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Abstract: In this paper, eight variables of cement, blast furnace slag, fly ash, water, superplasticizer,
coarse aggregate, fine aggregate and flow are used as network input and slump is used as network
output to construct a back-propagation (BP) neural network. On this basis, the learning rate, mo-
mentum factor, number of hidden nodes and number of iterations are used as hyperparameters to
construct 2-layer and 3-layer neural networks respectively. Finally, the response surface method
(RSM) is used to optimize the parameters of the network model obtained previously. The results
show that the network model with parameters obtained by the response surface method (RSM) has
a better coefficient of determination for the test set than the model before optimization, and the
optimized model has higher prediction accuracy. At the same time, the model is used to evaluate the
influencing factors of each variable on slump. The results show that flow, water, coarse aggregate
and fine aggregate are the four main influencing factors, and the maximum influencing factor of flow
is 0.875. This also provides a new idea for quickly and effectively adjusting the parameters of the
neural network model to improve the prediction accuracy of concrete slump.

Keywords: BP neural network; response surface method; parameter optimization; slump;
determination coefficient; root mean square error

1. Introduction

With the development of concrete technology and performance, high-performance
concrete and self-compacting concrete have been widely used. These concrete constructions
no longer simply consider the strength of the concrete, but also consider the durability and
workability of the concrete. Concrete starts to be mixed in the mixing station until it is
transported to the site for pouring, but it takes time for transportation and parking on the
way, which makes the workability of the concrete worse. The slump loss of concrete directly
affects the workability of concrete, causes difficulties for construction, may bring about
construction accidents and affects the quality of hardened concrete. Therefore, analyzing
the causes of excessive concrete slump has particular significance for preventing the loss of
concrete slump, thereby improving the workability of concrete.

Regarding global construction material usage [1], concrete is one of the most in-
demand and most adaptable materials. Slump is an important indicator to measure the
uniformity of concrete quality. It is reflected in the fact that the slump slows down the
hardening speed of concrete and causes the strength after hardening to be low, which
greatly affects the quality of the project. The test procedure is shown in Figure 1 [2].

Materials 2022, 15, 4721. https://doi.org/10.3390/ma15134721 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15134721
https://doi.org/10.3390/ma15134721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-3526-2786
https://doi.org/10.3390/ma15134721
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15134721?type=check_update&version=2


Materials 2022, 15, 4721 2 of 20

Precise control of slump [3,4] is a prerequisite for ensuring the excellent performance
of concrete. In practical engineering, the slump measurement test often requires a lot
of time, manpower and material resources, and it is difficult to obtain the test results
quickly and accurately. Therefore, the study of a concrete slump prediction model [5,6] is
of extraordinary significance for the theory and application of construction engineering.
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Figure 1. Slump test process, (a) schematic diagram of the slump test operation process, step1: first
concrete addition, step2: second concrete addition, step3: third concrete addition, step4: smoothing
the mouth of the barrel, step5: demoulding, step6: slump measurement; (b) schematic diagram of
slump test measurement.

With the advancement of science and technology and the development of the con-
struction industry, civil engineering has put forward higher and higher requirements for
the performance of concrete materials, and the traditional mix design method [7] largely
relies on the experience of designers. Recently, civil and architectural researchers have
gradually introduced artificial neural network [8], genetic algorithm [9] and other artificial
intelligence sciences into the optimization design of concrete mix ratio and have achieved
a series of scientific research results. X. Hu [10] et al. proposed an ensemble model for
concrete strength prediction, and gave measures to improve its prediction accuracy, such
as optimizing features, ensemble algorithms, hyperparameter optimization, expanding
sample data sets, richer data sources and data preprocessing, etc. M. Shariati [11] et al.
used a hybrid artificial neural network genetic algorithm (ANN-GA) as a new method
to predict the strength of concrete slag and fly ash. The results show that the ANN-GA
model can not only be developed and adapted to the compressive strength prediction of
concrete, but it can also produce better results compared to the artificial neural network
back propagation (ANN-BP) model. I-Yeh [12,13] described methods for predicting slump
and compressive strength of high-performance concrete. Venkata [14] et al. proposed a
feasibility assessment of strength properties of self-compacting concrete based on artificial
neural networks. Duan [15] et al. used artificial neural network to predict the compressive
strength of recycled aggregate concrete and achieved good results. Ji [16] et al. proposed
an in-depth algorithmic study of concrete mix ratios using neural network. Demir [17]
predicted the elastic modulus of ordinary and high-strength concrete by using artificial
neural networks. Vinay [18] predicted ready-mixed concrete slump based on genetic algo-
rithm. Li Dihong [19] et al. predicted the comprehensive properties of concrete with back
propagation neural network. I-Cheng Yeh [20] and Ashu Jain [21] respectively proposed
an optimal design method of concrete mix ratio based on artificial neural networks. Wang
Jizong [22], Chul-Hyun Lim [23], Liu Cuilan [24], and I-Cheng Yeh [25] applied the genetic
algorithm to the optimal design of concrete mix ratios.

To sum up, although the neural network has been widely used in civil engineering, it is
relatively rare to apply it to concrete slump prediction and model parameter optimization.
Therefore, this paper plans to use the BP neural network model to predict the slump
of concrete and uses eight variables, such as cement, blast furnace slag, fly ash, water,
superplasticizer, coarse aggregate, fine aggregate and flow as the network input, and slump
as the network output. The learning rate, momentum factor, number of hidden nodes and
the number of iterations are used as hyperparameters to build 2-layer and 3-layer neural
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networks. Finally, the parameters of the prediction model are studied through single factor
and RSM in order to obtain a wider range of optimal parameter solutions. The research
process of this paper is shown in Figure 2.
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2. Establishment of a Concrete Slump Model Based on BP Neural Network
2.1. Introduction to BP Neural Network

Artificial neural networks, also known as neural networks (NNs), are composed of
widely interconnected processing units. They can not only accurately classify [26,27] a
large number of unrelated data but also have a good predictive function. The function
between the input and output of each neuron is called the activation function, also known
as the S-shaped growth curve. The structure of the neural network essentially imitates the
structure and function of the human brain nervous system to establish a neural network
model. It is a highly complex information processing system, and its network architecture is
based on a specific mathematical model, as shown in Figure 2. The shown neural network
architecture (take three layers as an example), including input layer, hidden layer and
output layer [28–30]. Most neural networks are based on back propagation, and the back
propagation training (back propagation: BP) algorithm adjusts the weights of neurons
through the gradient descent method [31], the purpose is to minimize the error between the
actual output and the expected output of the multilayer feedforward [32] neural network.
In other words, until the mean square error of all training data is minimized to the specified
error range.

