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Abstract: Porous iron-based scaffolds were prepared by the simple replica method using polyurethane
foam as a template and applying the sintering process in a tube furnace. Their surface morphology
was characterized using scanning electron microscopy (SEM) and phase homogeneity was confirmed
using X-ray diffraction (XRD). Corrosion behavior was determined using immersion and potentiody-
namic polarization methods in phosphate buffered saline (PBS). The surface energy was calculated
by studying the changes of enthalpy of calorimetric immersion. A preliminary biological test was
also carried out and was done using the albumin adsorption procedure. Results of our work showed
that in using the simple replica method it is possible to obtain iron biomaterial with morphology and
mechanical properties almost identical to bones, and possessing adequate wettability, which gives
the potential to use this material as biomaterial for scaffolds in orthopedics.

Keywords: iron; biodegradable implants; surface energy; albumin adsorption

1. Introduction

Bone implants are commonly used not only for bone fractures caused by accidents, but
also after the removal of bone fragments, e.g., facial bone affected by cancer [1]. Implants
made of titanium alloys, stainless steel, and CoCrMo alloys are most commonly used [2,3].
It should be considered that orthopedic implants, which are implanted in the human body,
are not implants that should be there permanently [4]. There are an increasing number of
reports on the harmfulness of implants, which are present in the body for long periods of
time [5].

Biodegradable or bioresorbable implants are the new trend in implantology. Iron-,
zinc-, and magnesium-based materials have received a lot of attention [6–8]. A significant
aspect in implantology is the concept of biocompatibility, understood as the absence of
toxic or unfavorable immunological reactions when implants are in contact with cells or
bodily fluids [9]. It is extremely probable that a material with bone-like properties will be
a biocompatible material. It is important during the design of materials, which are going
to be used in orthopedics to pay attention to the bone structure. The main component of
bones is type I collagen (40% by volume) interspersed with mineral crystals consisting of
non-stoichiometric calcium hydroxyapatite (45%). The remaining volume (15%) is occupied
by water, which is bound to the collagen or located in spaces called the lacunocanalicular
system [10]. Due to this structure, the bone has adequate mechanical properties and it is
able to resist pressure and tension [11]. Materials that are bioresorbable and can be used in
implantology are mainly polymers, bioceramics, and metals; however, due to the properties
mentioned above, mainly mechanical ones, only metals can be considered as scaffolds in
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orthopedics [12]. Among metals, iron is especially investigated as a biodegradable scaffold,
as it is highly resistant, ductile, and formable [13,14]. Biodegradable iron-based biomaterials
should degrade in the human body at a suitable rate. It would be ideal, if the rate of
degradation was similar to the rate of new bone formation. It would allow for a gradual
transfer of loads from the implant to the new bone [15,16]. In bodily fluids the degradation
of iron involves anodic and cathodic reactions, as shown in Equations (1) and (2):

Fe→ Fe2+ + 2e− (anodic reaction) (1)

O2 + 2H2O + 4e− → 4OH− (cathodic reaction) (2)

The ions Fe2+ and OH− according to the Pourbaix diagram combine to form Fe(OH)2,
which is the main corrosion product (Equation (3)) [17].

Fe2+ + 2OH− → Fe(OH)2 (3)

Due to the presence of ions other than hydroxyl in bodily fluid, e.g., chlorides, phos-
phates, it is concluded that a number of reactions may take place to form compounds such
as: Fe3(PO4)2 8H2O, Fe(OH)3, Fe(PO4) [18]. The availability of oxygen in the tissue in the
area around the implant is a crucial condition for degradation and a determining parameter
for the rate of corrosion of the iron implant in vivo [19].

In the human body, iron has an important role in many physiological processes,
including DNA metabolism, oxygen transport, and cellular energy production [20]. Due
to the importance and presence of iron in the human body there are many proteins and
mechanisms involved in the management of iron. The three most important are transferrin,
which is responsible for the transport and recycling of iron; ferritin, which protects the
penetration of iron into the body and keeps excess iron in a safe and bioavailable form; and
hepcidin, which belongs to the proteins produced in the liver and plays a special role in
regulating the entry of iron into circulation, regulates intestinal iron absorption, plasma
iron concentration, and iron distribution in tissues [21–23]. In the case of a biodegradable
material, it is crucial that the amount of iron released is managed by the organism in the
way known from homeostasis and that the amount of ions released does not exceed the
critical value for the cells [24].

