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Abstract: In this paper, first principles method was adopted to investigate the point defects, Vanadium-
related defects and defect combinations (vacancy (V), substitutional (S) and/or interstitial (I)) in
molybdenum β-Mo2C and explore the use of first principles calculation data in analysing the link
between different carbides and the effects of doping elements. Supercell models with different defect
types were established and optimized, and the formation energy data of defects was developed. The
structure evolution during the optimization process is analysed in detail to establish the main charac-
teristics of changes and the relevant electronic properties. The data for different types of intrinsic
defects and combined defects complexes was developed and key results is analysed. The results show
that carbon vacancy (VC) is stable but does not inevitably exist in pure β-Mo2C. Interstitial site II is a
very unstable position for any type of atoms (Mo, V and C), and analysis of the structure evolution
shows that the atom always moves to the interface area near the interstitial site I between two layers.
In particular, a C atom can expand the lattice structure when it exists between the layer interfaces.
One type of the defects studied, the substitution of Mo with V (designated as ‘SV-Mo’), is the most
stable defect among all single point defects. The data for defect complexes shows that the combination
of multiple SV-Mo defects in the super cell being more stable than the combination of other defects
(e.g., ‘VMo+IC’, ‘SV-Mo+VC’). The data with increasing SV-Mo in (Mo, V)2C system is developed, and
typical data (e.g., formation energy) for Mo-rich carbides and V carbides are correlated and the
potential of the data in analysing transition of different carbides is highlighted. The relevance of
using first principles calculation data in the studying of V-doping and the complex carbides (V- and
Mo-rich carbides) evolution in different materials systems and future focus of continuous work is
also discussed.

Keywords: point defect; β-molybdenum carbides (Mo2C); first-principles calculation; defect combination;
formation energy; phase transition; phase engineering

1. Introduction

Transition metal carbides (TMCs) are an important carbides group with high melting
point and hardness, extremely high thermal and mechanical stability and excellent corrosion
resistance to chemical reagents at room temperature [1–3]. In addition, TMCs have electrical
and magnetic properties similar to their parent metals [4,5], which mean they are widely
used in the field of cutting tools, mineral mining and anti-wear coatings, as well as nuclear
reactors and catalysts [6–9]. Molybdenum carbide Mo2C is one key TCM carbides with
promising applications in engineering and energy industries. Apart from the properties
commonly shared by TMCs, Mo2C also has the electronic structure and catalytic functions
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similar to those of the precious metal Pt, which is opening up new prospects in a wide
range of important applications in 2D materials, composite materials, energy storage,
superconductivity and catalysis [10–12]. As a new functional material, Mo2C has the
potential to replace the industrial hydrogenation catalyst with a very efficient catalytic effect,
which has high importance to scientific research and technological developments [13–17].

Mo2C has been reported to have a variety of structures with different naming methods [18–20].
Among them, the two most commonly and widely reported Mo2C are α-Mo2C and β-Mo2C
with orthorhombic and hexagonal close-packed structures, respectively. The majority of
published work has been focused on fabrication, experimental structure analysis and
property testing, as well as the application of Mo2C [21–24]. The stability of the structure,
mechanical/thermal/electrical/magnetic properties of bulk material, surface adsorption
and interface properties were studied through the first principles calculations of perfect
defects-free Mo2C compounds. Liu et al. [25] studied the stability of α-Mo2C and β-Mo2C
and found that α-Mo2C with orthorhombic structure is more stable than β-Mo2C with
hexagonal structure according to the formation energy. In addition, the stability of both
α-Mo2C and β-Mo2C increases by doping one Cr atom and decreases by doping one Nb
atom. Wang et al. [26] calculated the melting point and hardness for both α-Mo2C and
β-Mo2C based on density functional theory. Gibbs free energy for three types of Mo2C (o-
Mo2C, h-Mo2C and t-Mo2C), as well as shear modulus and Young’s modulus were analysed
in detail by Liu et al. [27]. Karaca et al. [28] estimated the value of the superconducting
temperature of orthorhombic Mo2C based on the first principles calculation of the electron–
phonon interaction. Yang et al. [29] calculated the surface energy of α-Mo2C(023) plane
and found that the Y doping can facilitate the electron escaping from the α-Mo2C(023)
surface, resulting in stronger surface activities. The work by Hassan et al. [30] revealed that
various poisonous gas molecules can be chemisorbed on various locations of molybdenum
carbide monolayer with high adsorption energies. Leitner et al. [31] built an interface
model between Fe and Mo2C with different planes and terminations, the results show that
the elasticity of the Fe/Mo2C composite is dominated by the elastic properties of the two
materials, while the bonding at the interface only has a minor impact.