The BP neural network learning algorithm can be described as the most successful
neural network learning algorithm. When using neural networks in display tasks, most of
them use BP algorithm for training. The network model in this paper contains the basic
structure of the BP neural network, namely the input layer, hidden layer and output layer.
The signal is activated through the input layer and then the features are extracted through
the hidden layer. The neural units of different hidden layers may have different weights
and self-biases corresponding to different input layers. The excitation of the input layer is
transmitted to the hidden layer, and finally the output layer generates results according
to different hidden layers, layer weights and self-bias. The algorithm flow chart of the BP
neural network is shown in Figure 3. The activation function adopts the Sigmoid function,
and the operation principle of the Sigmoid function is as follows:
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The first is the linear feature normalization function:

Xnorm = X − Xmin /Xmax − Xmin (1)

Linear normalization: Perform linear transformation on the original data to map the
data between [0, 1] to achieve equal scaling of the data. The specific announcement is
shown in formula (1). where X is the original data, Xmin is the minimum value of the data,
and Xmax is the maximum value of the data.

The overall density of the probability is 1, and when the X vector is used as a constant
exponential vector, the result is the inverse proportion of the whole function on the Y axis.
So Sigmoid is defined as [33]:

Sigmoid =
1

1 + e−X (2)

In this way, the probability of the vector can be normalized, and its value is between
plus and minus 1.

The neurons in each layer of the network adopt the gradient descent momentum
learning method, which is expressed as follows [34]:

dω = mc × dωprev + (1 − mc)× lr × gω (3)

where:
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dω = the amount of change in the weight (threshold) of a single neuron;
dωprev = the amount of change in neuron weight (threshold) value in the

previous iteration;
mc = momentum factor;
lr = learning rate;
gω = weight (threshold) gradient.

2.2. Samples and Network Input and Output

This test is a dataset composed of 103 sets of experimental data, and the data come
from the network public test data of Prof. I-Cheng Yeh [35], including eight variables,
such as cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine
aggregate, flow (fluidity refers to the ability of the cement mortar mixture to generate
fluidity and fill the mold uniformly and densely under the action of its own weight or
mechanical vibration. Slump is one of the key indicators reflecting the flow properties of
concrete. The two influence each other, and the flow of cement mortar affects the size of
concrete slump. The introduction of the flow of the cement mortar makes the results of the
model more convincing.). The concrete mix proportion is shown in Table 1 and Figure 4.
Among them, cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate,
fine aggregate and flow are the inputs of neural network variables, and the slump is the
output of variables.

Table 1. Concrete mix ratio.

Mix
Ratio

Cement
(kg/m3)

Blast
Furnace Slag

(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

Superplasticizer
(kg/m3)

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)

Flow
(mm)

Slump
(cm)

C-1 273 82 105 210 9 904 680 62 23
C-2 162 148 190 179 19 838 741 20 1
C-3 147 89 115 202 9 860 829 55 23
C-4 145 0 227 240 6 750 853 58.5 14.5
C-5 148 109 139 193 7 768 902 58 23.75
C-6 374 0 0 190 7 1013 730 42.5 14.5

...
...

...
...

...
...

...
...

...
...

C-102 150.3 111.4 238.8 167.3 6.5 999.5 670.5 36.5 14.5
C-103 303.8 0.2 239.8 236.4 8.3 780.1 715.3 78 25
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2.3. Network Data Preprocessing

Data preprocessing can help improve the quality of data, which in turn helps improve
the effectiveness and accuracy [36] of the data mining process. The specific work includes
the following:
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(1) Shuffle the data: Shuffling the data before model training can effectively reduce the
variance [37,38] and ensure that the model remains general while reducing overfitting.

(2) Outlier processing: It is inevitable that we will have a few data points that are signifi-
cantly different from other observations during training. A data point is considered
to be an outlier [39] if it lies 1.5 times the interquartile range below the first quartile
or above the third quartile. The existence of outliers will have a serious impact on
the prediction results of the model. Therefore, our processing of outliers [40,41] is
generally to delete them. Figure 5 is a box diagram of the model’s slump distribution.
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From the figure, we can see that the slump of all the data is mostly concentrated
between 14–24 cm. There are a few outliers below its lower limit, and the overall data are
relatively healthy.

(3) Split the dataset as follows: the training set accounts for 70%, the test set accounts for
30% and the feature variables are kept separate from the test set and training set data.

(4) Standardized data: There are three main methods for data standardization, namely
minimum–maximum standardization, z-score standardization and decimal standard-
ization. This paper adopts the z-score method, also called standard deviation nor-
malization, the mean value of the data processed by it is 0 and the variance is 1. It
is currently the most commonly used standardization method. The formula is as
follows:

x∗ =
x − x

σ
(4)

where x is the mean value of the corresponding feature and σ is the standard deviation.

Part of the processed training data is shown in Table 2:

Table 2. Normalized training set.

Serial Number Cement Slag Fly Ash Water SP Coarse Aggr Fine Aggr Flow

98 0.148284 0.417310 1.075807 −1.460561 −0.168038 0.820139 −1.569612 −1.711562
81 −1.206461 −1.099031 0.921458 0.504346 −1.210391 1.567436 −0.873459 0.885664
75 −1.09526 0.553305 −0.112678 −0.243228 −0.800895 0.123258 0.676771 0.561011
53 0.908293 −1.299623 −0.077259 1.019566 0.688181 0.347335 −0.934695 0.767608
46 0.545192 0.264316 −0.362010 0.463936 0.315912 0.022423 −0.950810 0.885664

Note: Slag—blast furnace slag, SP—superplasticizer, Coarse Aggr—coarse aggregate, Fine Aggr—fine aggregate.

2.4. Model Parameter Selection

The optimization parameters of the slump prediction model considered in this study
include the learning rate, momentum factor, the number of hidden nodes in the first
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layer, the number of hidden nodes in the second layer and the number of iterations. The
coefficient of determination (R2) and the root mean square error (RMSE) are used as
evaluation indicators for the network model. The range values are shown in Table 3, where
the number of two-layer and three-layer BP neural network models are 9 × 10 × 10 ×
10 and 9 × 10 × 10 × 10 × 10 groups, respectively. Due to the large number and types
of parameters, it is quite difficult to find the optimal solution of the model parameters to
establish a high-quality concrete slump prediction model. There are three main methods for
parameter optimization: algorithm-based, machine-assisted method and manual parameter
adjustment [42,43]. Based on the BP neural network algorithm, this study using machine
learning as the main method, and optimizing the model parameters by manually adjusting
the parameters.