The corrosion rate is affected not only by the chemical composition of the material but
also by its morphology. Porous materials have a faster rate of degradation than non-porous
materials such as roll-formed plates. This is an effect of the larger surface in contact with the
physiological environment and thus more locations where corrosion can be initiated. High
porosity can also have an effect by increasing crevice corrosion [25]. There are quite a few
variations in methods to obtain porous composites, such as 3D printing, electroforming, or
the repeated template method [26,27]. For 3D printing, there is a necessity for a computer
project design (for example, in a CAD program) to specify the material size, pore diameter,
and other parameters of the target material. There are several different publications with
results of successful 3D printing used to obtain porous iron-based biodegradable materials.
Samples prepared in this way are characterized by high accuracy and consistency with
the designed pattern. Limitations of the method are using an expensive printer and the
availability of materials [28–30]. Electroforming is a method where metal is dissolved
electrolytically at the anode, and metal ions are transported by an electrolyte solution to the
cathode. In this way, there is a possibility to position a metal on or against a mandrel. This
method is very similar to electroplating; however, electroplating is about taking an existing
device and applying a metallic layer (coating), and electroforming’s main goal is to create a
new object [31]. There are reports of using this method to obtain materials from iron and
other metals designed as implants [32–34]. Electroforming seems to be promising in the
future perspective of biodegradable metal implants. The repeated template method is a
method that is very simple to carry out and modify. It consists of applying metal powder
on the (usually polymer) template and then heating it in a furnace until the metal particles
melt together and destroy the template. Metal foams can be obtained by using a template
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with a porous structure [35,36]. The main advantage of this process is its ease and the
possibility of obtaining samples with a large variation in porosity, but at the same time, the
full dependence on the template for the shape and the inability to modify the shape of foam
afterwards can be seen as a disadvantage of this method [37]. We decided to work with
the last method and check the similarity of the material obtained with bone. In this paper
we would like to present the first part of our study on iron-based biodegradable material
obtained in a very simple replica method—its preparation and characterization in terms
of the morphology, surface energy, mechanical properties, chemical and electrochemical
degradation, as well as a primary biological test using the albumin adsorption procedure.
The second part of our research involving the biological test will be the topic of our
next paper.

2. Materials and Methods
2.1. Fe Scaffolds Preparation

The materials studied in this work were macro-porous Fe scaffolds. They were made of
iron powders with particle sizes <10 micron (purity 99.9%, Alfa Aesar, Kandel, Germany).
The powders were mixed with a solution of 5% polyvinyl alcohol (Mw 89,000–98,000,
99+% hydrolyzed, Sigma Aldrich, Darmstadt, Germany) in a mass ratio of 1:2. Then the
templates made of polyurethane PU PPI45 (sheet of polyurethane PU PPI45 filter foam,
size 2000 mm × 1000 mm × 5 mm with a density of 45 channels per inch, where 97% of
the pores are open pores, cut into cubes 6 mm × 6 mm × 6 mm; Rekuperator, Wejherowo
Poland) were soaked and squeezed out of a porous polyurethane sponge. They were
put in a laboratory dryer and dried for 30 min at 50 ◦C. Then they were soaked in the
mixture again. The systems prepared in this way were placed in a tube furnace (Czylok,
Jastrzębie-Zdrój, Poland) and sintered for 5 h according to the temperature program shown
in Figure 1. All samples were ultrasonically cleaned in acetone (ACS reagent, ≥99.5%,
Sigma Aldrich, Darmstadt, Germany) and ethanol (anhydrous, ≥99.5%, Sigma Aldrich,
Darmstadt, Germany) for 10 min each, followed by argon drying before being subjected to
testing. The prepared samples were stored in a desiccator until use.
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Figure 1. Scheme of the used heat treatment—temperature program; heating rate—step I—7.9 ◦C/min,
step II—6.1 ◦C/min; cooling rate—4.3 ◦C/min.