Among all the publications related to Mo2C, detailed studies on different types of
defects in Mo2C are limited, which is relevant to both engineering and energy applications.
One effective approach is through first-principles calculations, which has been used in
studying defects in TMCs, such as monocarbides, including TiC, ZrC and HfC [32–35].
In this work, supercell structure of Mo2C was used to investigate the effects of vacancy,
substitution and interstitial defects at different lattice sites. Vanadium-related defects and
complex in β-Mo2C is systematically studied. The correlation between the first principles
calculations data and vanadium doping effect in β-Mo2C, the potential phase in Mo–V steel
systems [36–41] and recent and future works on phase engineering based on first principle
calculation [42–50] is discussed.

2. Calculation Details

Mo2C belongs to the hexagonal crystal system P-3m1 (Z = 1) with initial lattice constant
of the base cell of a = b = 0.3073 nm and c = 0.4653 nm. There are two Mo atoms and one
C atom in the unit cell, which occupy the 2d position (Mo site (0.33, 0.67, 0.25) and (0.67,
0.33, 0.75)) and 1b position (C site (0, 0, 0.5)), respectively. Its crystal structure is shown
in Figure S1 of the Supplementary Information. In this work, all DFT calculations were
performed using the Cambridge Sequential Total Energy Package (CASTEP). Six electrons
(4d55s1) for Mo, five electrons (3d34s2) for V, and four electrons (2s22p2) for C were taken
into account as valence electrons. The exchange–correlation functional was described by
the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA). PBE is
one of the most popular and reliable density functionals especially for the simulations
of solid materials, which is widely used in the first principles calculations for TMCs
themselves and different defects in TMCs and other types of intermetallic compounds.
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was applied in the relaxation
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process of models to optimize the structures. The energy, maximum force and maximum
displacement were set as 5 × 10−6 eV/atom, 0.01 eV/Å and 5 × 10−4 Å for the convergence
tolerances, respectively. Based on convergence tests, which are shown in Figure S2, the
Monkhorst–Pack k-point samplings of 6 × 6 × 6 and the plane–wave cutoff energy of
380 eV were used for Mo2C unit cell.

The size of the supercell was determined by calculating the formation energy of the
vacancy defect in the supercell. First, perfect Mo2C supercells with size of 1 × 1 × 1
(3 atoms), 1 × 1 × 2 (6 atoms), 1 × 2 × 2 (12 atoms), 2 × 2 × 2 (24 atoms), 3 × 2 × 2
(36 atoms), 3 × 3 × 2 (54 atoms) and 3 × 3 × 3 (81 atoms) were built and optimized. Then
the structures with one Mo vacancy (VMo) or one C vacancy (VC) in different supercells were
built and optimized. From Figure S3, as the size of the supercell increases, the formation
energy of vacancy and bulk materials with vacancy gradually converge. So, 24-atom
supercell with 2 × 2 × 2 replica of Mo2C unit cell was chosen to do the calculation. A
similar supercell approach has been applied to other carbide systems (e.g., defect model in
VC [41]). The domain of the super cell used and accuracy is comparable to other published
works in similar systems [26,27].

Two types of the formation energy were considered in this paper: formation energy
for intrinsic defects and formation energy for bulk material with defects, which are used
to establish the stability of the structures with different point defects in Mo2C. Formation
energy for point defects can be expressed as follows:

Edef = E(N)− Eperf(N) + E(A)− E(B) (1)

where Edef is formation energy for intrinsic defects; E(N) is the relaxed total energy of
supercell with different point defects; Eper(N) is the relaxed total energy of the corre-
sponding ideal supercell crystal; ‘A’ is the replaced or deleted atom and ‘B’ is the added
atom compared to the ideal supercell; E(A) (or E(B)) is the energy per A(B) atom in pure
A(B) crystal.

The formation energy for bulk material with defects is presented as follows:

Ebulk =
E(N) −∑3

i=1 niEi

∑3
i=1 ni

(2)

where Ebulk is formation energy for bulk material with defects; Ei is the energy per i atom
in pure i crystal; n is the number of i atom in the supercell with defects.

Defect complexes, which contain two different types of defects, were also considered
in this paper. The following equation describes the defect–defect interaction:

Edefect−defect= E(N, defect1)+E(N, defect2)− E(N, 2defects)− Eper(N) (3)

where E(N, defect1) and E(N, defect2) are the relaxed total energy of supercell containing
one defect in the system; E(N, 2defects) is the relaxed total energy of supercell including
two defects. The results calculated by Equation (3) are called binding energy between
two defects.