Table 3. Value range of neural network parameters.

Parameter Type Parameter Selection Range

learning rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
momentum factor 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -

number of hidden nodes in the first layer 3 4 5 6 7 8 9 10 11 12
number of hidden nodes in the second layer 3 4 5 6 7 8 9 10 11 12

number of training iterations 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

The parameters of each optimization variable are shown in Table 4, where the value of
learning rate is 0.1~1.0 and the increment is 0.1; the value of momentum factor is 0.2~1.0,
and the increment is 0.1; the value of number of hidden nodes in the first layer is 0.1; the
value is 3~12 and the increment is 1; the parameter selection of number of hidden nodes in
the second layer is the same as that of number of hidden nodes in the first layer; the value
of number of training iterations is 500~5000 and the increment is 500.

Table 4. Some examples of batch slump modeling.

Momentum Factor Learning Rate Number of
Hidden Nodes

Number of
Iterations R2 RMSE

0.2 0.1 3 2500 0.862279 3.2887
0.2 0.1 4 2500 0.842614 3.4821
0.2 0.1 5 2500 0.807051 4.0261
0.2 0.1 6 2500 0.763754 4.5256
0.2 0.1 7 2500 0.77447 4.4553
0.2 0.1 8 2500 0.804214 4.1351
0.2 0.1 9 2500 0.771077 4.5278
0.2 0.1 10 2500 0.759843 4.2585
0.2 0.1 11 2500 0.73613 4.66
0.2 0.1 12 2500 0.847652 4.8972

3. Research on Two-Layer Neural Network
3.1. Single Factor Design Experiment of Two-Layer Neural Network

As seen in Table 3, the two-layer neural network involves experimental factors, includ-
ing learning rate, momentum factor, the number of hidden nodes in the first layer and the
number of iterations. Considering that the level of each parameter is large, it will lead to
too many trials, and it is not convenient to observe the optimal solution parameter solu-
tion. Therefore, this study uses a single-factor experimental design based on the bisection
method to obtain the optimal parameter solution without considering the interaction of
various factors, aiming to narrow the range of the level of each parameter.

Considering this, parameter optimization is carried out in the established slump model.
First, the learning rate, momentum factor and the number of hidden nodes in the first layer
are tentatively set to 0.5, 0.6 and 7, respectively, and the optimal number of iterations is
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obtained, as shown in Table 5. The two parameters of the number of nodes are fixed to
obtain the optimal value of the learning rate, and the same processing method is adopted
in turn to finally obtain the optimal value of each parameter, as shown in Figure 6.

Table 5. The impact of different iteration times on network performance.

Serial Number LR MF HU Epochs R2 RMSE

1 0.5 0.6 7 3500 0.79033 6.791
2 0.5 0.6 7 500 0.74777 7.00612
3 0.5 0.6 7 3000 0.71497 7.60734
4 0.5 0.6 7 2500 0.7039 7.61213
5 0.5 0.6 7 1500 0.6864 7.72466
6 0.5 0.6 7 1000 0.65952 8.06336
7 0.5 0.6 7 2000 0.69084 8.07128
8 0.5 0.6 7 4000 0.73372 8.10192
9 0.5 0.6 7 4500 0.71407 8.89968

10 0.5 0.6 7 5000 0.66591 9.78058
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Figure 6. The influence of each single factor on two-layer neural network performance.

It can be seen from Figure 6a that RMSE showed a trend of first decreasing and then
increasing with the increasing number of iterations, R2 showed a trend of first increasing
and then decreasing with the increasing number of iterations, and the network performance
reached the best when the number of iterations was 3500. Figure 6b–d show that when
the learning rate, momentum factor and the number of hidden nodes in the first layer are,
respectively 0.2, 0.3 and 4, the network performance is in its best state.

According to this single-factor experimental design, a set of the optimal solutions of
parameters without considering interaction are obtained, as shown in Table 6. Thereby
narrowing the range of the level value of each factor.
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Table 6. Optimal parameter solution under single factor design with two-layer neural network.

Hidden Layers Number of
Hidden Nodes Learning Rate Momentum

Factor

Number of
Training
Iterations

1 4 0.2 0.3 3500

3.2. Response Surface Method Test of Two-Layer Neural Network

Response surface optimization method, namely response surface methodology (RSM),
is a method for optimizing experimental conditions, which is suitable for solving prob-
lems related to nonlinear data processing. Through the regression fitting of the process
(as shown in the Equation (5)) and the drawing of the response surface and the contour
line, the response value corresponding to each factor level can easily be obtained. On the
basis of the response value of each factor level, the predicted optimal response value and
the corresponding experimental conditions can be found.

Y = B0 +
k

∑
i

BiXi +
k

∑
i

BiiX2 +
k

∑
ij

BijXiXj (5)

where Y represents the response function (in our example, R2 and RMSE); B0 is a con-
stant coefficient; Bi, Bii and Bij are the coefficients of linear term, quadratic term [44] and
interaction term, respectively.

3.2.1. Model Establishment and Significance Test of a Two-Layer Neural Network

Single factor experiments show that the learning rate, the number of hidden nodes and
the number of iterations have a significant impact on network performance. On this basis,
R2 (Y1) and RMSE (Y2) should be taken as the response values and four factors that have
a significant impact on network performance: learning rate (X1), momentum factor (X2),
number of hidden nodes (X3) and iteration. The number of times (X4) is the investigation
factor. The Box–Behnken test factors and levels are shown in Table 7, and the test results
and analysis are shown in Table 8.

Table 7. Parameter optimization of Box–Behnken test factors and levels with two-layer neural network.

Factor −1 0 1

Learning rate 0.1 0.2 0.3
Momentum factor 0.2 0.3 0.4

Number of hidden nodes 3 4 5
Number of iterations 2500 3500 4500
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Table 8. Parameter optimization of Box–Behnken test results and analysis with two-layer neural network.

