequen-
cies exactly at the same position. So, such a method is suitable only for the assessment of
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the presence of HTHA or HIC only at a discrete location. In total, five measurement loca-
tions were selected for AUBT measurements, as summarised in Table 5. Slightly different,
compared to AVR method, locations have been selected intentionally, as in this case the
particular waveform of indications is required, which possesses not only a single reflection,
but also a sufficient level of structural noise behind the first reflection.

Table 5. Coordinates of acquisition points for AUBT measurements.

Measurement Point Reference Circumferential Position (mm) Axial Position (mm)

AUBT-1 154 20
AUBT-2 205 120
AUBT-3 255 70
AUBT-4 306 120
AUBT-5 404 120

The AUBT-1 and AUBT-2 locations coincide with the AVR measurements at AVR-1
and AVR-4. The AUBT-3, AUBT-4, and AUBT-5 are acquired at different locations than
AVR. The results of AUBT measurements are presented in Figures 8–12. The figures show
waveforms of ultrasonic signals, obtained at two frequencies—5 MHz and 20 MHz and the
corresponding TFM images—illustrating the AUBT measurement position.
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The results presented in Figures 8–12 indicate that AUBT shows the presence of
HIC at some of locations. At the AUBT-1 measurement position, which, according to the
TFM image, is HIC free, the amplitudes of the noise behind the first reflection are similar,
which, according to the AUBT, indicates absence of HIC. The results on other measurement
positions show a big difference between 5 MHz and 20 MHz signals; the tail amplitude
of the 5 MHz signals is higher with respect to the tail amplitude at 20 MHz. In contrast
to AVR measurements, the AUBT technique seems to be capable of discriminating HIC
defects. For example, at the coinciding measurement point (AUBT-1 and AVR-1), both AVR
and AUBT were absent of HIC. In the case of the AUBT 2 and AVR-4 measurement point,
HIC was detected by AUBT only.

4.4. TULA Method

TULA (TOFD Ultra Low Angle) is time-of-flight diffraction testing (TOFD) performed
with ultralow angle ultrasonic transducers. This technique is well suited for the initial
screening of a thicker base material. Like TOFD, increased backscattering and clustering
in A-Scan signals indicate the HTHA. The TULA method has been proven experimentally
as a rather simple but highly sensitive method of detecting small defects such as HTHA
or HIC. The scan speed of this method is much higher that of the PAUT method. For this
method, special ultrasonic transducers with particular focal depths are required to optimise
detection throughout a range of different thicknesses.

The time-of-flight diffraction (TOFD) experiments were carried out using Eddify
Gekko flaw detector (64:64PR) and the TULA A 10 MHz probe with a 0◦ roof angle,
manufactured by GB Inspection Systems Ltd., Burntwood, UK. The probe was used to scan
sample no. 4 at five different circumferential positions. At each circumferential increment,
TULA probes were scanned 200 mm along the axial location with the step of 0.12 mm.
The probes were driven by 100 V pulse, and the signals were sampled at 100 MHz. The
system gain was set to 15 dB. The comparison between the TULA and TFM measurements
at circumferential locations summarised in Table 6 are presented in Figures 13–17.
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Table 6. Coordinates of acquisition points for TULA measurements.

Measurement Point Reference Circumferential Position (mm)

TULA-1 154
TULA-2 205
TULA-3 255
TULA-4 306
TULA-5 404

Materials 2022, 15, x FOR PEER REVIEW 15 of 24 
 

 

initial screening of a thicker base material. Like TOFD, increased backscattering and clus-
tering in A-Scan signals indicate the HTHA. The TULA method has been proven experi-
mentally as a rather simple but highly sensitive method of detecting small defects such as 
HTHA or HIC. The scan speed of this method is much higher that of the PAUT method. 
For this method, special ultrasonic transducers with particular focal depths are required 
to optimise detection throughout a range of different thicknesses. 

