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Abstract: Surface texture measurement, characterized by areal parameters, is very susceptible to
measurement errors. Various types of errors differently affect surface texture parameters. In this
paper, two types of measurement errors were investigated. To analyze the impact of the presence
of scratches, circular valleys of various diameters were added to surface textures measured by a
white light interferometer. Measurement errors were larger for higher scratches. Skewness and
kurtosis were mostly affected by the presence in valleys, and changes of spatial parameters were
also comparatively high. The difference between the results of measurement of the same surface
details two times after a break of three months was also studied. This difference was caused by errors
of relocation, spikes and non-measured point presences, high-frequency noise, and surface ageing.
Spatial parameters were found to be the most stable.

Keywords: surface texture; measurement errors; parameters

1. Introduction

The surface texture is the fingerprint of the manufacturing processes. It affects the
functional properties of machined elements, such as contact, sealing, friction, wear, and
lubrication [1,2]. The introduction of three-dimensional measurement led to better analysis
of surface topographies. The areal surface texture parameters allow a more correct analysis
of surface features, such as example peaks [3]. The analysis of 2D profiles caused errors in
the study of surface texture properties such as slope. However, surface texture measurement
is very susceptible to measurement errors. These errors differently affected various areal
surface texture parameters [4]. However, the impact of measurement errors has not yet been
fully analyzed. Generally, measuring equipment, measurement procedure, interpretation
of the results of measurement, and measured surface cause uncertainty of surface texture
measurement.

Some of the errors in surface topography measurement are related to measurement
methods. The errors typical to the stylus method are related to the co-action stylus tip
and the surface texture. There are errors caused by mechanical filtration of the stylus tip
related to trouble with penetration of the stylus tip into the valleys [5–7]. The other errors
are related to stylus flight—the possibility of losing contact between stylus tip and surface
texture, when the measurement speed is too high [8–11]. The errors typical of using optical
methods are related to the presence of non-measured points [12] or spikes [13,14], stitching
can be another source of errors [15,16]. High-frequency noise can also cause errors of
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surface topography measurement using optical and tactile methods [17]. Some errors are
also related to temperature issues [18].

Regardless of the measurement type, errors can be related to the digitization pro-
cess: quantization errors [19] and errors caused by sampling interval selection. The se-
lection of the sampling interval should also be related to surface function [20–22]. Errors
can be related to surface analysis. Filtration is the first action in the analysis of surface
texture. There are problems with the filtering of two-process surfaces, such as plateau
honed surfaces. The commonly used Gaussian filter can cause a large distortion of the
roughness of such textures [23,24]. The calculations of parameters can be an additional
source of errors. The measured surface is the other source of errors. It causes variation
of parameters [25–27]. Rotation of the surface of the small angle affected the values of the
surface texture parameters [28].

There are several parameters that describe the textures of the areal surface. They can
be divided into height, spatial, hybrid, functional, end, and other. Various groups of param-
eters are designed for various surfaces, depending on the function of the surface [29,30].
However, parameters of different types are susceptible to various errors of surface topogra-
phy measurement.

Although uncertainty of surface texture measurement was previously analyzed, the
effects of errors on the values of surface texture parameters have not yet been studied.
In particular, the impacts of the presence of additional valleys and the repetitive surface
texture measurement by optical methods have not been studied. This work tries to fill this
gap. The results of this work will be helpful for the selection of parameters characterizing
surface texture, leading to an improvement in the quality of surface texture assessment.
Variations in the values of surface texture parameters should be minimized.