Serial
Number X1 X2 X3 X4 Y1 Y2

1 0.1 0.2 4 3500 0.91166 3.63823
2 0.3 0.2 4 3500 0.82037 5.58347
3 0.1 0.4 4 3500 0.90076 3.90087
4 0.3 0.4 4 3500 0.84698 4.92102
5 0.2 0.3 3 2500 0.89911 4.01026
6 0.2 0.3 5 2500 0.87238 4.529
7 0.2 0.3 3 4500 0.88607 4.27762
8 0.2 0.3 5 4500 0.87633 4.43749
9 0.1 0.3 4 2500 0.92411 3.40633
...

...
...

...
...

...
...

28 0.2 0.3 4 3500 0.88984 4.19149
29 0.2 0.3 4 3500 0.87953 4.07428

Note: Design-Expert is a statistical software package from Stat-Ease Inc.

When using Design-Expert V10.07 software to fit Y1 and Y2 in Table 8, the regression
Equation can be obtained:

Y1 = +0.88 − 0.028X1 + 1.540 × 10−3X2 − 9.586 × 10−3X3 − 4.681 × 10−3X4
+9.378 × 10−3X1X2 + 4.270 × 10−3X1X3 − 1.483 × 10−3X1X4 + 9.6 × 10−4X2X3
−1.543 × 10−3X2X4 + 4.247 × 10−3X3X4 − 1.926 × 10−3X1

2 − 6.141 × 10−3X2
2

−2.484 × 10−4X3
2 + 5.748 × 10−3X4

2

Y2 = 4.20 + 0.64X1 − 0.028X2 + 0.2X3 + 0.095X4 − 0.23X1X2 − 0.094X1X3 + 0.029X1X4
−0.046X2X3 + 0.02X2X4 − 0.09X3X4 + 0.056X1

2 + 0.17X2
2 + 0.12X2

3 − 0.092X2
4

The analysis of variance is performed on the above regression equation, and the results
are shown in Tables 9 and 10.

Table 9. Regression equation coefficients and significance test (R2) (two-layer neural network).

Source Sum of Squares df Mean Square F Value p-Value Prob > F Significance

Model 0.012 14 8.607 × 10−4 8.41 0.0001 significant
X1 9.547 × 10−3 1 9.547 × 10−3 93.28 <0.0001 **
X2 2.846 × 10−5 1 2.846 × 10−5 0.28 0.6062
X3 1.103 × 10−3 1 1.103 × 10−3 10.77 0.0055 **
X4 2.629 × 10−4 1 2.629 × 10−4 2.57 0.1313

X1 × 2 3.518 × 10−4 1 3.518 × 10−4 3.44 0.085
X1 × 3 7.293 × 10−5 1 7.293 × 10−5 0.71 0.4128
X1 × 4 8.791 × 10−6 1 8.791 × 10−6 0.086 0.7738
X2 × 3 3.686 × 10−6 1 3.686 × 10−6 0.036 0.8522
X2 × 4 9.517 × 10−6 1 9.517 × 10−6 0.093 0.7649
X3 × 4 7.217 × 10−5 1 7.217 × 10−5 0.71 0.4152

X12 2.406 × 10−5 1 2.406 × 10−5 0.24 0.6353
X22 2.446 × 10−4 1 2.446 × 10−4 2.39 0.1444
X32 5.259 × 10−7 1 5.259 × 10−7 5.139 × 10−3 0.9439
X42 2.143 × 10−4 1 2.143 × 10−4 2.09 0.1699

Residual 1.433 × 10−3 14 1.024 × 10−4

Lack of Fit 1.335 × 10−3 10 1.335 × 10−4 5.44 0.0584 not significant
Pure Error 9.810 × 10−5 4 2.452 × 10−5

Note: “**” means very significant influence on the result (p < 0.01).
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Table 10. Regression equation coefficients and significance test (RMSE) (two-layer neural network).

Source Sum of Squares df Mean Square F Value p-Value Prob > F Significance

Model 6.12 14 0.44 17.83 <0.0001 significant
X1 4.86 1 4.86 198.19 <0.0001 **
X2 9.479 × 10−3 1 9.48 × 10−3 0.39 0.5441
X3 0.49 1 0.49 20.01 0.0005 **
X4 0.11 1 0.11 4.39 0.0547

X1 × 2 0.21 1 0.21 8.72 0.0105 *
X1 × 3 0.035 1 0.035 1.44 0.2501
X1 × 4 3.39 × 10−3 1 3.39 × 10−3 0.14 0.7157
X2 × 3 8.43 × 10−3 1 8.43 × 10−3 0.34 0.5669
X2 × 4 1.64 × 10−3 1 1.64 × 10−3 0.067 0.7999
X3 × 4 0.032 1 0.032 1.31 0.2711

X12 0.02 1 0.02 0.82 0.3798
X22 0.18 1 0.18 7.21 0.0178 *
X32 0.087 1 0.087 3.54 0.081
X42 0.055 1 0.055 2.24 0.1566

Residual 0.34 14 0.025
Lack of Fit 0.31 10 0.031 4.04 0.0951 not significant
Pure Error 0.031 4 7.72 × 10−3

Note: “*” means significant influence on the result (p < 0.05); “**” means very significant influence on the
result (p < 0.01).

From Tables 9 and 10, it can be seen that F1 = 8.41, F2 = 17.83 and the p value of Y1 and
Y2 is less than 0.0001, which indicates that the model is very significant, and the lack of fit
term is greater than 0.05, which is not significant. This indicates that the regression equation
fits the experiment. The situation is good, and unknown factors have little interference
on the experimental results, indicating that the residuals are all caused by random errors.
This model has high reliability. After analysis of variance, the primary and secondary
order of the influence of the four factors on R2 and RMSE is X1 > X3 > X4 > X2, that is,
learning rate > number of hidden nodes > number of iterations > momentum factor. In
Y1, the first-order terms X1 and X3 have extremely significant effects on the results; in
Y2, the first-order terms X1 and X3 have extremely significant effects on the results, the
interaction terms X1 × 2 have significant effects on the results and the quadratic term X22
has significant effects on the results.

3.2.2. Response Surface Method Analysis of Two-Layer Neural Network

The response surface curve and contour lines of the interaction of learning rate,
momentum factor, number of hidden nodes and number of iterations on R2 and RMSE are
shown in Figure 7.

The response surface diagram can intuitively indicate the degree of influence of factors
on the response value. The more significant the influencing factor, the steeper the slope
of the surface. The shape of the contour line can determine the strength of the interaction
between the two variables. An ellipse indicates that the interaction between the two factors
is significant, and a circle indicates that the interaction between the two factors is not
significant.