The time-of-flight diffraction (TOFD) experiments were carried out using Eddify 
Gekko flaw detector (64:64PR) and the TULA A 10 MHz probe with a 0° roof angle, man-
ufactured by GB Inspection Systems Ltd., Burntwood, UK. The probe was used to scan 
sample no. 4 at five different circumferential positions. At each circumferential increment, 
TULA probes were scanned 200 mm along the axial location with the step of 0.12 mm. The 
probes were driven by 100 V pulse, and the signals were sampled at 100 MHz. The system 
gain was set to 15 dB. The comparison between the TULA and TFM measurements at 
circumferential locations summarised in Table 6 are presented in Figures 13–17. 

Table 6. Coordinates of acquisition points for TULA measurements. 

Measurement Point Reference Circumferential Position (mm) 
TULA-1 154 
TULA-2 205 
TULA-3 255 
TULA-4 306 
TULA-5 404 

 

  
(a) (b) 

Figure 13. The comparison between (a) TULA and (b) TFM measurements at 154 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

  
(a) (b) 

Figure 14. The comparison between (a) TULA and (b) TFM measurements at 205 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

Figure 13. The comparison between (a) TULA and (b) TFM measurements at 154 mm circumferential
scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units.

Materials 2022, 15, x FOR PEER REVIEW 15 of 24 
 

 

initial screening of a thicker base material. Like TOFD, increased backscattering and clus-
tering in A-Scan signals indicate the HTHA. The TULA method has been proven experi-
mentally as a rather simple but highly sensitive method of detecting small defects such as 
HTHA or HIC. The scan speed of this method is much higher that of the PAUT method. 
For this method, special ultrasonic transducers with particular focal depths are required 
to optimise detection throughout a range of different thicknesses. 

The time-of-flight diffraction (TOFD) experiments were carried out using Eddify 
Gekko flaw detector (64:64PR) and the TULA A 10 MHz probe with a 0° roof angle, man-
ufactured by GB Inspection Systems Ltd., Burntwood, UK. The probe was used to scan 
sample no. 4 at five different circumferential positions. At each circumferential increment, 
TULA probes were scanned 200 mm along the axial location with the step of 0.12 mm. The 
probes were driven by 100 V pulse, and the signals were sampled at 100 MHz. The system 
gain was set to 15 dB. The comparison between the TULA and TFM measurements at 
circumferential locations summarised in Table 6 are presented in Figures 13–17. 

Table 6. Coordinates of acquisition points for TULA measurements. 

Measurement Point Reference Circumferential Position (mm) 
TULA-1 154 
TULA-2 205 
TULA-3 255 
TULA-4 306 
TULA-5 404 

 

  
(a) (b) 

Figure 13. The comparison between (a) TULA and (b) TFM measurements at 154 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

  
(a) (b) 

Figure 14. The comparison between (a) TULA and (b) TFM measurements at 205 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 
Figure 14. The comparison between (a) TULA and (b) TFM measurements at 205 mm circumferential
scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units.

Materials 2022, 15, x FOR PEER REVIEW 16 of 24 
 

 

  
(a) (b) 

Figure 15. The comparison between (a) TULA and (b) TFM measurements at 255 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

  
(a) (b) 

Figure 16. The comparison between (a) TULA and (b) TFM measurements at 306 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

  
(a) (b) 

Figure 17. The comparison between (a) TULA and (b) TFM measurements at 404 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

A good correlation can be observed between results obtained using the TFM and 
TULA method. Of course, there are some differences because it is impossible to scan ex-
actly along the same line, especially considering the relatively small dimensions of the 
defect. The essentially higher resolution of TFM images can be noticed and it can be stated 
that the TULA technique, in general, enables the detection of HIC damage and is faster 
and simpler compared to the application of TFM with scanning. It is necessary to notice 
also that the frequency of TULA transducers (10MHz) is slightly higher that the frequency 
of the phased array (7.5 MHz) used by the TFM technique. 

5. Metallographical Examination of a Heat Exchanger Shell Sample 
To prove the existence of HIC damage, a metallographic analysis must be performed. 

In this section, we continue our investigation of two of the most promising techniques, 
TFM and TULA, on sample no. 5, which is characterised by a metallographic analysis. To 

Figure 15. The comparison between (a) TULA and (b) TFM measurements at 255 mm circumferential
scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units.



