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Abstract: In this paper, a model generation algorithm for non-equal diameter particles with a
specified probability density distribution is proposed. Based on considering the randomness of
the size and distribution of the particles, the compact stacking of the particles is realized by the
compactness algorithm, and then the spatial distribution of the tightly compacted particles is made to
meet the random distribution of the specified probability density and the specified volume fraction
by the filtering algorithm. The computational efficiency and effectiveness of the algorithm are
verified, and the effects of the particle size and volume fraction on the distribution are analyzed.
Finally, the proposed model has been used to study the permeability of a titanium porous filter
cartridge. The results show that the size and location of the particle samples that are generated by the
proposed algorithm follow specified probability distributions according to the requirements, and
the volume fraction can be adjusted. Compared with the traditional algorithm, the computational
effort and complexity are reduced. The resultant model can be used to study the permeability of
porous materials and provide modeling support for structural optimization and further simulation of
porous materials.

Keywords: non-equal diameter particles; specified probability density; random filling; permeability;
porous materials

1. Introduction

Many new functional materials are bonded and compressed by granular materials
with a pore structure that follows a certain probability distribution, such as titanium porous
filter cartridge and metal-matrix composites. In order to obtain a mesoscopic mechanism
for materials with a specific random distribution of particles, it is necessary to study the
relationship between the properties of granular materials and the microstructure morpho-
logical characteristics of the formed materials, so as to carry out an effective structural
performance design of the material [1,2]. However, because of the complex mesoscopic pore
structure, it is difficult to realize the visualization of mesoscopic mechanism, for example,
the seepage properties, through experiments [3]. Therefore, a meso-model with a specified
probability density distribution is built to provide reference for improving the accuracy
and efficiency of porous media meso-modeling.

As for the generation algorithm of particle distribution, Primera et al. [4] proposed
the method of triangulation to describe the pore size, but this method was completed
through two-dimensional slices and could not fully represent the three-dimensional mor-
phology of the pores. Tory E M et al. [5] continuously filled the fixed space with the
sequence addition method and completed the sequence filling of the powder layer based
on considering the stability of the powder particles and the interaction force between the
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particles. Jodrey W S et al. [6] used the non-sequence rearrangement algorithm to start
position allocation with large-diameter particles first, allocating the position with small-
diameter particles, and then reducing the overlap degree by moving particles. Cundall P
A et al. [7] made the stacking process of particles similar to the flow process of dynamic
fluid based on the discrete element method and realized the stacking of powder particles.
A. Bezrukov et al. [8] describes two algorithms for the generation of random packings
of spheres with arbitrary diameter distribution. The first algorithm is the force-biased
algorithm. It produces isotropic packings of a very high density. The second algorithm
is the Jodrey–Tory sedimentation algorithm, which simulates the successive packing of a
container with spheres following gravitation. It yields packings of a lower density and of
weak anisotropy. Although the above algorithms could achieve the stacking of powder
particles, there existed some shortcomings in the randomness of spatial distribution, and
the filling efficiency was low. At the same time, the above algorithms inevitably need to
constantly detect the interference between particles, which means tedious calculation.

In addition, Bailakanavar M et al. [9] used the random order adsorption algorithm
to determine whether the current particles interfered with the existing particles, retained the
data of the non-interfered particles, and then established the relevant model.
Xin Zhenyang et al. [10] used the perturbation algorithm to assign regular distribution
positions to all particles and applied the perturbation to the amount of random distance
between each particle. Through interference judgment, the position information of particles
was retained. Note that through the above, the generation algorithms could ensure the
randomness of the space to a certain extent. Due to the need to compare the position
relationship between the specified particles and all the particles in the distribution process,
the computation burden is somewhat high, which affects the efficiency of the method.

The transmission characteristics of spherical packing include electrical conductivity
and permeability, among which permeability is one of the most studied properties [11–13].
Experimental and theoretical studies on permeability have achieved certain results, such
as Darcy’s Rule for fluid flow in porous media and the empirical formula Kozeny relation
for permeability [14]. As the pore structure of sphere accumulation is complex like that
of other porous media, it is difficult to study fluid flow in porous media by traditional
methods [15].