Figure 7 shows the interaction of learning rate, momentum factor, number of iterations
and number of hidden nodes on R2 and RMSE. As can be seen from the results, the
interaction between the learning rate and the other three factors is the most significant,
which is basically consistent with the significance conclusion obtained by the above analysis
of variance. The optimal parameters of the model for predicting concrete slump based
on a BP neural network are: lr = 0.1, mf = 0.3, noi = 2669 and nohn = 3, where lr stands
for learning rate, mf stands for momentum factor, noi stands for number of iterations and
nohn stands for the number of hidden nodes. The constructed model with the optimized
parameters is used for verification on the training set, and the results are R2 = 0.927 and
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RMSE = 3.373. At the same time this optimized model is used for verification on the test
set. After verification, the results are R2 = 0.91623 and RMSE = 3.60363. However, the R2 of
the two-layer baseline model without RSM optimization is only 0.53484509.
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3.2.3. Analysis of Slump Influencing Factors Based on Two-Layer Neural Network

Using the optimized parameters to build a two-layer neural network, the training set
and the test set were evaluated and verified and the influencing factors of eight variables
on the slump were obtained. A bar graph of the effect of each variable on slump is shown
in Figure 8.
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Figure 8. A bar graph of each variable’s effect on slump with two-layer neural network.

It can be seen from Figure 8 that the order of influence on slump is flow > coarse
aggregate > water > fine aggregate > fly ash > cement > blast furnace slag > superplasti-
cizer. Flow and coarse aggregate are the top two influencing factors with 0.901 and 0.045,
respectively. Superplasticizer and blast furnace slag are the two low influencing factors
with 0.0006 and 0.0042, respectively.

4. Research on Three-Layer Neural Network
4.1. Single Factor Design Experiment of Three-Layer Neural Network

The single-factor optimization method of the parameters of the three-layer neural
network model is similar to the two-layer neural network and, finally, the optimal value of
each parameter is obtained, as shown in Figure 9.

It can be seen from Figure 9a that RMSE and R2 show decreasing and increasing trends
as the number of iterations increase, and the network performance reaches its best when
the number of iterations is 500. Figure 9b–e shows that when the learning rate, momentum
factor, the number of hidden nodes in the first layer and the number of hidden nodes in the
second layer are, respectively, 0.1, 0.2, 10 and 5, the network performance is in its best state.

According to this single-factor experimental design, a set of optimal solutions of
parameters without considering interaction are obtained, as shown in Table 11. Thereby
narrowing the range of the level of each factor.
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Table 11. Optimal parameter solution under single factor design with three-layer neural network.

Hidden Layers
Number of

Hidden Nodes in
the First Layer

Number of
Hidden Nodes in
the Second Layer

Learning Rate Momentum
Factor

Number of
Training
Iterations

2 10 5 0.1 0.2 500

4.2. Response Surface Method Test of Three-Layer Neural Network
4.2.1. Model Establishment and Significance Test of Three-Layer Neural Network

Single-factor experiments show that the learning rate, momentum factor, and number
of iterations have a significant impact on network performance. On this basis, R2 (Y1) and
RMSE (Y2) can be taken as the response values, and five factors that have a significant
impact on network performance (learning rate (X1), momentum factor (X2), and number of
hidden nodes in the first layer (X3), the number of hidden nodes in the second layer (X4)
and the number of iterations (X5)) are the inspection factors. The Box–Behnken test factors
and levels are shown in Table 12, and the test results and analysis are shown in Table 13.

Table 12. Parameter optimization Box–Behnken test factors and levels with three-layer neural network.

Factor −1 0 1

Learning rate 0.1 0.2 0.3
Momentum factor 0.2 0.3 0.4

Number of hidden nodes in the first layer 9 10 11
Number of hidden nodes in the second layer 4 5 6

Number of iterations 500 1000 1500

Table 13. Parameter optimization Box–Behnken test results and analysis with three-layer neural network.

Serial Number X1 X2 X3 X4 X5 Y1 Y2

1 0.1 0.2 10 5 1000 0.92751 3.34314
2 0.3 0.2 10 5 1000 0.88953 4.18801
3 0.1 0.4 10 5 1000 0.92129 3.50721
4 0.3 0.4 10 5 1000 0.85525 5.00808
5 0.2 0.3 9 4 1000 0.90766 3.8023
6 0.2 0.3 11 6 1000 0.90218 3.93189
7 0.2 0.3 9 4 1000 0.8861 4.26569
8 0.2 0.3 11 6 1000 0.9051 3.82795
9 0.2 0.2 10 5 500 0.91646 3.59023
...

...
...

...
...

...
...

...
45 0.2 0.3 10 5 1000 0.8715 4.28419
46 0.2 0.3 10 5 1000 0.8857 4.32548

Using Design-Expert V10.07 software to fit Y1 and Y2 in Table 13, the regression
equation can be obtained:

Y1 = +0.88 − 0.018X1 − 8.988 × 10−3X2 − 3.406 × 10−3X3 − 5.57 × 10−3X4 − 0.017X5
−7.015 × 10−3X1X2 + 1.9 × 10−3X1X3 − 0.01X1X4 + 3.412 × 10−3X1X5 − 2.757 × 10−3X2X3
−4.39 × 10−3X2X4 − 6.94 × 10−3X2X5 + 6.12 × 10−3X3X4 − 4.565 × 10−3X3X5
−7.67 × 10−3X4X5 + 0.013X1

2 + 4.512 × 10−3X2
2 + 0.012X3

2 + 0.011X2
4 + 9.773 × 10−3X2

5

Y2 = +4.31 + 0.4X1 + 0.19X2 + 0.064X3 + 0.12X4 + 0.39X5 + 0.16X1X2 − 0.056X1X3
+0.23X1X4 − 0.098X1X5 + 0.037X2X3 + 0.88X2X4 + 0.11X2X5 − 0.14X3X4 + 0.11X3X5
+0.16X4X5 − 0.21X1

2 − 0.033X2
2 − 0.22X2

3 − 0.16X2
4 − 0.14X2

5

The analysis of variance is performed on the above regression equation, and the results
are shown in Tables 14 and 15.
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Table 14. Regression equation coefficients and significance test (R2) (three-layer neural network).