2. Materials and Methods

Figure 1 presents a flowchart of measurements and analyses of surface textures.
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The scratches can be the result of measurement errors, especially after using optical
methods. The defects can be created during machining. The presence of scratches affects the
values of the areal surface parameters. The first part of this study is related to this problem.
Several surface topographies were measured by a white light interferometer Talysurf CCI
Lite of 0.01 nm vertical resolution, using an objective of 5×. The sampling area of 3.29 mm
× 3.29 mm contained 1024 data points. Flat surfaces were leveled and forms of curved
surfaces were removed using the polynomial of the second degree. Digital filtration was not
used. The parameters of the ISO 25178-2 standard [29] were calculated. These parameters
are frequently used to characterize areal surface texture. Before computing the parameters,
spikes were eliminated. Surfaces after honing, milling, polishing, lapping, and grinding
were the objects of investigation. To find the sensitivity of parameters to the presence of
scratches, circular valleys of defined radii were added to the surfaces. These valleys did
not affect the maximum surface height. The distortions were filled in with the ordinates of
the lowest point of the surface. Circular valleys had diameters of 0.1 or 0.15 mm.

In the second part of this study, surface textures of several surfaces were measured
by a white light interferometer two times after a break of three months. The variability
of the parameters of these surfaces depended mainly on the quality of relocation, spikes
and the presence of non-measured points, high-frequency noise, and slight on surface
ageing. The changes of the parameters of the areal surface were studied. Surfaces after
various treatments, such as grinding, lapping, abrasive blasting, and abrasive blasting
followed by lapping, were measured and analyzed. Surface textures were analyzed similar
to the first part of this study. The methods of measurement and analysis were the same for
both measurements. The surfaces were relocated using first mechanical and then digital
methods, with the help of TalyMap 6 software.

Surfaces after various processing operations were studied to obtain diversity of tex-
tures. Surfaces after grinding are random one-directional structures. Milling led to the
creation of deterministic surfaces. Random isotropic rough surfaces are created in abrasive
blasting. Lapping and especially polishing led to the creation of smooth random surfaces.
Surfaces after milling, grinding, vapour blasting, lapping, and polishing are one-process
textures, which means that they have traces of only one machining process. However,
plateau honing and abrasive blasting followed by lapping led to the formation of highly
skewed two-process random textures. Surfaces after honing are anisotropic cross-hatched,
surfaces after abrasive blasting and then lapping are isotropic.

3. Results and Discussion
3.1. Impact of the Presence of Additional Valley

Figure 2 presents contour plots, material ratio curves, and selected parameters from the
plateau-honed cylinder surface, without and with additional deep valleys. An increase in
the width of the valley (diameter) caused an increase in the relative errors of the parameter
calculation. Among the Sk group [31], the reduced dale height Svk increased by up to 5%,
and the Sr1 material ratio (of small functional significance [29]) decreased to 9%, the changes
in the other parameters were smaller. Among the amplitude parameters, the highest
changes of RMS height Sq occurred (up to 3%). Hybrid parameters, the RMS slope Sdq,
and the developed interfacial areal ratio Sdr were stable. The relative changes in the spatial
parameters were large. The autocorrelation length Sal increased to 13% and the texture
aspect ratio Str increased to 43%. Skewness Ssk decreased by up to 10%, and kurtosis Sku
increased by up to 12%, and the extreme height of the peak Sxp increased by 3%. Skewness
and kurtosis are frequently used to describe the shape of the ordinate distribution in surface
description and modeling. The emptiness coefficient Sp/Sz (Sp—maximum peak height,
Sz—maximum height of the surface) and Sq/Sa (Sa—arithmetical mean of the absolute
surface heights) were found to be an alternative to skewness Ssk and kurtosis Sku [29]. The
sensitivity of these parameters to the existence of an additional valley was small: the Sq/Sa
increased to a maximum of 5% and changes in the Sp/Sz parameter were negligible.
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Figure 2. Contour plots (a–c), material ratio curves (d–f), and selected parameters (g–i) of the
measured cylinder liner surface after plateau honing (a,d,g), with an additional circular valley with a
diameter of 0.1 mm (b,e,h) and 0.15 mm (c,f,i).