2.2. Fe Scaffolds Characterization

The morphology of the produced scaffolds was studied using a Quanta scanning
electron microscope with field emission (SEM, Quanta 3D FEG, Huston, TX, USA). Phase
homogeneity was confirmed using X-ray diffraction (XRD, Philips X “Pert with X’Celerator
Scientific detector) using CuKα radiation and an incident angle of 2◦. Elemental analysis
was illustrated using energy-dispersive X-ray spectroscopy (Quantax 200 XFlash 4010,
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Bruker AXS, Karlsruhe, Germany)). Low temperature N2 adsorption isotherms were
measured using an ASAP2010 volumetric adsorption analyzer from Micromeritics (Nor-
cross, GA) at liquid nitrogen temperature (77 K) in the relative pressure range from about
10−6 up to 0.999. Before the measurements, the samples were outgassed for 2 h at a
temperature of 373 K.

2.3. Immersion Enthalpy and Surface Energy Determination

The measurements were performed using a Tian–Calvet isothermal calorimeter con-
structed in our laboratory [38]. N-heptane, deionized water, and formamide were used as
standards. Each measurement was repeated at least three times. The major assumption of
the van Oss-Good-Chaudhury (VGC) model used in this study is the independency of the
dispersive and acid-base interactions. Equation (4) describes the enthalpy of immersion to
the surface energy components of both the solid surface and the wetting liquid.

− hi = −Hl + 2
[√

HLW
S ·HLW

l +
√

H+
S H−l +

√
H−S H+

l

]
(4)

where hi represents the enthalpy change upon immersion (mJ/m2); H is the surface en-
thalpy (mJ/m2); subscripts S, l are the solid surface and wetting liquid respectively; super-
scripts LW, +, − are the Lifshitz-Van der Waals, acidic and basic components of surface
energy, respectively.

Moreover, the second component of the sum in (4) represents the work of the particular
liquid adhesion, thus one can write:

− hi = −Hl + Wadh (5)

The energy components of the different probe liquids used in this study were taken
from [39].

2.4. Nanomechanical Properties of Fe Scaffolds

Nanomechanical properties, such as nanohardness (H) and reduced Young’s modulus
(Er) were performed using the nanoindentation technique (Oliver and Pharr methods)
with a nanoindenter (NanoTest Vantage, Micro Materials, Wrexham, UK). A three-sided
pyramidal diamond Berkovich’s indenter was used. Maximum force of indentation was
50 mN with 10 s of loading to maximum force time, 5 s dwell with maximum force, and
15 s of unloading time. The 15 independent measurements were performed with 20 µm
distance between indentations. To calculate reduced Young’s modulus to Young’s modulus
(E) Poisson’s ratio 0.3 was assumed.

2.5. Degradation of Fe Scaffolds

Degradation of the samples was studied by immersing cubic pieces of 6 mm× 6 mm×
6 mm in 10 mL 10 mM phosphate buffered saline (PBS) solution pH = 7.4 ± 0.02 in a sealed
bottle at a temperature of 37 ◦C for 5 weeks. After each week, the samples were weighed
on a microbalance. The corrosion rate was determined from the weight loss as follows:

CR =
m0 −m f

At
(6)

where CR stands for the corrosion rate, m0 is the mass of sample before test, mf is the final
mass after corrosion, A represents the surface area exposed to the PBS solution, and t is the
immersion time.

2.6. Electrochemical Degradation of Fe Scaffolds

Electrochemical degradation was studied by potentiodynamic polarization (PDP) us-
ing a potentiostat (BioLogic SP-200). The study was carried out in a standard three-electrode
system consisting of a working, a counter-electrode (platinum wire) and a reference elec-
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trode (chlorosilver electrode). The test was carried out in PBS solution at a constant
temperature of 37 ± 1 ◦C. Before the measurement, the sample was immersed for 120 min
to measure its open circuit potential (OCP). For the PDP test, the scan potential ranged
from −250 mV to +250 mV relative to the stabilized OCP, measurements were conducted at
a 0.167 mV·s−1 scan rate.

2.7. Albumin Adsorption

The protein adsorption studies were performed with ALB concentration in the range
of 0.1–2.6 mg/mL. The mixtures were shaken at 120 rpm in a thermostated shaker for 2 h
at 310 K. The protein concentration in obtained supernatants was measured using a Jasco
V-750 UV-Vis spectrophotometer (Jasco Corporation, Tokyo, Japan) in a wavelength range
of 200–450 nm (the area of the 280 nm band).