Source Sum of Squares df Mean Square F Value p-Value Prob > F Significance

Model 0.016 20 7.88 × 10−4 10.21 <0.0001 significant
X1 5.323 × 10−3 1 5.323 × 10−3 68.99 <0.0001 **
X2 1.293 × 10−3 1 1.293 × 10−3 16.75 0.0004 **
X3 1.856 × 10−4 1 1.856 × 10−4 2.41 0.1335 **
X4 4.964 × 10−4 1 4.964 × 10−4 6.43 0.0178 *
X5 4.399 × 10−3 1 4.399 × 10−3 57.02 <0.0001 **

X1X2 1.968 × 10−4 1 1.968 × 10−4 2.55 0.1228
X1X3 1.444 × 10−5 1 1.444 × 10−5 0.19 0.669
X1X4 4.19 × 10−4 1 4.19 × 10−4 5.43 0.0281 *
X1X5 4.658 × 10−5 1 4.658 × 10−5 0.6 0.4444
X2X3 3.042 × 10−5 1 3.042 × 10−5 0.39 0.5358
X2X4 7.709 × 10−5 1 7.709 × 10−5 1 0.3271
X2X5 1.927 × 10−4 1 1.927 × 10−4 2.5 0.1266
X3X4 1.498 × 10−4 1 1.498 × 10−4 1.94 0.1757
X3X5 8.336 × 10−5 1 8.336 × 10−5 1.08 0.3086
X4X5 2.353 × 10−4 1 2.353 × 10−4 3.05 0.093
X1

2 1.451 × 10−3 1 1.451 × 10−3 18.81 0.0002 **
X2

2 1.776 × 10−4 1 1.776 × 10−4 2.3 0.1417
X3

2 1.326 × 10−3 1 1.326 × 10−3 17.19 0.0003 **
X4

2 9.629 × 10−4 1 9.629 × 10−4 12.48 0.0016 **
X5

2 8.336 × 10−4 1 8.336 × 10−4 10.8 0.003 **
Residual 1.929 × 10−3 25 7.715 × 10−5

Lack of Fit 1.707 × 10−3 20 8.535 × 10−5 1.92 0.2418 not significant
Pure Error 2.219 × 10−4 5 4.438 × 10−5

Note: “*” means significant influence on the result (p < 0.05); “**” means very significant influence on the
result (p < 0.01).

Table 15. Regression equation coefficients and significance test (RMSE) (three-layer neural network).

Source Sum of Squares df Mean Square F Value p-Value Prob > F Significance

Model 7.35 20 0.37 9.92 <0.0001 significant
X1 2.6 1 2.6 70.13 <0.0001 **
X2 0.56 1 0.56 15.02 0.0007 **
X3 0.066 1 0.066 1.79 0.1933
X4 0.22 1 0.22 5.84 0.0233 *
X5 2.49 1 2.49 67.26 <0.0001 **

X1X2 0.11 1 0.11 2.9 0.1009
X1X3 0.013 1 0.013 0.34 0.5633
X1X4 0.21 1 0.21 5.6 0.026 *
X1X5 0.038 1 0.038 1.03 0.3192
X2X3 5.456 × 10−3 1 5.456 × 10−3 0.15 0.7046
X2X4 0.031 1 0.031 0.83 0.372
X2X5 0.05 1 0.05 1.34 0.258
X3X4 0.08 1 0.08 2.17 0.1532
X3X5 0.049 1 0.049 1.31 0.2626
X4X5 0.1 1 0.1 2.73 0.1109
X1

2 0.38 1 0.38 10.32 0.0036 **
X2

2 9.445 × 10−3 1 9.445 × 10−3 0.25 0.6182
X3

2 0.41 1 0.41 10.99 0.0028 **
X4

2 0.22 1 0.22 5.88 0.0229 *
X5

2 0.17 1 0.17 4.47 0.0446 *
Residual 0.93 25 0.037

Lack of Fit 0.87 20 0.044 3.96 0.0664 not significant
Pure Error 0.055 5 0.011

Note: “*” means significant influence on the result (p < 0.05); “**” means very significant influence on the
result (p < 0.01).

From Tables 14 and 15, it can be seen that F1 = 10.21, F2 = 9.92 and the p values of Y1
and Y2 are less than 0.0001, which is very significant, and the lack of fit term is greater than
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0.05, which is insignificant and shows that the regression equation fits the experiment well.
With unknown factors, the interference in the experimental results is small, indicating that
the residuals are all caused by random errors and this model has high reliability. After
analysis of variance, the primary and secondary order of the five factors on R2 and RMSE
is X1 > X5 > X2 > X4 > X3, that is, learning rate > number of iterations > momentum factor
> number of hidden nodes in the second layer > number of hidden nodes in the first layer.
In Y1, the primary terms X1, X2, X3 and X5 have a significant impact on the results; X4 has
a significant impact on the results; the interaction terms X1X3 have a significant impact
on the results; the quadratic terms X12, X32, X42 and X52 have a significant impact on the
results. In Y2, the primary terms X1, X2 and X5 have a significant impact on the results; X4
has a significant impact on the results; the interaction terms X1X4 have a significant impact
on the results; the quadratic terms X12 and X32 have a significant impact on the results and
X42 and X52 have a significant impact on the results.

4.2.2. Response Surface Method Analysis of Three-Layer Neural Network

The response surface curve and contour lines of the interaction of learning rate,
momentum factor, number of hidden nodes in the first layer, number of hidden nodes in
the second layer and number of iterations on R2 and RMSE are shown in Figure 10.

As shown in Figure 10, it can be seen from the steepness of the response surface that
the learning rate, the number of iterations and the momentum factor have a significant
impact on the response value. In contrast, the number of hidden nodes has a much weaker
effect on the response value. Most of the contour lines are elliptical, indicating that the
interaction between various factors is relatively large.

It can also be seen from Figure 10 that the three-layer neural network used for
the verification of the test set has a similar conclusion to the two-layer neural network
(optimization model R2 > baseline model R2, where the optimization model R2 = 0.94246,
baseline model R2 = 0.94246) and the prediction performance of the three-layer neural
network for the test set is better than that of the two-layer neural network.
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4.2.3. Analysis of Slump Influencing Factors Based on Three-Layer Neural Network

Using a method similar to the two-layer neural network, the influence factors of each
variable on the slump in the three-layer neural network model can be obtained. A bar
graph of each variable’s effect on slump is also shown in Figure 11.
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It can be seen from Figure 11 that the order of influence on slump is flow > water >
coarse aggregate > fine aggregate > blast furnace slag > cement > superplasticizer > fly
ash. Flow and water are the two top influencing factors with 0.875 and 0.030, respectively.
Fly ash and superplasticizer are the two lowest influencing factors with 0.0099 and 0.0101,
respectively.