Figure 3 presents contour plots, material ratio curves, and selected parameters from
the milled surface, without and with additional deep valleys. Among the Sk family, only
increases in the Svk parameter occurred up to 5%. Relative changes in amplitude, spatial
parameters, and Sxp were smaller than observed for the plateau-honed surface; skewness
and kurtosis were also small, up to 2%. The highest relative increase occurred for RMS
slope Sdq, up to 11%. Similar high changes of this parameter took place for other analyzed
deterministic surfaces, with a comparative long correlation length after turning or milling.
The largest increase in the Sdr parameter was smaller, up to 4%. The parameters Sq/Sa and
Sp/Sz were more stable than kurtosis Sku and skewness Ssk.
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Figure 3. Contour plots (a–c), material ratio curves (d–f), and selected parameters (g–i) of the
measured milled surface (a,d,g), with an additional circular valley with a diameter of 0.1 mm (b,e,h)
and 0.15 mm (c,f,i).

Figure 4 presents contour plots, material ratio curves, and selected parameters from a
polished surface, without and with additional deep valleys. Among the parameters from
the Sk group, the parameters Svk and Sr1 changed to 4%. The Ssk parameter decreased to
7%. The changes in other parameters were small. Sq/Sa and Sp/Sz were more stable than
Sku and Ssk.
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Figure 4. Contour plots (a–c), material ratio curves (d–f), and selected parameters (g–i) of the
measured surface after polishing (a,d,g), with an additional circular valley with a diameter of 0.1 mm
(b,e,h) and 0.15 mm (c,f,i).

Figure 5 presents contour plots, material ratio curves, and selected parameters from
the surface after abrasive blasting, without and with additional deep valleys. The Sq
parameter increased to 2%. Among the Sk group, the Svk parameter increased to 4%. The
Ssk parameter decreased to 13% and Sku increased to 7%. The Str parameter increased by
up to 4%. Changes in other parameters were low. Similar to other analyzed surfaces, Sq/Sa
and Sp/Sz were more stable than Sku and Ssk.

Figure 6 presents contour plots, material ratio curves, and selected parameters from
the ground surface, without and with additional deep valleys. The Svk parameter increased
to 4%. Changes in other parameters characterizing amplitude were negligible. The Ssk
parameter decreased to 11% and Sku increased to 5%. The changes in spatial parameters
were comparatively large. The Sal parameter increased to 7%, and the Str parameter
increased to 5%. The Sxp parameter increased to 3%. The parameters characterizing the
shape of the ordinate distribution Sq/Sa and Sp/Sz had a smaller sensibility to the presence
of circular valleys than Sku and Ssk.
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Figure 5. Contour plots (a–c), material ratio curves (d–f), and selected parameters (g–i) of the
measured surface after abrasive blasting (a,d,g), with an additional circular valley with a diameter of
0.1 mm (b,e,h) and 0.15 mm (c,f,i).

Changes in parameters depended on the radius of the valley. When it was larger, the
changes in parameters were also greater. The parameters Ssk and Sku were characterized by
the largest changes. The Ssk parameter decreased, while the Sku parameter increased. The
relative changes in these parameters depended on the shape of the ordinate distribution. For
surfaces characterized by negative skewness, these relative changes were higher compared
to those of surfaces of symmetric ordinate distribution. Changes in the spatial parameters
Sal and Str were also typically high. The Sal parameter of the anisotropic random surfaces
increased. Different changes could occur for isotropic textures. For isotropic surfaces, the
Str parameter decreased, in contrast to anisotropic surfaces. Relative changes in these
parameters were larger for lower values. The parameters characterizing the part of the
valley Svk (and the dale void volume Vvv) increased due to the presence of an individual
valley (changes in Svk values were typically higher than those of Vvv). Changes in other
parameters from the Sk family (core height Sk, the reduced peak height Spk, and Sr2
material ratio) and from the V group (the core void volume Vvc, peak material volume
Vmp, and core material volume Vmc) were smaller. The averaged parameters Sa and Sq and
hybrid parameters increased; changes in Sq were higher than those in Sa. The Sxp parameter
increased. From definition, the Sz parameter was constant. The hybrid parameters Sdq and
Sdr as well as Spc increased, and changes were small on random surfaces. High changes of
slope Sdq occurred for deterministic surfaces with a comparatively large correlation length
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after turning or milling. It was found that the maximum valley depth Sv, the Sp parameter,
the ten-point height S10z, the five-point peak height S5p, the five-point pit height S5v, the
inverse material ratio Smc, and the peak density Spd were rather stable. The areal material
ratio Smr, the average area of the hill Sha, and the average hill volume Shv were constant.
The feature parameters, average dale area Sda and average dale volume Sdv, increased.
In general, changes depended on the character of the surface. The sensitivity of Sp/Sz
Sq/Sa on the existence of an additional valley was found to be much smaller than that of
skewness and kurtosis for both skewed and non-skewed surfaces: the Sq/Sa increased by
maximum 5% and changes in the Sp/Sz parameter were negligible.
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3.2. Impact of Repetitive Measurement