3. Results and Discussions

The morphology of the fabricated iron scaffolds, resembling the structure of a sponge,
is shown in Figure 2. As visible from the images, pore diameters are in the range of
245–360 µm. The size of macropores of the produced systems described in this paper, are
very close to the pore sizes suggested for bone regeneration. Multiple studies have found
that macroporous pores in the range of 150 to 360 µm are ideal [40]. This is motivated by the
effect of the specific surface area, which is offset in larger pores by the increased potential
for cell migration [7,40–42]. The oval-shaped pores with a diameter of 200 to 400 µm affect
not only the function of osteoblasts but also chondrogenic differentiation [43]. Correlations
between pore size and osteogenesis were observed only at the beginning of osteogenesis
(up to 12 weeks), which proves the applicability of the biodegradable scaffold [44]. An
appropriate shape that has a positive effect on osteogenesis and chondrogenesis is the first
necessary condition for a resorbable bone implant.
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Scaffolds produced by the method of a template immersed in the suspension of iron,
result in the pore diameter of the scaffold formed being almost identical to the initial
polyurethane template. In the used temperature program (Figure 1) in the scaffolds’
formation process, two stages can be distinguished: the first stage is the polymer burn-off
temperature (500 ◦C) and the second one—the sintering temperature (1050 ◦C). To confirm
the elemental purity of scaffolds, energy dispersive X-ray spectroscopy (EDS) was applied.
Very intense lines in the EDS spectrum showed the presence of iron as a majority (Figure 3a).
Moreover, the signals visible on the diffractogram (Figure 3) correspond to the pattern of
pure iron. The intense (110) diffraction peak was obtained along with characteristic signals
at (200), (211), (220), and (310) [45].
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Figure 4 shows the low temperature N2 adsorption isotherm. The amount of adsorbed
N2 increases exponentially with pressure. Usually, this type of adsorption can be observed
in non-porous or highly macroporous adsorbents. The lack of monolayer formation is very
characteristic here, i.e., no “knee” in the isotherm curve. The overall mechanism is based
on the fact that once the small droplet of adsorbate nucleates, further adsorption occurs
more easily due to more adsorbate–adsorbate interactions than adsorbate–adsorbent.
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Water contact angle measurements can only be performed on flat and stable surfaces.
In our case, such analyzes could be difficult because of the sponge-like structure of the
iron scaffold, as shown in Figure 2. The simplest solution is measuring the enthalpies
of immersion in different probe liquids to characterize the surface energy components
using the van Oss-Good-Chaudhury (VGC) approximation. The model easily separates the
Lifshitz-Van der Waals component of the surface energy, HLW

S , from polar terms, i.e., the
acidic, H+

S , and the basic, H−S , components, allowing calculation of the total surface energy,
HT

S [46]. In addition, the separation of the acidic and basic components of the surface
free energy, which is due to the ionic nature of the bonds present on the surface, provides
information about the interactions of adsorbents with molecules on the surface [47]. The
enthalpies of immersion in different probe liquids, namely, water, n-hexane, and formamide
(hi), were measured and the results are shown in Table 1.

Table 1. The surface energy components, and the work of adhesion, Wadh, of Fe-foam to water.

hwater
[J/m2]

hn-heptane
[J/m2]

hformamide
[J/m2]

HLW
S

[J/m2]
H+

S
[J/m2]

H−S
[J/m2]

HT
S

[J/m2]
Wadh
[J/m2]

−1.763
(0.21)

−0.352
(0.0201)

−1.951
(0.141)

0.827
(0.17)

10.67
(0.22)

0.278
(0.03)

2.550
(0.16)

1.881
(0.09)

It is clear, from the results collected in Table 1, that Fe-foam is more of an acidic
material than basic. The calculated H+

S is 33 times larger than H−S . Moreover, electrostatic
interactions are dominate compared to non-polar ones. Its high water, work of adhesion
proved good wettability of the material in a natural tissue environment and the calculated
value of total surface energy is close to the literature data determined theoretically for the
(1 0 0), (1 1 1), and (1 1 0) surfaces of iron [48] and calorimetric measurements [49].