5. Conclusions and Analysis

Through the response surface analysis method, the influence of each parameter on the
neural network model at different levels is analyzed. As can be seen from the above:

(1) In the two-layer neural network model, the learning rate has the most significant
impact on the entire model and the change of other parameters has a weaker effect
on the network model. The reason for this phenomenon is that as the learning
rate increases, the network weight value is updated too much, the swing amplitude
exceeds the training range of the model performance and, finally, the system prediction
deviation becomes too large. It can also be seen that the network performance of the
two-layer neural network is relatively stable. A two-layer neural network constructed
by optimization parameters was used to evaluate the test set, and the results are
R2 = 0.927 and RMSE = 3.373. At the same time, the unoptimized two-layer neural
network was evaluated on the test set, and the result was only R2 = 0.91623.

(2) In the three-layer neural network model, the interaction between the parameters is
relatively strong and compared with the two-layer neural network, its predictive abil-
ity is stronger. A three-layer neural network constructed by optimization parameters
was used to evaluate the test set, and the results are R2 = 0.955 and RMSE = 2.781.
At the same time, the unoptimized three-layer neural network was evaluated on the
test set, and the result was only R2 = 0.94246. From the response surface graph, the
coefficient of determination and the root mean square error, it can be seen that the
three-layer neural network is more stable and more accurate.

(3) Interestingly, it can be seen from Figures 8 and 11 that the four main factors affecting
the slump are flow, water, coarse aggregate and fine aggregate, which also shows that
the two-layer neural network and the three-layer neural network have the same law
in evaluating the factors affecting the slump. Of course, there are differences between
the two-layer neural network and three-layer neural network in the prediction of
influencing factors of the slump. Two-layer neural network results show that coarse
aggregate is the second factor affecting slump, while three-layer neural network
results indicate that water is the second factor affecting slump. In addition, the
influence factor of flow evaluated by the two-layer neural network is even more than
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0.9, while the influence factor of each variable evaluated by the three-layer neural
network on the slump is relatively reasonable. Therefore, the prediction performance
of three-layer neural network is better than that of two-layer neural network.

This paper expounds that the RSM method is used to optimize the parameters of the
BP neural network model of concrete slump, and the optimized parameters are used to
build the model for the training set and the test set for verification, which are verified to
have better performance than the unoptimized benchmark model. However, the research
work in this paper still has the following shortcomings:

(1) The basic data of concrete slump in this experiment are too small, which, more or less,
affects the accuracy of the conclusion. Based on this, it could be considered to further
expand the data to achieve a more accurate and reliable effect.

(2) The BP neural network used in this paper has a similar “black box” effect, and many
model parameters are not interpretable. The next step also requires the use of state-
of-the-art deep learning algorithms (e.g., interpretable neural networks) for concrete
slump prediction.

Author Contributions: Conceptualization, Y.Z., J.W. and L.F.; data curation, Y.L. (Yunrong Luo);
formal analysis, Y.C. and L.L.; methodology, Y.L. (Yong Liu) and Y.C.; software, Y.Z.; supervision, L.F.;
writing—original draft, Y.C.; writing—review and editing, Y.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, G.Q.; Su, Y.P.; Han, T.L. Prediction model of compressive strength of green concrete based on BP neural network. Concrete

2013, 2, 33–35.
2. Gambhir, M.L. Concrete Technology: Theory and Practice; Tata McGraw-Hill Education: Noida, India, 2013.
3. Ramezani, M.; Kim, Y.H.; Hasanzadeh, B.; Sun, Z. Influence of carbon nanotubes on SCC flowability. In Proceedings of the 8th

International RILEM Symposium on Self-Compacting Concrete, Washington DC, USA, 15–18 May 2016; pp. 97–406.
4. Ramezani, M.; Dehghani, A.; Sherif, M.M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Constr.

Build. Mater. 2022, 315, 125100. [CrossRef]
5. Sun, Y.L.; Liao, X.H.; Li, Y. Slump prediction of recycled concrete. Concrete 2013, 6, 81–83.
6. Qi, C.Y. Study on Slump Loss Mechanism of Concrete and Slump-Preserving Materials; Wuhan University of Technology: Wuhan,

China, 2015.
7. Li, Y.L. Building Materials; China Construction Industry Press: Beijing, China, 1993.
8. Ge, P.; Sun, Z.Q. Neural Network Theory and Implementation of MATLABR2007; Electronic Industry Press: Beijing, China, 2007.
9. Lei, Y.J. MATLAB Genetic Algorithm Toolbox and Application; Xidian University Press: Xi’an, China, 2005.
10. Hu, X.; Li, B.; Mo, Y.; Alselwi, O. Progress in artificial intelligence-based prediction of concrete performance. J. Adv. Concr. Technol.

2021, 19, 924–936. [CrossRef]
11. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Ahmadi, M.; Wakil, K.; Trung, N.T.; Toghroli, A. Prediction of concrete strength in

presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm). Smart Struct. Syst.
2020, 25, 183–195.

12. Yeh, I.C. Design of high-performance concrete mixture using neural networks and nonlinear programming. J. Comput. Civ. Eng.
1999, 13, 36–42. [CrossRef]

13. Yeh, I.C. Simulation of concrete slump using neural networks. Constr. Mater. 2009, 162, 11–18. [CrossRef]
14. Koneru, V.S.; Ghorpade, V.G. Assessment of strength characteristics for experimental based workable self-compacting concrete

using artificial neural network. Mater. Today Proc. 2020, 26, 1238–1244. [CrossRef]
15. Duan, Z.H.; Kou, S.C.; Poon, C.S. Prediction of compressive strength of recycled aggregate concrete using artificial neural

networks. Constr. Build. Mater. 2013, 40, 1200–1206. [CrossRef]
16. Ji, T.; Lin, T.; Lin, X. A concrete mix proportion design algorithm based on artificial neural networks. Cem. Concr. Res. 2006,

36, 1399–1408. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2021.125100
http://doi.org/10.3151/jact.19.924
http://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
http://doi.org/10.1680/coma.2009.162.1.11
http://doi.org/10.1016/j.matpr.2020.02.248
http://doi.org/10.1016/j.conbuildmat.2012.04.063
http://doi.org/10.1016/j.cemconres.2006.01.009


Materials 2022, 15, 4721 20 of 20

17. Demir, F. Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Constr. Build. Mater.
2008, 22, 1428–1435. [CrossRef]

18. Chandwani, V.; Agrawal, V.; Nagar, R. Modeling slump of ready mix concrete using genetic algorithms assisted training of
Artificial Neural Networks. Expert Syst. Appl. 2015, 42, 885–893. [CrossRef]

19. Li, D.H.; Gao, Q.; Xia, X.; Zhang, J.W. Prediction of comprehensive performance of concrete based on BP neural network. Mater.
Guide 2019, 33, 317–320.