Figure 7 presents contour plots, material ratio curves, and selected parameters from
ground surface measured and re-measured. Among the parameters from the Sk group,
the highest relative difference occurred for the Spk parameter (approximately 7%). The
parameters characterizing the average height (Sa, Sq) were more stable than the parameters
describing the maximum amplitude (Sp, Sv, Sz; the highest relative change was approxi-
mately 12%. The relative change in skewness was comparatively high (more than 20%), the
kurtosis Sku was more stable (the relative change was approximately 7%). The variation of
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Sq/Sa was smaller than that of Sku and the variation of Sp/Sz was less than that of Ssk.
Spatial parameters Sal and Str were constant. Relative changes in hybrid parameters Sdq
and Sdr as well as Spc were small. The Smr and the Spd parameters changed by nearly 20%.
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Figure 7. Contour plots (a,b), material ratio curves (c,d), and selected parameters (e,f) of the measured
(a,c,e) and re-measured (b,d,f) ground surface.

Figure 8 presents contour plots, material ratio curves, and selected parameters from a
measured and re-measured lapped surface. Parameters from the Sk family were compar-
atively stable, the highest relative difference was approximately 3%. The average height
parameters were more stable than the parameters describing the maximum amplitude
(the highest deviation was greater than 10%). The parameters that describe the shape of
the ordinate distribution were rather stable (the relative deviations were less than 5%).
Although Sq/Sa was more stable than Sku, the variation of skewness of Ssk was less than
that of Sp/Sz. Similar to the surfaces presented above, the spatial parameters Sal and Str
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were constant. The hybrid parameters Sdq and especially Sdr (more than 10%) changed as
well as Spc. The changes in Spd and Smr parameters were high (more than 35%).
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Figure 8. Contour plots (a,b), material ratio curves (c,d), and selected parameters (e,f) of the measured
(a,c,e) and the re-measured (b,d,f) surface after lapping.

Figure 9 presents contour plots, material ratio curves, and selected parameters from
the surface after measured and re-measured abrasive blasting. Similar to the surfaces
analyzed above, parameters from the Sk group, as well as Sa and Sq parameters, were
stable. The variation of the Sp parameter was close to 15%. Spatial parameters Sal and Str
were constant. Ssk and Sku were stable. Changes in hybrid parameters Sdq and Sdr and of
peak density Spd were small (up to 2.5%). However, the relative changes of the mean peak
curvature Spc were greater than 30%. Sq/Sa was more stable than Sku and Ssk was more
stable than Sp/Sz. The changes in the Smr parameter were very high.
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Figure 9. Contour plots (a,b), material ratio curves (c,d), and selected parameters (e,f) of the measured
(a,c,e) and re-measured (b,d,f) surface after abrasive blasting.

Figure 10 presents contour plots, material ratio curves, and selected parameters from
surface after abrasive blasting followed by measured and re-measured lapping. Similar to
the surfaces analyzed above, parameters from the Sk group, as well as Sa and Sq parameters,
were stable, and relative changes were smaller than 3%. The changes in the parameters
describing the maximum height were higher, approximately 29%. Skewness Ssk changed
by almost 20%, but kurtosis Sku changed by approximately 40%. The parameters Sp/Sz
and Sq/Sa were more stable than Ssk and Sku. Changes in spatial parameters were smaller
than 4%. The hybrid parameters and Spc changed, and the highest variation occurred for
Sdr. The peak density Spd changed by more than 40%. The Smr changes were the largest.
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Figure 10. Contour plots (a,b), material ratio curves (c,d), and selected parameters (e,f) of the
measured (a,c,e) and re-measured (b,d,f) surface after abrasive blasting and lapping.