To solve the above problems, this paper proposes a method to generate the meso-
model of non-equal diameter particles with a specified probability density distribution.
The filling method of particles avoids the tedious calculation that is caused by interference
detection, and since the movement of particles is only related to a small number of particles
in the neighborhood, the modeling efficiency is further improved to a significant degree.
Through the comparison of computation with the traditional methods and a hypothesis test,
the efficiency and effectiveness of the algorithm are verified, illustrating that the proposed
generation algorithm could effectively build a meso-model for porous media and titanium
foam with a specified probability density distribution. The lattice Boltzmann method is
used to calculate the permeability of porous material with different probability density
distributions. The results show that the porous material meso-model that is established by
the proposed algorithm in this paper can provide a basis for further numerical simulation
of fluid permeability.

2. Generation Algorithm for Meso-Distribution Particles

Considering the randomness of the particles in size and distribution, Python is em-
ployed to build the algorithm, and gives the generation steps of the particles a meso-model,
according to the specified probability density. The proposed algorithm consists of two
parts. The first part is the compactness algorithm, which causes the particles with the size
of a specified probability density distribution to stack closely together. The second part is
the filtering algorithm. By using this method, the distribution of the particles in the spatial
position according to the specified probability density can be realized, and the specified
volume fraction can be achieved based on the requirements.
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2.1. Compactness Algorithm for Particles

Let i represent the direction of the x axis, j represent the direction of the y axis, and
k represent the direction of the z axis, respectively, corresponding to columns, rows and
layers. The particles of random sizes are generated in the cube area according to the
direction of the column, row and layer successively, and the tight compactness is realized
by adjusting the position between the particles.

2.1.1. Formation of Non-Equal Diameter Particles

According to the actual demand, the particle size is randomly distributed according to
the specified probability density by defining an appropriate sphere diameter range.

The expectation of X_r is

E(X_r) =
∫

A
µ f dµ

In practice, the algorithm generates particles with a radius that is randomly distributed
on the interval [a, b]; the average of the radius is

ravg = E(X_r) =
∫ b

a
x f (x)dx

2.1.2. Determine Initial Position

At this step, the algorithm places the random sized particles roughly in a 3D matrix
pattern, with particle positions vibrated by random noises. To place the first particle with
radius r1 near coordinates (0, 0, 0), the algorithm considers the particle radius, the cube area
boundary restriction and the random noise. The resulting center coordinates of the particle
are noted as (x1, y1, z1), where x1 = r1 + dnoise, y1 = r1 + dnoise and z1 = r1 + dnoise; the
second particle with radius r2 is placed at coordinates (x2, y2, z2), where x2 = x1 + r1 +
r2 + dnoise, y2 = r2 + dnoise, z2 = r2 + dnoise. the third particle with radius r3 is placed at
(x2 + r2 + r3 + dnoise, r3 + dnoise, r3 + dnoise), etc. The notation dnoise stands for the random
noise that the algorithm introduces; it takes a different value each time it appears. The
particle placement process continues until the first row on the xy-plane is filled. Next,
the algorithm places the second row close to the first row on the xy-plane and the row
placement process repeats until the first xy-layer is filled. Afterwards, the second particle
layer is placed closely above the first layer and the layer placement process repeats until
there are enough layers. Prior to the placement of any particles, the algorithm estimates the
number of particles to generate by considering the scenario where the cube area is filled
with particles of equal radius ravg. Assume the length of the edges of the cube along the
x, y, z-axis are Lx, Ly and Lz, respectively; the number of particles in each row, the number
of rows in each layer and the number of layers are estimated as Nx = Lx/

(
2ravg + ρ

)
,

Ny = Ly/
(
2ravg + ρ

)
and Nz = Lz/

(
2ravg + ρ

)
, respectively. The notation ρ stands for

the upper bound of the gap distance between adjacent particles and is enforced by the
compactness step (Section 2.1.3). Since the density of the particles is increased by the
compactness step and the goal is to distribute the particles in the entire cube area following
a given probability density, the estimated values Nx, Ny and Nz are further scaled up by
an overfill factor fov > 1. After the compactness step, the excessive particles that remain
outside of the cube boundaries are easily pruned.