Materials 2022, 15, 4551 16 of 24

Materials 2022, 15, x FOR PEER REVIEW 16 of 24 
 

 

  
(a) (b) 

Figure 15. The comparison between (a) TULA and (b) TFM measurements at 255 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

  
(a) (b) 

Figure 16. The comparison between (a) TULA and (b) TFM measurements at 306 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

  
(a) (b) 

Figure 17. The comparison between (a) TULA and (b) TFM measurements at 404 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

A good correlation can be observed between results obtained using the TFM and 
TULA method. Of course, there are some differences because it is impossible to scan ex-
actly along the same line, especially considering the relatively small dimensions of the 
defect. The essentially higher resolution of TFM images can be noticed and it can be stated 
that the TULA technique, in general, enables the detection of HIC damage and is faster 
and simpler compared to the application of TFM with scanning. It is necessary to notice 
also that the frequency of TULA transducers (10MHz) is slightly higher that the frequency 
of the phased array (7.5 MHz) used by the TFM technique. 

5. Metallographical Examination of a Heat Exchanger Shell Sample 
To prove the existence of HIC damage, a metallographic analysis must be performed. 

In this section, we continue our investigation of two of the most promising techniques, 
TFM and TULA, on sample no. 5, which is characterised by a metallographic analysis. To 

Figure 16. The comparison between (a) TULA and (b) TFM measurements at 306 mm circumferential
scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units.

Materials 2022, 15, x FOR PEER REVIEW 16 of 24 
 

 

  
(a) (b) 

Figure 15. The comparison between (a) TULA and (b) TFM measurements at 255 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

  
(a) (b) 

Figure 16. The comparison between (a) TULA and (b) TFM measurements at 306 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

  
(a) (b) 

Figure 17. The comparison between (a) TULA and (b) TFM measurements at 404 mm circumferen-
tial scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units. 

A good correlation can be observed between results obtained using the TFM and 
TULA method. Of course, there are some differences because it is impossible to scan ex-
actly along the same line, especially considering the relatively small dimensions of the 
defect. The essentially higher resolution of TFM images can be noticed and it can be stated 
that the TULA technique, in general, enables the detection of HIC damage and is faster 
and simpler compared to the application of TFM with scanning. It is necessary to notice 
also that the frequency of TULA transducers (10MHz) is slightly higher that the frequency 
of the phased array (7.5 MHz) used by the TFM technique. 

5. Metallographical Examination of a Heat Exchanger Shell Sample 
To prove the existence of HIC damage, a metallographic analysis must be performed. 

In this section, we continue our investigation of two of the most promising techniques, 
TFM and TULA, on sample no. 5, which is characterised by a metallographic analysis. To 

Figure 17. The comparison between (a) TULA and (b) TFM measurements at 404 mm circumferential
scan position. Vertical colour bar represents the peak-to-peak amplitude in arbitrary units.

A good correlation can be observed between results obtained using the TFM and
TULA method. Of course, there are some differences because it is impossible to scan exactly
along the same line, especially considering the relatively small dimensions of the defect.
The essentially higher resolution of TFM images can be noticed and it can be stated that the
TULA technique, in general, enables the detection of HIC damage and is faster and simpler
compared to the application of TFM with scanning. It is necessary to notice also that the
frequency of TULA transducers (10MHz) is slightly higher that the frequency of the phased
array (7.5 MHz) used by the TFM technique.

5. Metallographical Examination of a Heat Exchanger Shell Sample

To prove the existence of HIC damage, a metallographic analysis must be performed.
In this section, we continue our investigation of two of the most promising techniques,
TFM and TULA, on sample no. 5, which is characterised by a metallographic analysis. To
demonstrate HIC detection capabilities, TFM and TULA data have been acquired close to
the edge of sample no. 5. Then, the sample was sliced, and an examination of the pipe was
performed at TFM and TULA measurement locations. Hence, this section first describes the
TFM and TULA data acquisition, the results of metallographic analysis and then is finished
with a comparative analysis between TFM and metallography.

