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Abstract: Mycelium-Based Composites (MBCs) are innovative engineering materials made from
lignocellulosic by-products bonded with fungal mycelium. While some performance characteristics
of MBCs are inferior to those of currently used engineering materials, these composites nevertheless
prove to be superior in ecological aspects. Improving the properties of MBCs may be achieved using
an adequate substrate type, fungus species, and manufacturing technology. This article presents
scientifically verified guiding principles for choosing a fungus species to obtain the desired effect.
This aim was realized based on analyses of scientific articles concerning MBCs, mycological literature,
and patent documents. Based on these analyses, over 70 fungi species used to manufacture MBC have
been identified and the most commonly used combinations of fungi species-substrate-manufacturing
technology are presented. The main result of this review was to demonstrate the characteristics
of the fungi considered optimal in terms of the resulting engineering material properties. Thus, a
list of the 11 main fungus characteristics that increase the effectiveness in the engineering material
formation include: rapid hyphae growth, high virulence, dimitic or trimitic hyphal system, white
rot decay type, high versatility in nutrition, high tolerance to a substrate, environmental parameters,
susceptibility to readily controlled factors, easy to deactivate, saprophytic, non-mycotoxic, and
capability to biosynthesize natural active substances. An additional analysis result is a list of the
names of fungus species, the types of substrates used, the applications of the material produced, and
the main findings reported in the scientific literature.

Keywords: mycelium; fungi; biomaterial; bio-composite; bio design; mycelium-based material;
mycelium-based composites; biopolymers; wood

1. Introduction

Mycelium-Based Composites (MBC) consist of defragmented lignocellulosic particles
bonded with dense chitinous mycelium. These innovative biomaterials show eco-friendly
characteristics: waste materials usage, low energy demand during production, the produc-
tion does not generate waste, and the products are readily recycled [1]. The performance
properties of MBC are usually inferior to those of the materials used so far. However, their
advantages are revealed in some areas, such as high acoustic attenuation, fire resistance,
the absence of harmful synthetic chemical components [2–4], and advantages connected
with aesthetics. In turn, the drawbacks of MBC, which need to be eliminated, include
excessive hygroscopicity, low tensile strength, susceptibility to biological corrosion, and the
need to deactivate the fungus. Improving the properties of this innovative material is the
goal of many scientific and commercial endeavors [5,6]. Thus, the potential applications of
MBC may be found in architecture [7,8], packaging [9], the automotive industry [10], as
a furniture material, in art [8], and in manufacturing various chitin- and β-glucan-based
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flexible materials, such as foams or paper, as well as textile substitutes [11]. The scientific
literature describes the biocomposites as pure mycelium bio-materials, consisting only of
mycelial biomass, e.g., myco-leather, as a substitute for petrochemically produced and
animal-based leather [12]. There are also concepts for the use of mycelium to grow mono-
lithic buildings from the functionalized fungal substrate [13] and as self-repairing wearable
electronics, using various fungus properties (memristors, oscillators, pressure, and optical
and chemical sensors) [14]. The results of our own feasibility studies on different surface
structures of MBC required in art and architecture uses are shown in Figures 1–5. In all
cases, the Ganoderma lucidum was the binding agent, the substrates contained admixtures.
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The practical difficulty in the production of MBC is connected with an appropriate
selection of the fungi species, substrate, and production technology. The produced MBC
should be technologically feasible, profitable, provide expected physical properties in the
entire volume, and be acceptable for humans. Difficulties in the appropriate selection of the
fungi species result from the large variety of fungus species and available substrates, prob-
lems associated with combining a specific fungi species with a specific substrate in terms of
mycelium growth, and inactivation parameters and different requirements for biocompos-
ites [15]. Many fungi form mycotoxins, attract insects, or become invasive species [16]. The
factors that may cause the biocomposite properties to differ from expectations are shown
in Figure 6.
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Current mycelium-based engineering materials are innovative with many advantages
but have some disadvantages. The selection of an appropriate species of fungus for
the substrate or the use of species that have not been used so far could eliminate these
disadvantages. This choice could be adequately supported by the quantitative analysis
of the fungi species described in the scientific documents to create a biocomposite with
expected properties. There are no review articles comparing the intensity of studies of
individual species of fungi and analyzing the most common combinations of fungus species–
substrate. As is known, there are millions of fungi species, but only a few dozen are used
to produce biomaterials. Furthermore, no general guidelines have been formulated in the
literature to find new species to create mycelium-based materials. This review fills the
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research gaps in this regard. The present review is expected to contribute to discovering
optimal combinations of species of fungus–substrate based on current research. The review
also aims to propose scientifically justified criteria to be met by a newly used fungus specie
to make available the optimal production of Mycelium-Based Composites.
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2. Fungus Species in the Scientific Literature

Fungi are a group of organisms classified into separate kingdom. Defining char-
acteristics include the presence of chitin in their cell walls, heterotrophism, and cos-
mopolitism [17]. The total number of fungi species is not known. To date, as few as
approx. 150,000 species [18] have been described from the estimated number of 1.5 million
up to 5.1 million species [19]. Commonly used databases containing updated information
on fungi are Species Fungorum (www.speciesfungorum.org, Centre for Agriculture and
Bioscience International (CABI), Wallingford, Oxfordshire, UK, accessed on 8 August 2022),
and MycoBank (www.mycobank.org, Westerdijk Fungal Biodiversity Institute, Utrecht,
Belgium, accessed on 8 August 2022). Fungi are classified using a phylogenetic tree [20],
which orders these organisms into hierarchic groups. In nature, fungi are associated with
other organisms through symbiosis and commensalism as parasites or reducers. Consider-
ing these dependencies, fungi are classified as harmful (causing disease or depreciation) or
beneficial organisms (mycorrhizas).