The nanomechanical properties and energy calculation are presented in Table 2.

Table 2. Nanomechanical properties and energy calculation results for Fe foam with standard
deviation (n = 15).

Material Fe Foams

Hardness
[GPa] 2.584 ± 0.692

Young’s Modulus
[GPa] 28.457 ± 5.601

E/H ratio
[−] 0.093 ± 0.027

Plastic energy
[nJ] 14.566 ± 3.448

Total energy
[nJ] 25.095 ± 3.329

D ratio
[−] 0.577 ± 0.085

In this study, hardness values ten times higher than those of cortical bone were
obtained. In Zysset et al. [50], hardness values ranging from 0.234 to 0.760 GPa were
obtained, with Young’s modulus values similar for the values obtained for the tested
materials (E value from 19.1 to 21.2 GPa). Thus, the results obtained are similar to those
obtained with the same nanoindentation technique for a human femoral bone. The literature
states that the Young’s modulus can range from 10–30 GPa for cortical bone [51]. For
implants, it is crucial to obtain mechanical properties, especially Young’s modulus, as
close as possible to the tissue in which the implant will be implanted, in this case—bone.
It has been proven that significant differences in mechanical properties of an implant
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and bone provide a “shielding effect” and, consequently, may result in implant or bone
damage [51–53]. Obtaining a Young’s modulus close to bone is due to the form of the
material being tested. Manufacturing 3D scaffolds allows for lower Young’s modulus
values compared to solid material (even 210 GPa for pure iron) [54,55].

Using the force-displacement diagram recorded during the measurement, it is possible
to determine three types of energy. The area under the load curve indicates the total energy,
the area under the unload curve indicates the elastic energy. The difference between the
total energy and the elastic energy is the plastic energy. The H/E ratio (elasticity index)
characterizes the ability of a material to resist elastic deformation [56]. This ratio can
approximately characterize the wear resistance of a material. For tested materials, a H/E
ratio value of 0.093 ± 0.027 was obtained. In Coy et al. for hard aluminum oxide-based
coatings, H/E ratio values ranging from 0.03 to 0.08 were obtained. The H/E value for hard
materials should be above 0.1, but values from 0.08 and above are reported in the literature
as protective coatings with adequate wear resistance [57]. The high value in plastic/total
energy ratio (ductility index, D) can be attributed to the proper fracture toughness. The
ductility index for purely ductile materials is 1 and 0 is for purely elastic materials [58]. The
D value obtained in this study may indicate a less ductile character of the material and a
lower fracture toughness compared to the typical value for steel alloys (D > 0.9) [57]. On
the other hand, the value of D is still above 0.5.

Figure 5a shows the curve obtained by potentiodynamic polarization of the sample,
which was previously stabilized for 120 min in PBS solution as a simulated body solution
recorded at a scan rate of 0.167 mV/S. Table 3 shows the values of corrosion potential
(ECORR) and corrosion current density (icorr), which were calculated from the intersection
of anodic and cathodic Tafel lines extrapolation. The results of the immersion tests are
shown in Figure 5b. A higher rate of loss in sample mass was observed every week. After
the first week, punctuated color changes to brick-red were observed, after 3 weeks the
samples had fully changed color. The highest weight loss was observed after 4 weeks, at
this time the samples started to disintegrate. The corrosion rate results obtained for porous
iron scaffold is higher than that reported for non-porous iron samples [35], this may be
related to the increased surface area, macropores affecting the increased solvent access to
the material and the sample roughness.
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Table 3. The avarage values for the corrosion potentials (Ecorr) and corrosion current resistance (icorr)
obtained from the potentiodynamic polarization curves in PBS solution at 37.1 ◦C.