Figure 11 presents contour plots, material ratio curves, and selected parameters from
the surface after measured and re-measured grinding. The amplitude of this surface was
much smaller compared to the surface shown in Figure 6. Among the Sk family, the highest
changes occurred for the Svk parameter (more than 15%). The variations in the average
amplitude parameters were much smaller than those of the parameters describing the
maximum height; from these parameters, Sv changed the most (more than 15%). The
Ssk parameter changed greatly (near 40%), and the variation of kurtosis Sku was smaller
(near 15%). The parameters Sp/Sz and Sq/Sa were more stable than those of Ssk and Sku,
respectively. Similar to most of the analyzed surfaces, the spatial parameters Sal and Str
were constant. The relative change of the Sdr parameter was two times greater than that
of Sdq, and it amounted to 25%. However, the Spc parameter was rather stable. The Smr
parameter changed by 40% and peak density changed by 25%.
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Figure 11. Contour plots (a,b), material ratio curves (c,d), and selected parameters (e,f) of the
measured (a,c,e) and re-measured (b,d,f) ground surface.

It was found that averaged amplitude parameters such as Sa and Sq were more stable
on surfaces than parameters characterizing maximum height such as Sp, Sv, and Sz. The
Smr parameter was characterized by very high variability. The Smc parameter was more
variable than Sxp. The parameters in the V group were more stable than the parameters in
the Sk family. The spatial parameters Sal and Str were very stable. Variations in Ssk and
Sku parameters were typically high. The Sq/Sa ratio was more stable than Sku, and in
most cases the emptiness coefficient Sp/Sz was more stable than Ssk. The variations of the
Spc parameter and of the hybrid parameters Sdq and Sdr were sometimes comparatively
high. Among these parameters, the Spc parameter typically had the highest variation,
followed by Sdr and Sdq. The feature parameters, especially Spd, Sda, Sha, Sdv, and Shv,
were characterized by high variability.
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4. Conclusions

1. Various parameters react differently on the measurement errors. Parameter changes
depend on the type of surface.

2. Changes in parameters due to the presence of an additional valley depended on
the radius of the valley. When it was larger, these changes were also larger. The
presence of scratches caused changes in amplitude parameters characterizing the
valley parts Svk and Vvv; the changes in the other amplitude parameters from the
Sk and the V groups were smaller. The parameters Ssk and Sku were characterized
by large changes. Changes in the spatial parameters Sal and Str were also typically
high. The hybrid parameters changed substantially for deterministic surfaces of a
large wavelength.

3. Skewness and kurtosis are frequently used to describe the shape of the ordinate
distribution. The pair of parameters: Sp/Sz and Sq/Sa is the alternative to skewness
Ssk and kurtosis Sku. It was found that the sensitivity of Sp/Sz and Sq/Sa to the
existence of an additional valley was much lower than that of skewness and kurtosis.

4. After measurements of the same surfaces and after a break of a few months, variation
of surface texture parameters occurred. This difference can be restricted by the use of
the proper relocation method and the same measurement procedure.

5. Repetitive measurements caused large variations of most of the feature parameters
(Spd, Sda, Sha, Sdv, and Shv) as well as Smr, Ssk, and Sku parameters. The average
amplitude of parameters was more stable than those that characterized the maximum
surface height. The spatial parameters Sal and Str were very stable. The variation of
Sq/Sa was smaller than that of Sku.

6. Independently of the type of error, the parameters from the V group were more stable
than the parameters from the Sk family.

7. The results of this research can be used for the selection of parameters characterizing
surface textures of various types. This will lead to an improvement in the quality of
industry surface texture assessment.

8. The findings are limited to surfaces measured by optical methods. In the future,
impacts of other measurement errors will be studied.
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