3. Results

The model of intrinsic point defects that may exist in TMCs normally contains va-
cancies, substitutions (antisite) and interstitials. Interstitial defect includes octahedral
interstitial and tetrahedral interstitial defects depending on the specific structure [32–35].
Figure 1 shows the models to investigate the effect of all different point defects on Mo2C
crystal structure, including models with one atom vacancy (Mo vacancy (VMo) and C
vacancy (VC)), and one atom substitution (Mo substitution (SMo) and C substitution (SC)),
as well as one atom tetrahedral interstitials (Mo interstitial (IMo) and C interstitial (IC)).
From Figure 1a, VMo or VC can be formed if PMo or PC atom was deleted; moreover, the
replacement of PC atom by a Mo atom or PMo atom by a C atom will result in the formation
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of SMo or SC defect. Here, PMo and PC represent the positions of the Mo and C atoms. From
Figure 1b, Mo2C supercell exhibits a clear layered structure. The distance between Mo
and C atomic layers is 0.125 Å inside the layer, whereas the nearest distance between two
Mo atomic layers from different layers is 0.250 Å. There are two tetrahedral interstitial
positions for interstitial atoms: one is inside the same layer formed by four Mo atoms
(type II) and the other one is between two layers (type I). When one Mo or C atom occupies
PInter position, interstitial structures IMo(I, II) or IC(I, II) can be obtained.
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Figure 1. Schematic diagram of Mo2C structure of 2 × 2 × 2 supercell (a) and along [2110]
direction (b). Cyan and grey balls represent Mo and C atoms; cyan and grey dashed circles are
the positions that are used to form vacancy and substitution defects; yellow dashed frames are the
tetrahedrons that Mo atoms formed inside the layer (type II) and between two layers (type I) and
the black dashed circles are the tetrahedral position inside the tetrahedrons; blue frame refers to the
Mo2C unit cell. PMo and PC represent the positions of the Mo and C atoms, while PInter refers to the
position for interstitial atoms in the structure.

Vanadium-related defects in Mo2C supercell contain two different types, one is V
substitutions and the other is V interstitials. V substitutions refer to the defects, for which,
one V atom occupies PMo or PC atom in the structure, as SV-Mo and SV-C. Vanadium
interstitial defects IV(I, II) are similar to IMo(I, II) and IC(I, II), which means one Vanadium
atom enters into the tetrahedral interstitial positions PInter inside the layer (type II) or
between two layers (type I).

3.1. Intrinsic Defects
3.1.1. Formation Energy and Stability

As mentioned in Section 2 that the size of supercell was determined by calculating
the formation energy of the vacancy defect for Mo2C structure of different sizes. Table S1
lists the total energy for different Mo2C supercells with or without vacancy, from which
formation energy for vacancy defects in Table S2 can be calculated. It can be seen that all
calculated total energies for different supercells are negative. As the number of atoms of
the supercell increases, the absolute value of total energy increases as well. For the same
supercell, the absolute total energy value of the supercell containing a vacancy is smaller
than that for the perfect structure. In addition, the absolute value of the total energy for the
supercell with VC is larger than that with VMo.
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Tables S3 and S4 lists the total energy of Mo2C supercells with substitution, interstitial
and V-related defects. When an atom with a higher atomic number replaces an existing
atom with a lower atomic number, the absolute total energy of supercell rises, and vice
versa. If an additional atom was added in the supercell forming interstitial defects and
the absolute total energy is increased. Moreover, note that the values of total energy for
supercells with IMo or IC are exactly the same although the Mo or C atom occupies different
interstitial positions I and II, which cause the same formation energy of IMo(I) and IMo(II),
as well as IC(I) and IC(II) from Table 1.

Table 1. Formation energy (eV) of point defects and bulk material with defects for Mo2C.

Supercell
Formation Energy

Point Defect Bulk Material

Perfect −0.051
VMo 3.833 0.071
VC 0.410 −0.039
SMo 7.487 0.205
SC 4.232 0.070

IMo(I,II) 10.252 0.308
IC(I,II) 3.210 0.026
SV-Mo −0.761 −0.138
SV-C 5.623 0.128
IV(I) 7.820 0.211
IV(II) 6.991 0.177

According to Equations (1) and (2), the formation energy of point defects and bulk
materials with different defects was calculated and presented in Table 1. All formation
energy values of the point defects are positive, which suggests that all the point defects
are not more energetically favourable compared to perfect Mo2C. Among all the intrinsic
defects, the formation energy for VC defect is the lowest, which shows that VC is the most
stable defect and its chance to exist in the crystal is the highest, followed by IC(I,II) and
SC. It also can be seen that C-related defects are more favourable than metal-based defects,
which is similar to the case in other transition–metal carbides, such as VC and TiC [41].