Material ECORR
[mV]

icorr
[µA/cm2]

Fe foams −755 68.6
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Good wettability of biomaterials is the prerequisite for further research. Nevertheless,
it has been suggested that the nature of the surface allowing protein adsorption, beside the
wettability itself, is important for cell attachment and later growth [34]. During osteogene-
sis cells never attach to a bare surface but to a surface previously covered with proteins
adsorbed from biological fluids. This protein layer surely has a large influence on cell adhe-
sion. When albumin and fibronectin are mixed, albumin adsorbs on hydrophobic surfaces
and fibronectin on hydrophilic surfaces [47,59–61]. Taking into consideration resorbable
abilities of the implant, we need to have a wettable surface where albumin is physically
adsorbed. The results presented in Figure 6 prove that albumin is weakly adsorbed on the
Fe-foam scaffold. This weak physical adsorption is successfully described by the bimodal
Langmuir-Freundlich equation, which also correlates well with all the experimental data
and results in Figure 6. The model was previously successfully harnessed for different
adsorption data description, see e.g., [62]. Additionally, in previous studies [63,64], the
model was used to quantify catalase and lysozyme adsorption on different carbonaceous
materials with reasonable accuracy. The applied equation is represented by the expansion
of the one proposed by Jeppu and Clement [65]; to bimodal form:

Qeq =
Qm,1

(
K1Ceq

) 1
n1

1 +
(
K1Ceq

) 1
n1

+
Qm,2

(
K2Ceq

) 1
n2

1 +
(
K2Ceq

) 1
n2

(7)

where: Qeq is the amount of adsorbate adsorbed at equilibrium (mgALB/gFe); Qm is the
maximum adsorbed capacity of the system (mgALB/gFe); Ceq is the protein concentration
in solution at equilibrium (g/L); K is the affinity constant between the adsorbate and the
adsorbent (L/g); and n is the index of heterogeneity.
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The fitted values of Qm,x, constant Kx and the parameter nx (x = 1,2), are summarized
in Table 4. A value of n = 1 suggests non-interacting sites, while 0 < n < 1 implies positive
cooperation, while for n > 1, negative cooperation is expected during the adsorption process.
The left part of Table 4 describes sites with higher Fe-foam surface to adsorbate affinity,
typical for monolayer formation. On the contrary, lower K2 and n2 values shown on the
right side define multilayer formation. It dominates in the higher Ceq range. Interestingly,
the values of nx appear here due to non-specific interaction, typical for physical adsorption.
As a small surface area adsorbent, the Fe-foam allows ALB a high degree of freedom
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in movement, both rotational and lateral, which bodes well for future applications as a
resorbable implant.

Table 4. Fitted parameters of bimodal Langmuir–Freundlich equation (SD values are shown in
parentheses) obtained for ALB adsorption on the Fe-foam.

Qm,1
[mg/gFe]

K1
[L/g] n1

Qm,2
[mg/gFe]

K2
[L/g] n2 R2

5.44
(0.11)

16.41
(1.77)

0.51
(0.02)

43.16
(0.81)

0.95
(0.05)

0.32
(0.02) 0.989

In a more complex, living, not-idealized system, adsorption on the surface of the
substrate is performed primarily by proteins, whose concentration in solution is the highest.
Next, the replacement of adsorbed proteins on the surface with those that have a higher
affinity to the surface, occurs. In the literature, such a phenomenon is named the Vroman
effect [66]. It has also been shown that for good osteogenesis, a synergistic effect between
fibronectin and albumin during co-adsorption is also necessary; in effect, increasing cell
adhesion and thus better and faster bone reconstruction [67–70]. The obtained results,
i.e., physical adsorption of ALB on the Fe-foam, proved the potential applicability of the
material as an effective implant. The full applicability will be checked in our further studies
by the estimation of the rate of biocorrosion, the determination of the biocompatibility with
cell lines, and by the verification of possible cytotoxicity.

4. Conclusions

The open-pore structure of pure iron scaffolds obtained by the repeated templating
method appears to be a promising candidate as a biodegradable material for load-bearing
implants in orthopedic applications. They showed adequate pore sizes, almost ideal
for bone substitute material. They were characterized by having mechanical properties,
especially Young’s modulus, close to the tissue in which the implant will be implanted,
in this case—bone. It is important information, as using such a biomaterial can exclude
the “shielding effect” and, consequently lower the chances of implant or bone damage.
Moreover, a small surface area of Fe scaffold allows ALB a high degree of freedom in
movement, both rotational and lateral, which bodes well for future applications as a
resorbable implant. Nevertheless, further work is needed to manage the rate of biocorrosion,
check biocompatibility with cell lines, and verify possible cytotoxicity.
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