20. Yeh, I.C. Analysis of strength of concrete using design of experiments and neural networks. J. Mater. Civ. Eng. 2006, 18, 597–604.
[CrossRef]

21. Jain, A.; Jha, S.K.; Misra, S. Modeling and analysis of concrete slump using artificial neural networks. J. Mater. Civ. Eng. 2008,
20, 628–633. [CrossRef]

22. Wang, J.Z.; Lu, Z.C. Optimal design of mix ratio of high-strength concrete based on genetic algorithm. Concr. Cem. Prod. 2004,
6, 19–22.

23. Lim, C.H.; Yoon, Y.S.; Kim, J.H. Genetic algorithm in mix proportioning of high-performance concrete. Cem. Concr. Res. 2004,
34, 409–420. [CrossRef]

24. Liu, C.L.; Li, G.F. Optimal design of mix ratio of fly ash high performance concrete based on genetic algorithm. J. Lanzhou Univ.
Technol. 2006, 32, 133–135.

25. Yeh, I.C. Computer-aided design for optimum concrete mixtures. Cem. Concr. Compos. 2007, 29, 193–202. [CrossRef]
26. Li, Y. Design and Optimization of Classifier Based on Neural Network; Anhui Agricultural University: Hefei, China, 2013.
27. Gao, P.Y. Research on BP Neural Network Classifier Optimization Technology; Huazhong University of Science and Technology:

Wuhan, China, 2012.
28. Lei, W. Principle, Classification and Application of Artificial Neural Network. Sci. Technol. Inf. 2014, 3, 240–241.
29. Jiao, Z.Q. Principle and Application of BP Artificial Neural Network. Technol. Wind. 2010, 12, 200–201.
30. Ma, Q.M. Research on Email Classification Algorithm of BP Neural Network Based on Perceptron Optimization; University of Electronic

Science and Technology of China: Chengdu, China, 2011.
31. Yeh, I.C. Exploring concrete slump model using artificial neural networks. J. Comput. Civ. Eng. 2006, 20, 217–221. [CrossRef]
32. Wang, B.B.; Zhao, T.L. A study on prediction of wind power based on improved BP neural network based on genetic algorithm.

Electrical 2019, 12, 16–21.
33. Gulcehre, C.; Moczulski, M.; Denil, M.; Bengio, Y. Noisy activation functions. Int. Conf. Mach. Learn. 2016, 48, 3059–3068.
34. Li, Z.X.; Wei, Z.B.; Shen, J.L. Coral concrete compressive strength prediction model based on BP neural network. Concrete 2016,

1, 64–69.
35. Yeh, I.C. Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos.

2007, 29, 474–480. [CrossRef]
36. Shen, J.R.; Xu, Q.J. Prediction of Shear Strength of Roller Compacted Concrete Dam Layers Based on Artificial Neural Network

and Fuzzy Logic System. J. Tsinghua Univ. 2019, 59, 345–353.
37. Ramezani, M.; Kim, Y.H.; Sun, Z. Probabilistic model for flexural strength of carbon nanotube reinforced cement-based materials.

Compos. Struct. 2020, 253, 112748. [CrossRef]
38. Ramezani, M.; Kim, Y.H.; Sun, Z. Elastic modulus formulation of cementitious materials incorporating carbon nanotubes:

Probabilistic approach. Constr. Build. Mater. 2021, 274, 122092. [CrossRef]
39. Ramezani, M.; Kim, Y.H.; Sun, Z. Mechanical properties of carbon-nanotube-reinforced cementitious materials: Database and

statistical analysis. Mag. Concr. Res. 2020, 72, 1047–1071. [CrossRef]
40. Yu, C.; Weng, S.Y. Outlier detection and variable selection of mixed regression model based on non-convex penalty likelihood

method. Stat. Decis. 2020, 36, 5–10.
41. Zhao, H.; Shao, S.H.; Xie, D.P. Methods of processing outliers in analysis data. J. Zhoukou Norm. Univ. 2004, 5, 70–71+115.
42. Fu, P.P.; Si, Q.; Wang, S.X. Hyperparameter optimization of machine learning algorithms: Theory and practice. Comput. Program.

Ski. Maint. 2020, 12, 116–117+146.

43. Kumar, M.; Mishra, S.K. Jaya based functional link multilayer perceptron adaptive filter for Poisson noise suppression from X-ray
images. Multimed. Tools Appl. 2018, 77, 24405–24425. [CrossRef]

44. Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response
surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209,
425–436. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2007.04.004
http://doi.org/10.1016/j.eswa.2014.08.048
http://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
http://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(628)
http://doi.org/10.1016/j.cemconres.2003.08.018
http://doi.org/10.1016/j.cemconcomp.2006.11.001
http://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(217)
http://doi.org/10.1016/j.cemconcomp.2007.02.001
http://doi.org/10.1016/j.compstruct.2020.112748
http://doi.org/10.1016/j.conbuildmat.2020.122092
http://doi.org/10.1680/jmacr.19.00093
http://doi.org/10.1007/s11042-017-5592-y
http://doi.org/10.1016/j.conbuildmat.2019.03.119

	Introduction 
	Establishment of a Concrete Slump Model Based on BP Neural Network 
	Introduction to BP Neural Network 
	Samples and Network Input and Output 
	Network Data Preprocessing 
	Model Parameter Selection 

	Research on Two-Layer Neural Network 
	Single Factor Design Experiment of Two-Layer Neural Network 
	Response Surface Method Test of Two-Layer Neural Network 
	Model Establishment and Significance Test of a Two-Layer Neural Network 
	Response Surface Method Analysis of Two-Layer Neural Network 
	Analysis of Slump Influencing Factors Based on Two-Layer Neural Network 


	Research on Three-Layer Neural Network 
	Single Factor Design Experiment of Three-Layer Neural Network 
	Response Surface Method Test of Three-Layer Neural Network 
	Model Establishment and Significance Test of Three-Layer Neural Network 
	Response Surface Method Analysis of Three-Layer Neural Network 
	Analysis of Slump Influencing Factors Based on Three-Layer Neural Network 


	Conclusions and Analysis 
	References