Table 1 also lists the formation energy of Vanadium-related defects in Mo2C crystal.
It is very interesting to note that SV-Mo is the only defect that has a negative formation
energy value of point defects and bulk materials with defect, which means that this defect
has better stability and it is a favourable trend for Mo atoms to be replaced by V atoms in
the crystal.

3.1.2. Structures and Electronic Properties
VC and SV-Mo

Based on the modelling work of the structure analysis and optimisation, it is found
that SV-Mo and VC are the two most stable defects among all point defects. The negative
formation energy SV-Mo strongly suggests that it will exist in the structure. Figure 2 shows
the optimized structures with these two defects and their electron density difference
distribution (EDDD) in [1120] plane, and the Mulliken atomic charge of Mo and C atoms
in all relaxed structures, as well as bond population for Mo–C bond are listed in Table 2.
For the perfect Mo2C structure, all Mo atoms have the same charge number 0.3, and all C
atoms have the same charge number −0.6. After a point defect was introduced, there is
more than one charge number for the same species, especially for the metal element Mo
because the electron distribution is not symmetric anymore. The charge varies significantly,
especially for the atoms, which are very close to the defect or the defect atom itself, such as
the substituted Mo atom in SMo with the charge number of −0.1, as well as the substituted
C atom in SC with the charge number of −0.37, both of which show big differences from
their original charge.
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Figure 2. Structure model and electron density difference distribution (EDDD) after optimization in
(1120) plane of Mo2C supercell with V-related defect of (a,b) VC and (c,d) SV-Mo. Cyan and grey balls
represent Mo and C atom, red ball represent V atom; grey dashed circle shows the VC position.

Table 2. Mulliken atomic charge and bond population in the supercell with different defects. In
perfect Mo2C structure, atomic charge for Mo and C atom is 0.3 and −0.6, respectively, and all Mo–C
bond populations are 0.33. Note: the numbers in the table may vary by ±0.2.

Defect
Atomic Charge (e) Bond Population

Mo C V Mo–C Bond V–C Bond

VMo 0.36, 0.21, 0.07 −0.61, −0.54 — 0.51, 0.42, 0.35, 0.30, 0.27, 0.13 —
VC 0.28, 0.26 −0.61 — 0.41, 0.33, 0.28 —
SMo 0.31, 0.22, −0.1 −0.61, −0.58 — 0.43, 0.33 —
SC 0.43, 0.34, 0.16 −0.62, −0.54, −0.37 — 0.63, 0.53, 0.42, 0.37, 0.32, 0.27, 0.13 —

IMo(I) 0.54, 0.34, 0.28, 0.09, −0.02 −0.61 — 0.4, 0.36, 0.32, 0.23, 0.12 —
IMo(II) 0.54, 0.34, 0.28, 0.09, −0.02 −0.61 — 0.4, 0.36, 0.32, 0.23, 0.12 —
IC(I) 0.44, 0.33, 0.29, 0.23 −0.61, −0.58 — 0.38, 0.36, 0.33, 0.29, 0.26 —
IC(II) 0.44, 0.33, 0.29, 0.23 −0.61, −0.58 — 0.38, 0.36, 0.33, 0.29, 0.26 —
SV-Mo 0.29, 0.26 −0.61 0.71 0.38, 0.32 0.23
SV-C 0.32, 0.26, 0.13 −0.6 0.33 0.36, 0.33 —
IV(I) 0.34, 0.31, 0.11, 0.05 −0.61 0.56 0.36, 0.31, 0.12 −0.04
IV(II) 0.33, 0.29, 0.11, 0.07 −0.6 0.52 0.36, 0.31, 0.15 0

From Figure 2a, nearly all atom positions for the VC situation seem to be unchanged.
The existence of VC did not change the EDDD result (Figure 2b) and the atomic charge
of the Mo and C atom (Table 2) significantly compared to data for the perfect structure.
The strongest bonds are formed between C atoms in the C-1 layer and Mo12 in the Mo-1
layer, as well as Mo13 in Mo-2 layer (Figure S4) with the bond population of 0.41. From
the analysis of the electronic property of Mo2C with VC, it can be noted that the atoms
in Layer1 barely interact with the atoms in Layer2, maybe because of the larger distance
between these two layers, which also reflects the lamellar structure of this compound.