To ensure that each newly generated particle and the last generated particle are
adjacent in the same row and layer, the adjacent scales vibrate within a very small range.
The advantage of this method is that the detection of particle interference can be omitted,
and thus the randomness of the position can be retained, which significantly simplifies the
computational effort of the algorithm. The logical steps are as follows:

(1) By specifying a minimal disturbance init_noise to add a segment of white noise, its
power spectral density will be constant in the whole frequency domain, as shown in Figure 1
(when i = 1, the x coordinate of the center is evaluated on [x_min, x_min + init_noise] in a
uniformly distributed scale, where x_min is simply the radius of the particle and init_noise
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is a preselected constant to control the amplitude of the noise). Otherwise, make the
minimum coordinate x_min of the newly generated particles in row j of the kth layer equal
to the previous maximum x coordinate prev_x_max, plus the radius of the new particle,
before taking the corresponding disturbance distance.
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Figure 1. Principle of initial position determination. (a) The position of new particle generated (i = 1).
(b) The position of new particle generated (i 6= 1).

(2) Similarly, when j = 1, the y coordinate of the center is evaluated at a uniformly
distributed scale on [y_min, y_min + init_noise], where y_min is simply the particle radius.
Otherwise, since the (j− 1)th row particles in layer k have been determined, the minimum
coordinate y_min of the newly generated particles in layer k should be equal to the max-
imum y coordinate prev_y_max of the (j− 1)th row, plus the radius of the new particle,
before taking the corresponding disturbance distance.

(3) Similarly, when k = 1, the z coordinate of the center is evaluated on
[z_min, z_min + init_noise], where z_min is simply the radius of the particle. Otherwise,
since the particles at the (k− 1)th layer have been determined, the minimum coordinate
z_min of the newly generated particles should be equal to the maximum z coordinate
prev_z_max (k− 1)th layer, plus the radius of the new particle, before taking the corre-
sponding disturbance distance.

If the amplitude of the noise is 0.1 and the mean value is 0.05, when the new particle
has been generated 1000 times, the graph of the noise can be obtained, as shown in Figure 2.
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The pseudocode of the placement process is as follows in Algorithm 1.

Algorithm 1 Algorithm of initial position determination

for k in [1, fov*Nz]
z_max = −∞
for j in [1, fov*Ny]

y_max = −∞
prev_x_max = −∞
for i in [1, fov*Nx]

generate particle with random size r
if i = 1 then

x_min = r
else

x_min = prev_x_max + r
if j = 1 then

y_min = r
else

y_min = prev_y_max + r
if k = 1 then

z_min = r
else
z_min = prev_z_max + r
x_new = u(x_min, x_min+init_noise)
y_new = u(y_min, y_min+init_noise)
y_new = u(z_min, z_min+init_noise)
place the newly generated particle at (x_new, y_new, z_new)
prev_x_max = max(prev_x_max, x_new+r)
y_max = max(y_max, y_new+r)
z_max = max(z_max, z_new+r)

prev_y_max = y_max
prev_z_max = z_max

In the pseudo code, u (a, b) generates a uniformly distributed random value on the
interval [a, b].

2.1.3. Compactness of Particles

Assume that the randomly generated particles are stored in a 3-dimensional array
M, whose size is Imax × Jmax × Kmax, nneighbor is a small positive integer, and ρ is a small
positive value. The position of the particles will be repositioned by coordinate translation.

By calculating the distance dz between the particle and the nneighbor neighboring
particles in layer (k− 1), local neighborhood compression can be achieved to speed up the
iterative process and more tightly compact the particles. While dy is the distance between
the particles and the particles in the nneighbor range that are located in row (j− 1) of layer
k, dx is the distance between the particle and the particles in the nneighbor range that are
located in row j, column (i− 1) of layer k. Let dw = Max (dx, dy, dz)(w ∈ x, y, z). Move
the particle by dw/3 in the w direction. Repeat this step until dx, dy, dz < ρ.

The center coordinate of the particle P = (x, y, z) is reduced by 1/3dw,
dw = Max (dx, dy, dz)(w ∈ x, y, z), and a new position P ′ = (x′, y ′, z ′) is obtained.
The coordinates of the new position are derived as follows.

x′

y′

z′

1

 =


−1 0 0
0 −1 0
0
0

0
0

−1
0

x
y
z
1

·13


dw_x
dw_y
dw_z

3


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According to the aforementioned methods, the particles at the initial position can be
further compressed in distance to be tightly compacted.