5.1. TFM on Sample No. 5

The TFM cartography of sample no. 5 is presented in Figure 18. It can be seen that
regions further from the weld were more affected, while the defect distribution is non-
uniform. The last TFM scan line according to the circumference of the pipe corresponded to
the pipe cut line used for the metallographic analysis. The B-scan of the last circumferential
scan position is presented in Figure 19.
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Materials 2022, 15, 4551 18 of 24

The results presented above show that at a distance of 0–50 mm from the weld there
are no indications at all; however, from 60 till 210 mm, the B-scan shows a significant
amount of reflections located at depths from 35 mm till 44 mm.

5.2. Metallographic Examination of Sample 5

Metallographic examination of a microstructure was performed in the DEKRA lab-
oratory to verify the ultrasonic testing results. The slice was divided in four sections
(60–800 mm, 90–140 mm, 142–198 mm and 200–260 mm) as presented in Figure 20. In the
following paragraphs, metallographic images of each section are presented.

Materials 2022, 15, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 19. B-scan of the sample No.5 along the edge obtained by the TFM. The B scan corresponds 
to the section line, where the pipe was sliced before the metallographic examination. Vertical colour 
bar represents the peak-to-peak amplitude in arbitrary units. 

The results presented above show that at a distance of 0–50 mm from the weld there 
are no indications at all; however, from 60 till 210 mm, the B-scan shows a significant 
amount of reflections located at depths from 35 mm till 44 mm. 

5.2. Metallographic Examination of Sample 5 
Metallographic examination of a microstructure was performed in the DEKRA labor-

atory to verify the ultrasonic testing results. The slice was divided in four sections (60–800 
mm, 90–140 mm, 142–198 mm and 200–260 mm) as presented in Figure 20. In the follow-
ing paragraphs, metallographic images of each section are presented. 

 
Figure 20. Examined section’s general view. 

Results on section No1: 60–88 mm 

Only isolated HIC blisters were revealed at coordinates 70 mm area (see Figure 21). 
Discontinuities are located near the internal diameter (ID) surface (max. 0.4 mm from ID). 

  
(a) (b) 

Figure 21. Section No1: 60–88. Coordinate 70 mm, isolated HIC blisters, micro deformation in dis-
continuity area, magnification 200× (a), 1000× (b). 

Figure 20. Examined section’s general view.

Results on section No1: 60–88 mm
Only isolated HIC blisters were revealed at coordinates 70 mm area (see Figure 21).

Discontinuities are located near the internal diameter (ID) surface (max. 0.4 mm from ID).
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Figure 21. Section No1: 60–88. Coordinate 70 mm, isolated HIC blisters, micro deformation in
discontinuity area, magnification 200× (a), 1000× (b).

Results on section No2: 90–140 mm
Hydrogen-induced damages such as hydrogen-induced cracking, stepwise cracking,

straight cracking and blistering cracking, starting from the coordinates 120 mm onwards, were
observed (Figures 22–24). The maximum depth of defects location in this section is 8.8 mm
from ID (37.2 mm from the outer diameter OD, e.g., UT scanning surface). Decarbonised
traces originating from the shell ID are clearly seen in the section of thesteel microstructure.
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Results on section No3: 142–198 mm
Hydrogen-induced damage such as hydrogen-induced cracking, stepwise cracking,

straight cracking, blistering cracking were observed (Figures 25–27). The maximum depth
of defects location in this section is 8.8 mm from ID (37.2 mm from OD). Decarbonised traces
originating from shell ID are also clearly seen in the section of the steel microstructure.
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Results on section No4: 200–260 mm
Hydrogen-induced damage, as mentioned above, such as hydrogen induced cracking,

stepwise cracking, straight cracking, blistering cracking, were observed (Figures 28 and 29).
The maximum depth of defects location in this section is 8.0 mm from ID (or 38.0 mm from
OD (UT scanning surface)). Decarbonised traces originating from the shell ID are also
clearly seen in the of the section steel microstructure.
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6. Discussion

A comparison of metallographic images (Figures 21–29) with the results obtained
using TFM (Figure 19) revealed a good correlation. In the first section (distances 60–88 mm),
TFM images did not show any indications. At the same time, metallographic analysis found
only a minor number of small blisters with dimensions around 20 µm. Such size defects
are not visible for ultrasonic inspection at frequencies used in this study. An additional
problem is caused by the fact that they are situated very close to the wall of the inner surface
and cannot be indicated by any of the used techniques due to strong backwall reflection.