When SV-Mo defect exists in the structure, it can be seen from Figure 2c that sub-
V atom can fit perfectly in the original Mo position without obvious replacement after
relaxation. Apart from the sub-V atom, all Mo and C atoms in this supercell exhibit a
negligible displacement, eventually forming a perfect stable crystal structure. Similar
situation in respect of electronic properties was observed for SV-Mo as well. No obvious
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change of electron transfer was observed for all Mo and C atoms in EDDD result, as shown
in Figure 2d, while more electron loss is only shown in the surrounding area of the sub-V
atom compared to the Mo atoms in the structure. This finding is also consistent with the
atomic charge of Mo, C and sub-V atoms in Table 2. The atomic charge values of the Mo
atom and C atom, as well as the Mo–C bond population in the supercell are comparable to
those for perfect structure and structure with VC defect. Sub-V atom is found to lose more
electrons due to higher atomic charge 0.71e, but the bond population of V–C is smaller than
all Mo–C bonds with a value of 0.23.

SC and IC

From Figure 3a, if the substitutional C atom exists in the Mo-2 layer, most atoms in
this structure will not move within their own planes, as well as along the [1] direction.
However, during the optimization process, the anti-C atom will move from its original
place downwards gradually to the place that is very close to Layer2 and form the strongest
bond with the Mo atoms in the Mo-3 layer with the bond population of 0.63 from Table 2
and Figure S5. Anti-C atom finishes moving at step-29 out of the total steps of 58 of the
optimization process, and finally stabilised close to the type I interstitial position of the
tetrahedron. This process tends to extend the lattice structure of Layer2 as indicated by
the purple dashed lines in Figure 3a. After relaxation, the atomic charge for the Mo and
C atom and the bond features are more complex than the above-discussed VC and SV-Mo
situation. The electrons that the anti-C atom gained are much less (−0.37e) than normal C
atoms (−0.6e). The change of atomic charges for both the Mo3 atom in Layer1 in Figure 4
and the Mo10 atom at the same place in Layer2 is the largest. The Mo3 atom loses the
most electrons (0.43e), while the Mo10 atom lose the least electrons (0.16e) among all Mo
atoms. In addition, it is interesting to note that the Mo2C supercell with SC transformed
into a structure similar to defect complex VMo+IC(I). Mo2C supercell with defect complex
VMo+IC(I) was also built and analysed in detail; the results are shown in Section 3.2.1.
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Figure 4. EDDD for Mo2C supercell with (a) SC and (b) IC(II) in (1120) plane. Semitransparent grey
balls represent the original position for C atom; Solid grey balls refer to the final position for defect
C atom.

After an interstitial C atom was added in the tetrahedron surrounded by Mo atoms
within the same layer to form type II interstitial defects, inter-C atom cannot stay stably in
the type II interstitial position during the relaxation process, which is shown in Figure 3b.
Instead, it will move downwards gradually, go through Mo-2 layer and finally occupy
the type I interstitial position between the two layers. Similar to situation for SC, inter-C
also tends to arrange in the Layer1 lattice and extend the lattice structure. After structure
optimization, inter-C(II) atom and inter-C(I) atom have similar atomic coordinates and
the atom distributions in both structures are almost the same. IC(I) and IC(II) also show
comparable electronic properties after relaxation. The inter-C atom obtains a few more
electrons than the original C atoms in the structure with the atomic charge of −0.58e, and
the bonds between the inter-C atom and Mo atoms at the vertices of the tetrahedron are the
strongest among all Mo–C bonds in the supercell. These Mo atoms lose the most electrons
with the largest atomic charge of 0.44e.

The cases of IC(I) and IC(II) can be applied for Mo2C supercell with Mo and V intersti-
tial defect as well (Figure S6). Inter-V/Mo(I) atom will shift near to its original position,
while inter-V/Mo(II) atom will move downwards to the position close to the interstitial
position II between the two layers. Structures of IMo(I) and IMo(II) have the same electronic
properties after relaxation, which can be seen from Table 2, while IV(I) and IV(II) exhibits a
slight difference from each other.

3.2. Defect Complexes

There are so many combinations of defect complexes if all intrinsic defects are consid-
ered. In this section, three types of defect complexes were chosen and analysed designated
as: (1) VMo+IC, (2) SV-Mo+VC and (3) SV-Mo+SV-Mo. It is already mentioned in Section 3.1.1
that the SC defect tends to transform into VMo+IC(I) after relaxation, so VMo+IC(I) may be
stable as a preferable type of defect in the structure. From the calculated formation energy
for all intrinsic defects, SV-Mo and VC are the two main stable defects that are most likely
to exist in the Mo2C supercell, so the defect combination of SV-Mo and VC is considered in
this part. In addition, SV-Mo is the defect with the strong negative formation energy of the
defect, so maybe more V atoms tend to replace Mo in the structure, so SV-Mo+SV-Mo and
more combinations will be considered in this section as well.