The pseudocode of the compactness process is as follows in Algorithm 2.

Algorithm 2 Compactness algorithm

for k in [0, Kmax−1]
for j in [0, Jmax−1]

for i in [0, Imax−1]
xboundary = max (x|x is the x coordinate of points on the particles at M [i−1,j,k])
yboundary = max (y|y is the y coordinate of points on the particles at M [i,jn,k],

where jn in [j−nneighbor, j+nneighbor])
zboundary = max (z|z is the z coordinate of points on the particles at M [i,jn,kn],

where jn in [j−nneighbor, j+nneighbor] and kn in [k−nneighbor, k+nneighbor]
Assume:

Plane Px parallel to the yz-plane intersects the x-axis at xboundary.
Plane Py parallel to the xz-plane intersects the y-axis at yboundary.
Plane Pz parallel to the xy-plane intersects the z-axis at zboundary.

dx = distance between M [i,j,k] and Px
dy = distance between M [i,j,k] and Py
dz = distance between M [i,j,k] and Pz
while max (dx, dy, dz) ≥ ρ

if dx = max (dx, dy, dz)
subtract dx/3 from the x coordinate of M [i,j,k]

else if dy = max (dx, dy, dz)
subtract dy/3 from the y coordinate of M [i,j,k]

else dz = max (dx, dy, dz)
subtract dz/3 from the z coordinate of M [i,j,k]

Recalculate dx,dy,dz
if loop has executed more than 1000 times:
Report exception and quit

Figure 3 is the compactness model diagram that is formed after the implementa-
tion of the compactness algorithm. The particles whose size complies with the specified
distribution law are packed tightly in the cube region.

Materials 2022, 15, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Results of compactness algorithm execution. 

2.2. Filtering Algorithm 
After the compactness algorithm, the particles with a random size distribution can 

be tightly compacted and a higher volume fraction of bulk density can be obtained. How-
ever, the spatial distribution cannot meet the random distribution of the assigned proba-
bility density, and the volume fraction cannot be adjusted according to the demand. Fil-
tering algorithms help with this process. This paper makes the following assumptions: 

(1) Assuming that the volume of the cube in which the particles are located is 𝑣, such 
that the particles are uniformly distributed, the probability density is the same throughout 
the cube;  𝑢௫,௬,௭  =  1/𝑣 

(2) After the execution of the compactness algorithm and before the execution of the 
filtering algorithm, the total volume of the particles is 𝑣௚; 

(3) If the target volume fraction is 𝛼, the total volume of the particles corresponding 
to this volume fraction is 𝛼𝑣; 

(4) The target probability density function is 𝑓௫,௬,௭. 
Given that a small zone with volume 𝑑𝑣 is centered at (𝑥, 𝑦, 𝑧) in the cube, the prob-

ability of retaining the particles near (𝑥, 𝑦, 𝑧) by the filtering algorithm is 𝑠௫,௬,௭ = 𝑓௫,௬,௭𝛼 𝑣𝑑𝑣𝑢௫,௬,௭𝑣௚𝑑𝑣  

Substitute the hypothesis, simplify it, and we can achieve 𝑠௫,௬,௭ = 𝛼 𝑣ଶ𝑣௚ 𝑓௫,௬,௭ 

Assuming that the tightly packed particles are stored in a three-dimensional array 𝐼௠௔௫ × 𝐽௠௔௫ × 𝐾௠௔௫, after using the aforementioned methods, the particles that do not con-
form to the given probability density distribution in space are filtered out. 

The pseudocode is as follows in Algorithm 3. 

Algorithm 3 Filtering algorithm 
for k in [0, Kmax−1] 
   for j in [0, Jmax−1] 
      for I in [0, Imax−1] 
    Let x,y,z be the coordinates of the object M [i,j,k] 
     if s > 𝛼v2/vg∙ fx,y,z 
     Delete M [i,j,k] 

Figure 3. Results of compactness algorithm execution.