In section No2 (distances 90–140 mm), metallography shows multiple defects with
dimensions 20 µm to 200 µm. The TFM data also show multiple, relatively low amplitude
indications. So, it can be stated that the TFM method enabled the detection of HIC damage
when a single crack reaches dimensions close to 200 µm. As a result of the good correlation
between TFM and TULA measurements, as shown in the previous section, it was expected
that TULA could also successfully detect these indications.

In section No3 (distances 142–198 mm), multiple cracks reaching sizes over 2 mm can
be observed, which are indicated in TFM images by a strong concentrated reflection. Such
a level of HIC damage can easily be detected by TFM (Figure 19).

In the last analysed section No4 (distances 200–260 mm), cracks with sizes up to 2 mm
are detected by metallography, correspondingly indicated in the TFM images, although the
image is not so sharp. It can be noticed that in TFM image, the back wall reflection is almost
absent, but indications of a crack are present. This is due to the fact that this section is at the
edge of the sample and the phased array was not fully scanned in this zone. On the other
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hand, TFM reconstruction was performed not only in the zone situated directly under the
phased array, but in an area in the front direction from the edge of the array. So, the results
presented demonstrate that this technique can be used even in partially accessible zones.

While the performance of the AVR and AUBT techniques for HIC detection was found
to be similar to that reported elsewhere, the results obtained with the TFM and TULA
techniques introduced some positive aspects to the current state-of-the-art methods. Even
though phased array measurements are included in recommended practices, the TFM
method allows one to significantly increase the resolution and to detect cracks at earlier
stages. It has been demonstrated that TFM can detect stage 2 HTHA with a crack size
of 300 µm [23], while the results obtained in this paper support such statements. On the
other hand, the results using TULA probes appear to be quite novel and demonstrate that
such a technique can be used with similar confidence as TFM. Since the TULA technique
requires a two-channel ultrasonic system, it can be considered cheap and may be used for
the primary detection of hydrogen-induced cracking. Meanwhile, TFM can be used for a
more precise assessment of areas potentially affected by HIC.

In general, it can be noticed that most authors investigate NDT techniques as methods
for the detection of single defects of a particular size, as well to characterise them. In this
case, dimensions of the defects play the main role; in other words, they determine how
small defects of a particular type are detectable. However, in the case of the assessment of
early stages of HIC or HTHA, the cavities and micro-cracks are so small that detecting them
pushes ultrasonic methods to their limit. On the other hand, hydrogen-induced damage is
not a single but is a multiple set of scattered cracks in an area as a result of changes in the
metal structure, which then later develop into larger cracks. In the presented study, the
main accent was put not on the characterisation of a singular small defect, but to detect
and assess the areas affected by hydrogen-induced cracking. In such a case, only the TULA
and TFM methods have demonstrated the possibility of practical applications.

7. Conclusions

1. It was found that the totally focused method is the most effective for the detection of
HIC in different stages of development and enables at 7.5 MHz the detection of blisters
and cracking with dimensions of 200 µm. Application of additional scanning along
both axes and the merging of the images makes it possible to map the damaged areas.

2. The TULA technique also demonstrated the possibility of detecting zones with a lot
of small reflectors, a characteristic for HIC affected zones. Hence, the TULA method
can be used as a fast technique for the detection of HIC. However, a comparison of
TFM and TULA methods showed that the spatial resolution of the TFM is higher.

3. The advanced ultrasonic backscatter technique based on the analysis of the ultrasonic
signals backscattered by fissures demonstrated good performance and can be rec-
ommended as an additional tool for the assessment HIC at positions with already
detected indications. It is not practical in scanning, as the measurements should be
performed at exactly the same position, otherwise the results will be ambiguous.

4. The technique based on the assessment of velocity ratio does not demonstrate good
performance in the case of thick-walled analysed samples. This technique is probably
applicable when the component is damaged by HIC in the entire thickness of it. Oth-
erwise, the sensitivity reduces depending on the ratio of the damaged area thickness
to the total thickness of the component.
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