3.2.1. VMo+IC(I)

During the relaxation process of the Mo2C supercell with VMo+IC(I) defect complex,
inter-C atom moves upward and reaches the final position at step 3 (Figure 5). After step 3,
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inter-C atom barely moves, but other atoms continue to vibrate until step 14. Eventually,
inter-C atom arranges in the lattice Layer2 extending the structure and other atoms still
occupy the original positions, which are similar to the situation of SC and IC. Additionally,
the atom distribution, electron distribution and atomic charge of Mo and C atoms, as well
as the bond population of the Mo2C supercell with VMo+IC(I) are nearly the same as that
with SC if the values from Table 3 are compared with Table 2. Even their formation energy
values of point defects and bulk materials with defect from Table 4 are almost the same after
optimization, which means that VMo+IC(I) and SC are exactly equivalent and VMo+IC(I) is
not a clear favourable defect (with better stability) that can exist in the structure.
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Table 3. Mulliken atomic charge and bond population in the supercell with different defect complexes.
In perfect Mo2C structure, atomic charge for Mo and C atom is 0.3 and −0.6, respectively, and all
Mo–C bond populations are 0.33. Note: the numbers in the table may vary by ±0.2.

Defect
Atomic Charge (e) Bond Population

Mo C V Mo–C Bond V–C Bond

VMo+IC 0.43, 0.34, 0.15 −0.62, −0.54, −0.37 — 0.64, 0.53, 0.42, 0.37,
0.32, 0.27, 0.13 —

SV-Mo+VC 0.26, 0.23, 0.21 −0.61 0.64 0.45, 0.40, 0.33, 0.28 0.21

Table 4. Calculated formation energy and binding energy of Mo2C supercell with defect complexes (eV).

Supercell Total Energy
Formation Energy

Binding Energy
Point Defect Bulk Material

VMo+IC −30,446.788 4.307 0.073 1.635
SV-Mo+VC −32,116.798 0.641 −0.083 −0.768

It is known that when two defects exist in the structure at the same time, the binding
energy can be calculated according to Equation (3). If the binding energy is negative, these
two defects repel each other, whereas a positive value of binding energy indicates that the
two defects attract each other. From Table 4, the positive value of binding energy between
VMo and IC(I) manifests a certain level of attraction between them leading to the obvious
movement of the inter-V atom towards the direction of Mo vacancy.

3.2.2. SV-Mo+VC

When SV-Mo and VC defects exist at the same time, there is no obvious change for the
positions of all atoms in the structure (Figure 6a). After simulation, the atom positions seen
from [1120] direction are almost the same as with those for SV-Mo in Figure 2c. Moreover,
limited changes have been identified in the electronic properties of SV-Mo+VC compared
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to those for SV-Mo, such as EDDD from Figure 6a, atomic charge and bond population
(Table 3).
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From Table 4, SV-Mo+VC has relatively small formation energy values of point defect
and for bulk material, slightly higher than the data for of SV-Mo and VC. This suggests
that the chance of existence of this defect complex is quite a lot higher than other intrinsic
defects or V-related defects. However, due to the positive value of the formation energy
of point defect, this defect complex is not the must-existed one. The binding energy for
SV-Mo+VC is negative, and the absolute value is almost 50% lower than that for VMo+IC,
which indicates that SV-Mo and VC tend to repel each other but not significantly strongly.

3.2.3. SV-Mo Defect Combinations

In this section, four types of SV-Mo+SV-Mo combination are first considered. The original
SV-Mo defect is indicated by a red arrow in Figure 7. Due to different Mo positions in the
supercell, the combination structures between the original SV-Mo (discussed above) and
other SV-Mo defects in the original layer or in different Mo layers in Layer1 and Layer2
are established and calculated. After structure optimization, all atoms stay in the same
position for these four models. The total energy of these models is listed in Table 5 and all
of them have almost the same energy values as represented by the same formation energy
for defect and bulk material. This finding implies that two V atoms can randomly occupy
any original Mo lattice coordinate without obvious bias. As long as one SV-Mo defect forms,
a new V atom may appear at any Mo position and replace the Mo atom. In addition, the
formation energies of the defect and bulk material are both negative and the values are low
compared to all other single defects and defect complexes. Note that among all the defects
we discussed above, SV-Mo has the smallest formation energy value, suggesting that it is
the most stable defect, which will exist in the structure. When two SV-Mo exist in Mo2C
supercell, it is found (Table 5) that the formation energy values are even lower than single
SV-Mo defect, which means that the SV-Mo+SV-Mo combination is more stable than single
SV-Mo.
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defects: (a) original SV-Mo+ SV-Mo in Mo-2 layer (same layer), (b) original SV-Mo+ SV-Mo in Mo-1 layer
(different layer in Layer1), (c) original SV-Mo+ SV-Mo in Mo-3 layer (different layer in Layer2) and
(d) original SV-Mo+ SV-Mo in Mo-4 layer (different layer in Layer2). Cyan and grey balls represent Mo
and C atom, red ball represents V atom.