Materials 2022, 15, 4733 7 of 18

2.2. Filtering Algorithm

After the compactness algorithm, the particles with a random size distribution can be
tightly compacted and a higher volume fraction of bulk density can be obtained. However,
the spatial distribution cannot meet the random distribution of the assigned probability
density, and the volume fraction cannot be adjusted according to the demand. Filtering
algorithms help with this process. This paper makes the following assumptions:

(1) Assuming that the volume of the cube in which the particles are located is v, such
that the particles are uniformly distributed, the probability density is the same throughout
the cube;

ux, y, z = 1/v

(2) After the execution of the compactness algorithm and before the execution of the
filtering algorithm, the total volume of the particles is vg;

(3) If the target volume fraction is α, the total volume of the particles corresponding to
this volume fraction is αv;

(4) The target probability density function is fx,y,z.
Given that a small zone with volume dv is centered at (x, y, z) in the cube, the proba-

bility of retaining the particles near (x, y, z) by the filtering algorithm is

sx,y,z =
fx,y,zα vdv
ux,y,zvgdv

Substitute the hypothesis, simplify it, and we can achieve

sx,y,z =
α v2

vg
fx,y,z

Assuming that the tightly packed particles are stored in a three-dimensional array
Imax × Jmax × Kmax, after using the aforementioned methods, the particles that do not
conform to the given probability density distribution in space are filtered out.

The pseudocode is as follows in Algorithm 3.

Algorithm 3 Filtering algorithm

for k in [0, Kmax−1]
for j in [0, Jmax−1]

for I in [0, Imax−1]
Let x,y,z be the coordinates of the object M [i,j,k]
if s > αv2/vg··fx,y,z
Delete M [i,j,k]

Figure 4 shows examples of common probability density functions (uniform, normal
and exponential), as generated by the filtering algorithm.
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3. Influence of Parameters on the Algorithm

The parameters of the algorithm directly affect its performance. In this section, the
influence of the design parameters on particle filling and distribution effect in the appli-
cation of this algorithm are discussed. The design parameters mainly include the particle
size and the volume fraction. This section presents the distribution and filling effect and
summarizes the related influence.
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3.1. Distribution of Particles with Different Size Ranges with Same Probability Density

Taking the uniform distribution in the x, y and z directions as an example, the dis-
tribution of the particles with different size ranges is simulated by using the proposed
algorithm. The volume fraction is 5%, while the volume of the cube is 125 mm. The total
volume of the particles is equal. The distribution results are shown in Table 1.

Table 1. Distribution effects of particles with different size ranges with the same probability density.

Range of Particle Sizes The Distribution of Particles

R = 0.05–0.15 mm
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As can be seen from Table 1, when the volume fraction remains unchanged, the number
of particles decreases significantly with the increase in particle size, and the distribution
becomes sparser.

3.2. Particles Distribution with Same Probability Density and Different Volume Fraction

In this section, the uniform distribution in the x, y and z directions is taken as an
example to simulate the distribution of particles in different volume fraction ranges by using
the proposed algorithm. The radius sizes of the particles are all between 0.15–0.25 mm.
The total volume of the cube is 125 mm3. The distribution results are shown in Table 2.

As can be seen from Table 2, when the radius size of the particles remains unchanged,
the volume of the particles increases with the increase in volume fraction, but the maxi-
mum volume fraction of the particles cannot exceed the volume fraction of the tightest
compactness that is formed by the compactness algorithm.
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Table 2. Distribution effects of particles with the same probability density and different volume
fractions.

Volume Fraction Total Volume (mm3) The Distribution of Particles

10% 12.550
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4. Algorithm Analysis

The effectiveness of the algorithm is analyzed in two regards, namely, the efficiency
and the randomness. First, the efficiency of the algorithm is demonstrated from the
perspective of computational complexity. Secondly, the sample that is generated by the
algorithm is used to verify the randomness of the random algorithm in particle size and
location by the statistical hypothesis testing method.

4.1. Computational Efficiency

Taking the uniform distribution as an example, it is assumed that n particles obey the
random distribution, and the efficiency analysis of the take-and-place algorithm and the
algorithm proposed in this paper is as follows:

(1) The major steps of the take-and-place algorithm are as follows: randomly generate
the position of the new particle and determine whether there is any interference between
the current particle and the existing particles. If there is no interference, the relevant data
of the current particle are saved, and the particle is accepted; otherwise, the algorithm
needs to try new locations again and again. Therefore, the take-and-place algorithm not
only reduces the randomness of sample generation, but also comes with the computational
complexity of c1 (m1 + 2m2+, . . . + (k− 1)mk+, . . . + (n− 1)mn) that is far greater than
O
(
n2). To clarify, mk is the number of repeated generation positions when filling the kth

particle and a positive constant c1 is independent of n;
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(2) As mentioned in Section 2, the algorithm that is proposed in this paper consists of
two parts. In the first part of the algorithm, the position of each particle is only related to
a small number of particles in its neighborhood when the initial position is generated or
the tightness of the particles is adjusted. Therefore, the computational complexity is c1

′n1,
where n1 is the number of particles and a positive constant c1

′ is independent of n1. In the
second part of the algorithm, each particle is independently processed, and the complexity
is c2

′n1, where c2
′ is a constant independent of n1. Accordingly, the overall computational

complexity of our algorithm is O(n).
The computational complexity of the particle random generation algorithm that is

proposed in this paper is significantly lower than that of the traditional algorithm, and it is
highly efficient.

4.2. The Randomness of Generated Samples
4.2.1. Random Test of Particles Size

At present, most of the simulations focus on the case of uniform and random distribu-
tion, so the random characteristics of the samples with uniform and random distribution
are studied, and an χ2 test [16] is used to evaluate the uniformity of the samples. The
statistic test formula is

χ2 =
m
ε

m

∑
i=1

(
εi −

ε

m

)2

where ε is the number of all random numbers, m is the number of intervals, and εi is the
number of the i th interval. In the uniformity test of the algorithm, we generated 3485
samples whose radii are on the interval (0.05, 0.15). The percentages of each radius are
shown in Figure 5.
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The particles sizes are evenly distributed in each interval. Assuming that the degree
of freedom is 9, the calculated χ2 value of radius R is 11.72, and the asymptotic significance
is 0.230, greater than 0.05. According to statistic theory, the χ2 distribution table shows that
the distribution of particle radius R that is obtained by the algorithm can be considered as
an ideal uniform random distribution. The test statistical scale is shown in Table 3.

Table 3. χ2 test statistical table.

Test Statistics

Statistic Value

χ2 11.720
Degrees of freedom 9

Asymptotic significance 0.230

4.2.2. Random Test of Particle Position

Taking normal distribution as an example, the Shapiro–Wilk test method [17] and the
Kolmogorov–Smirnov test method [18,19] are used to test the normality of the samples that
are generated by the random algorithms, using the compactness algorithm to make the
spherical center coordinates of 301 particles normally distributed along the x-axis. Table 4
is the analysis result of the normality test.

Table 4. Normal test analysis results.

Sample Size Average
Standard
Deviation

Partial
Degrees Kurtosis

Kolmogorov–Smirnov Test Shapiro–Wilk Test

The Statistic
D Value p The Statistic

W Value p

301 3.014 0.511 −0.028 −0.219 0.029 0.742 0.996 0.610

As can be seen from Table 4, the sample data did not show statistical significance
(p > 0.05), which means that the hypothesis (hypothesis: the data are normally distributed)
is accepted and the sample has the characteristic of normality. The histogram of the sample
distribution along the x-axis is shown in Figure 6.
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5. Permeability of Porous Media

Titanium porous filter cartridge is made of porous titanium metal filter material by the
powder metallurgy method. Its internal pores are curved and crisscross, and the filtering



Materials 2022, 15, 4733 13 of 18

mechanism is typical deep filtration. Permeability is the ability of a porous medium to
allow fluid matter to pass through. In this section, the lattice Boltzmann method is used
to study the flow of fluid under the condition of mass particle filling and the influence of
initial particle distribution on fluid permeability by using the meso-model of porous media
that is constructed by the above algorithm.

5.1. Lattice Boltzmann Method

The motion of a fluid can be described by a set of partial differential equations, such
as the Navier–Stokes equations, which are highly nonlinear in most cases and find it very
difficult to obtain analytical solutions. The Lattice Boltzmann method is used to solve the
numerical solution of the fluid motion equation by means of the discrete method. The
lattice Boltzmann method can be regarded as a special discrete scheme of a continuous
Boltzmann equation, as shown in the following formula.

gi(x + eiδt, t + δt)− gi(x, t) = Ωi(x, t)

where g is the discrete distribution function, e is the velocity space, i is the type of velocity,
δt is the discrete time step, t is the current time step, x is a point on the grid, and Ω is the
change caused by collision.