Table 5. Calculated formation energy and binding energy of Mo2C supercell with different SV-Mo

combinations (eV).

Supercell Total Energy
Formation Energy

Binding Energy
Point Defect Bulk Material

2SV-Mo(I) −32,313.597 −1.464 −0.168 −0.058
2SV-Mo(II) −32,313.602 −1.464 −0.168 −0.058
2SV-Mo(III) −32,313.615 −1.464 −0.168 −0.058
2SV-Mo(IV) −32,313.642 −1.464 −0.168 −0.058

4. Discussion

Defects in crystal and its influence on energy and structures are important for crystal
formation, evolution and phase transitions. The data selected in papers show that first
principles calculation is an effective way to study the effect of the different defects and
establish some important data and trends. The systematic data obtained with both positive
(with clear effect) and negative (no major effects) are all relevant to some important issues,
which cannot be directly obtained solely/effectively from experimental means. Similar to
other transition metal carbides (TMCs), such as monocarbide VC, TiC, and NbC, Mo2C
tends to have C-related defects in the structure. The data show that VC is the most stable
defect among all vacancy, substitution and interstitial defects. However, different from VC
defects in other TMCs (such as TiC, VC, NbC) [41–43] for which will Vc exist inevitably,
VC in Mo2C just has the possibility to appear in the structure due to the positive value of
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the formation energy of point defects (Table 1). In addition, interstitial sites II inside the
same layer (Layer1 or Layer2) shown in Figure 1 are not a preferable or stable position for
any type of atoms (Mo, V and C). The detailed analysis of the geometry optimisation data
shows that the atoms always move to the interface area between the two layers. The typical
case is IC(II), as evident in Figure 3b. When there are C atoms existing between the layer
interface, they tend to arrange next to the Mo atom and expand the lattice structure, which
can be seen from examples, such as SC, IC(I) and VMo+IC(I), in Figures 3a and 5.

The data suggest that V-related defect, SV-Mo, is the one that has a clear negative
formation energy value as the lowest case among all single point defects. This is different
from the effect of the Mo atom in vanadium carbide (VC), as shown in a previous work
by the authors [41]. It was found that VC is a very stable structure, and the only defect
that can exist stably in VC is the C vacancy. Even though Mo has the tendency to enter the
lattice structure and replace the V atom (SMo-V), the existence of Mo in VC is still not stable
based on the energy data [41]. However, the data established in this work clearly show
that when a V atom replaces Mo in β-Mo2C structure, SV-Mo is the main stable point defect
with a low formation energy (Table 1). It is also interesting to note from the systematic data
for defect complexes, SV-Mo is the most stable defect in Mo2C but it has a rather limited
effect on stabilizing carbon vacancy VC and vice versa. This suggests that the combination
of SV-Mo and VC cannot make the structure more stable compared to the influence of the
single type of defects of SV-Mo and VC. The data indicate that a potential way to improve
the stability of the structure is to increase the concentration of SV-Mo. The result of the
formation energy values in Tables 1 and 5 imply a trend that as more V atoms replace
Mo atoms, the structure may become more stable. Systematic supercell models have been
developed with increasing number of V atoms replacing Mo in Mo2C; some typical data
are shown in Figure 8.
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Figure 8. The bulk formation energy and the formation energy of defect with different SV-Mo concen-
tration. (a) Formation energy. (b) Formation energy of defect.