According to the operator that is proposed by Bhatnagar, Gross, and Krook [20],
Ωi(x, t) can be replaced, as shown in the following formula.

gi(x + eiδt, t + δt)− gi(x, t) =
1
τ

(
geq

i − gi

)
where geq

i is an equilibrium distribution function to be determined; τ is the relaxation time.
The DdQm model that is proposed by Qian et al. [21] is the basic model of the lattice

Boltzmann model, where d represents d-dimensional space and m represents the number
of discrete velocities of the lattice. In this paper, the velocity is discretized into 19 directions
in three-dimensional space, as shown in Figure 7.
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The discrete component of the velocity is

E = [e0, e1, e2, e3, e4, e5, e6, e7, · · · , e18]

The equilibrium equation [21] of this model is

geq
i = ρmωi

[
1 +

ei·µ
c2

s
+

(ei·σ̂)2

2c4
s
− σ̂2

2c2
s

]
i = 0, 1, 2 · · · , 18
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where Cs is the lattice speed, ω is the weight coefficient, σ̂ is the fluid velocity, and ρm is the
fluid density. The lattice velocity Cs is as follows.

Cs =
c√
3

where c is the ratio of grid step to time step, and its value is 1. The calculation of ωi is
shown in the following formula.

ωi =


1/3
1/18
1/36

e2
i = 0

e2
i = c2

e2
i = 2c2

Let gi(xt, t) be the distribution function of time t, at lattice point x, velocity e, then the
evolution equation of the distribution function is

gi(x + eiδt, t + δt)− gi(x, t)

= 1
τ

(
geq

i (xt, t)− gi(xt, t)
)

5.2. Darcy’s Law

When single-phase flow flows in porous media at a low Reynolds number, it follows
Darcy’s Law, also known as the Darcy model, which is one of the most basic and commonly
used mathematical models for macroscopic seepage, as shown in the following equation

σ = −h
ν
∇pl

where σ is the Darcy velocity, h is the permeability of porous media, ν is the universality
coefficient of the fluid, pl is the fluid pressure, and ∇ is the Hamiltonian operator.

According to the distribution function, the macroscopic parameters of the fluid density
ρl and fluid velocity σ can be obtained from formula

ρl = ∑
i

giσ =
1
ρl

∑
i

gi·ei

The permeability of porous media can be calculated according to Darcy’s formula [22].

h =
νσ

∆pl

where h is the permeability of the porous media, ν is the coefficient of motion universality,
∆pl is the pressure difference, and σ is the average speed.

5.3. Lattice Boltzmann Method Simulation Procedures

The lattice Boltzmann method simulation program structure is collision-migration.
The specific process is as follows:

(1) Setting of initial conditions;
(2) Execute collision at time t;
(3) Boundary processing;
(4) Calculate macroscopic quantities;
(5) Check whether convergence exists. If not, return to Step 2. Otherwise, go to the

next step;
(6) Output the result.

Suppose the fluid flows in a 4.5× 4.5× 4.5 mm cube tube, as shown in Figure 8. The
fluid is the single-phase flow of a low Reynolds number and is incompressible. The same
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number of lattice points are used in the x, y and z directions in the grid division of the
stacking space. The flow direction of the fluid is in the z direction, the top and bottom
surfaces are the fluid outlet and inlet surfaces, respectively, and the other surfaces are
boundary surfaces. When the relaxation coefficient is fixed at 1, the universality coefficient
is 10−6. At the beginning, the velocity in the whole flow field is set at 0 and the density is
1. The method to judge the convergence is that in 50 time steps; if the change of the sum
of the absolute values of the velocity along the direction of fluid flow is less than 0.0001,
convergence is realized.
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5.4. Simulation Results
5.4.1. The Influence of the Distribution Law

The model is divided into 1283 grid points, and each grid point has 19 velocity direc-
tions. The algorithm that is proposed in this paper is used to generate uniform distribution,
normal distribution (mean is 3, and the standard deviation is 0.5) and exponential distribu-
tion, respectively (rate parameter λ is 2). The simulation results are shown in Table 5.

Table 5. Permeability and average velocity of different distribution.