As shown in Figure 8, respectively, the bulk formation energy and the formation of
the defects decreased with the number of SV-Mo. The data for pure Mo2C and V2C are
compared against data published calculations and experimental data [25,26,46,47]. The
data show that the formation of energy of (Mo, V)2C decreased smoothly with increasing
number of V atoms replacing Mo in the system. This reflects the structure similarity
between these two types of compounds. These are relevant to understanding the doping
effect. In addition, given the wide application of Mo and V in steels and exists of different
types of carbides [36–38,44,45,48], the data obtained of this nature may provide useful
information/direction on phase formation/transition in steel/alloy design as increasingly
the first principles calculations data are used in predicting the possible phase transitions
in different systems [45,48,49]. The trend between energy and the concentration of SV-Mo
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is similar to the observation of another published work on applying first-principle study
on the stability of lightly doped (Nb1−xTix)C complex carbides and their verification in
1045 steel [49]. In the work, the effect of Ti atoms sequentially replacing zero, three, six, and
nine Nb atoms in nonstoichiometric carbides (Nb1−xTix)C is studied, the total energy of
(Nb1−xTix)C is found to be correlated to the number of Ti atoms following a general linear
trend. As an important development in terms of the effective use of the first principles
approaches in alloys [46], the data/trend established were successfully used to guide
the design of the complex carbides and correlated to purposely designed experimental
data. This is an effective application case of combining first principles calculations and
alloy design for phase engineering. The Mo–V system is drawing increasing attention
recently. Mo2C is an important material relevant to many different functions including
mechanical, catalyst and, more recently, H2 trapping, including V-doped Mo2C [50–54];
the data established of the structural and energy characteristics and the effect of different
defects and defect complexes in Mo2C is relevant to many focuses of continuous and further
studies. One area is the data on the magnetic moments, electrical and other functional
properties. Future work will systematically screen the effects of defects in the magnetic
moment in Mo2C in comparison with other simple or multicomponent carbides. The
work on defects is also relevant to the effect of radiations. Even though the materials
studied are not widely used as a bulk ceramic in nuclear-related applications, but they are
related to some advanced alloys that serve under the radiation environment of different
scales. The sensitivity of different defects and materials to radiation is of interest for future
studies. It is easy to link the work to the direct doping of V of Mo2C [50,51]. For example,
increasing the V content in β-(Mo1–xVx)2C retards the onset of reduction and strongly
influences the kinetics of carburization [50]. In the work by Cotter et al. [52], (Mox, V1−x)2C
was found to have a high surface area. The Mo–V carbide system in alloys is important
but more complicated. β-Mo2C has more a complex structure than other cubic carbides
system, the data related to Mo2C and its interaction with other elements need further
systematic studies. In steels containing Mo, with no nitrogen, M2X is often close to the
ideal Mo2C composition with HCP structures (β) [53]. In previous works [36–40], M2C was
identified as a Mo-rich carbide in Fe–Cr–W–Mo–V–C alloys, and there is a tendency for
Mo2C disappearing gradually and transforming into V-dominated carbide eventually [40].
A recent work by Seo et al. [53] show that V–Mo system could effectively increase its
hydrogen-trapping capability but clarifying the precipitation of Mo carbides need to be
further investigated. The favourable trend of V replacing Mo could potentially offer
additional insight/data to the understanding of Mo-related carbides, which is difficult to be
observed in full experimentally. This will help unlock some key links of knowledge in phase
formation and transformation in advanced alloy design by combing the framework of first
principles calculations (detailed data/trend analysis) and thermal dynamic simulations
with controlled advanced experiments [39,40,49,53,55–60].

5. Conclusions

This work developed systematic data using first principles calculations of energy and
structure of the point defects, Vanadium-related defects and defect combinations (vacancy
(V), substitutional (S) and/or interstitial (I)) in molybdenum β-Mo2C.) Detailed analysis
shows that C-related defects are more favourable than metal-based defects and VC is the
most stable defect among all the single intrinsic defects in pure β-Mo2C. However, due
to having a higher formation energy than the perfect structure, VC is not the inevitably
existed defect. SV-Mo has negative and the smallest formation energy value making it the
most stable defect among all single point defects and V-related defects. The data show
that interstitial site II is a very unstable position for any type of atoms (Mo, V and C) in
β-Mo2C, and the atom always moves to the interface area near interstitial site I between
two layers. The C atom tends to arrange next to the Mo atom and extend lattice structure
if it exists between the layer interfaces. The formation energy of the bulk material and
the formation energy of the defects continuously decreases with an increasing number of
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SV-Mo. The data with increasing SV-Mo in the (Mo, V)2C system are developed, and typical
data (e.g., formation energy) for Mo-rich carbides and V carbides are correlated, and the
potential use of the data in analysing the transition of different carbides is highlighted.
The use of first principles calculation data for analysing the link between different Mo–V
carbides and the effects of doping elements is discussed. The relevance of using first
principles calculation data in studying complex carbides evolution and future focus is also
highlighted.
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