Distribution Average Velocity
(m/s) Permeability k (m2)

Uniform 0.586 × 10−3 5.204 × 10−10

Normal 0.533 × 10−3 5.335 × 10−10

Exponential 0.681 × 10−3 6.757 × 10−10

The above table shows that the average velocity and permeability of exponential
distribution are the largest. There is little difference between a uniform distribution and a
normal distribution. It should be noted that this example only calculates permeability under
different probability density distributions to verify the feasibility of the modeling algorithm.
The parameters that are related to the probability density function, such as the direction of
the distribution law and the parameters of the distribution function, have significant effects
on permeability, and their effects are often coupled with each other. Therefore, further
research is needed to establish a general strong law before these questions can be resolved.
This modeling algorithm provides a model foundation and technical support for further
study of these laws.
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5.4.2. The Influence of the Numbers of Particles and Grids

In the case of the lattice Boltzmann method, both the number of lattice points and the
volume fraction of the particles become significant influencing factors. On the premise that
the particle distribution law is determined as uniform distribution, the permeability of the
model is simulated for the following two cases: (1) the volume fraction of the particles
is 0.55 0.57, 0.61,0.63, respectively, and the number of grid points stays the same as 1283;
(2) the volume fraction is 0.60 and the number of grid points is 643, 1283, 2563, 5123,
respectively. The simulation results are shown in Figures 9 and 10.
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Through analytical methods [23], the relationship between the permeability and
volume fraction of porous materials can be predicted by specific formulas. The permeability
of porous materials is related to the minimum and maximum radius of the cross-section
through the transport phase, the shortest path of transport and the volume fraction of the
pores. The specific formula is as follows.

κ̂ = (0.94 rmin + 0.06 rmax)
2 ε2.14τ−2.44 /8

where κ̂ is the predicted value of permeability, rmin and rmax are the minimum and maxi-
mum radius of the cross-section through the transport phase, ε is the volume fraction of the
pores, and τ is the shortest path of transportation.

It can be seen from the formula that the permeability of porous materials increases
with the increase in the volume fraction of the pores. It is worth noting that the volume
fraction of pore ε and the volume fraction of particle α are complementary, and the sum is 1.
This is consistent with the change trend that is shown by the simulation.

As shown in Figure 9, the simulation results show that with the same distribution law,
the permeability of the fluid through this distribution decreases with the increase in the
volume fraction. Figure 10 shows that under the same distribution law, the permeability of
the fluid through the same amount of particle decreases with the increase in the number
of lattice points. When the lattice points increase to 1283 or higher, the permeability is
almost unchanged.
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6. Conclusions

In this paper, an efficient algorithm is proposed to generate the particle meso-model by
specifying the probability density distribution. The following conclusions and innovations
can be obtained:

1. The filling process avoids the huge calculation burden that is caused by the continuous
iterative interference detection;

2. In the process of generating the initial position of the particles or realizing the compact
stacking, the changes of each particle are only related to its small neighborhood, so it
has a high compactness efficiency;

3. The computational complexity of the algorithm is first order, while that of the tradi-
tional algorithm is much larger than second order, which illustrates the computational
efficiency of the proposed algorithm;

4. With this algorithm, the size and position of the particles can be distributed according
to the arbitrary probability density based on the requirements, and the specified
volume fraction can also be realized according to the requirements.

The results provide a new method for the space filling and modeling of porous
materials and provide technical support for 3D printing when optimizing porous material
structures. This method provides a modeling basis for further exploring the influence of
porous materials with a specified probability density on the mesoscopic and multi-field
simulation research of sound absorption, heat absorption, radiation resistance, seepage and
extrusion resistance, which are difficult to observe by experimental methods.
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Symbols and Abbreviations

f probability density

M 3-dimensional array

ρ a small positive value

nneighbor a small positive integer

v volume of the cube

u probability density

vg total volume of the particles

α volume fraction

n particle number

Mk number of repeated generation position

c1 a positive constant

ε number of all random numbers

g discrete distribution function

e velocity space

δt discrete time step
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t current time step
Ω change caused by collision
Cs lattice velocity
ω weight coefficient
σ̂ fluid velocity
σ Darcy velocity
h permeability of porous media
pl fluid pressure
∇ Hamiltonian operator
κ̂ predicted value of permeability
λ rate parameter of the exponential distribution
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