From 2012 to 2022, almost 100 original articles were published [21–113], presenting
almost 70 species of fungi used to produce Mycelium-Based Composites; these species are
listed in Table 1. The growth conditions used in the cited studies, inactivation methods,
and the results achieved are listed in Appendix A.

As can be seen from Table 1, most studies on Mycelium-Based Composites concern
white rot fungi. Some scientific publications describe the results of comparative analyses for
various fungus species. The visualization of the frequency of research and the frequency of
scientific comparisons of different species of fungi is given in Figure 7. The size of the circle
shows the popularity of the fungus species in the scientific literature and the lines indicate
the most frequently used comparisons of the fungus species in scientific publications.

It results from Figure 7 that two fungus, Pleurotus ostreatus (mentioned in 22 documents)
and Ganoderma lucidum (mentioned in 20 documents), are most frequently mentioned in
scientific publications. Another commonly used species is Trametes versicolor (10 times).
P. ostreatus and G. lucidum are the most frequently compared species. All these species cause
white rot. A detailed list of fungus species, substrates, technological parameters, research
aims, and main findings based on almost 100 original articles is given in Appendix A.

www.speciesfungorum.org
www.mycobank.org
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Table 1. Fungus species in scientific publications related to Mycelium-Based Composites.

Decay Type Fungus Species and Literature References

Brown rot Fomitopsis pinicola [63]; Gloeophyllum sepiarium [63]; Laetiporus sulphureus [63]; Phaeolus schweinitzii [63];

Soft rot Acremonium sp. [96]; Fusarium oxysporum [94]; Oudemansiella radicata [96]; Trichoderma asperellum [77],
T. asperellum [77];

White rot

Agaricus bisporus [59,77,87]; Auricularia polytricha [81]; Ceriporia lacerata [30]; Colorius sp. [61]; Cyclocybe
aegerita (specified as Aaegerita agrocibe) [36]; Coprinopsis cinerea [62]; Daedaleopsis confragosa [44]; Flammulina
velutipes [77]; Fomes fomentarius [38,83,85,87,108]; Fomitopsis pinicola [63];
“Ganoderma sp.” [21,41,44,61,68,77,110], G. applanatum [87], G. boninense [75],
G. lucidum [22,25,31,32,41,69,70,72–74,77,79–83,89,100,102,106,109,112], G. resinaceum [44,49,86,93,101],
G. sessile [61,110]; Inonotus obliquus [67]; Irpex lacteus [42]; Kuehneromyces mutabilis [77];
Laetiporus sulphureus [63]; Lentinula edodes [32,64,77]; Lentinus velutinus [67]; Megasporaporia minor [49];
Oxyporus latermarginatus [49]; Phaeolus schweinitzii [63]; Piptoporus betulinus [63]; “Pleurotus sp.” [33],
P. albidus [67], P. citrinopileatus [74], P. djamor [62], P. eryngii [74],
P. ostreatus [26,29,32,35–38,41,46,56,57,63,74,77,81,82,84,88,90,91,94,96,99,103,105,106], P. ostraceus florida [77],
P. ostraceus sajorcaju caju [77], P. salmoneo-stramineus [36]; Polyporus arcularius [63], P. brumalis [59],
P. pulmonarius [36]; Pycnoporus sanguineus [67,83,92]; Trametes sp. [53,61]; Trametes hirsuta [83,99,104],
T. multicolor [46,57,110], T. pubescens [63], T. suaveolens [63], T. versicolor [29,36,44,50,59,65,66,78,86,87,101,110],
Trichaptum abietinu [63]; Schizophyllum commune [46,48,53,57]; “white-rot saprotrophic fungi, endemic to
Alaska” [42]

Probably white rot Specified as “phylum Basidiomycetes” [24,40,51]
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3. Fungus Species in Patent Documents

There are several hundred patent documents concerning Mycelium-Based Materi-
als [8]. The oldest document was filed at the United States Patent and Trademark Office on
12 December 2007 [114]. Patent documents mention several dozen fungus species. They
are listed in Table 2, giving the specie names, the number of patent documents specifying a
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given species or family, and references to the first patent document in which this species
was mentioned.

Table 2. Fungus species in patent documents.

Division Order Fungus Species No. of Patent
Documents

Ref. to the Oldest
Patent Document

Basidiomycota Agaricales Agaricus sp. 19 [114]
Agrocybe sp./Agrocybe aegerita/

A. brasiliensis 6/13/10 [115]/[116]/[114]

Coprinus comatus 24 [114]
Flammulina velutipes 13 [114]

Hypsizygus sp. (as “Hypsizygous sp.”) 2 [115]
Hypholoma capnoides/H. sublaterium 11/10 [114]/[114]

Lentinula edodes 17 [116]
Macrolepiota procera 11 [114]

Omphalotus sp. 2 [115]
Pleurotus djamor/P. eryngii/P. ostreatus

var. columbines/P. ostreatus 16/15/13/45 [116]/[116]/[116]/[114]

Schizophyllum sp. 14 [117]
Hymenochaetales Inonotus obliquus 24 [114]

Polyporales Ceriporiopsis sp. 2 [115]
Fomes fomentarius 13 [118]

Ganoderma appalantum/G. lucidum
(also as “lucidem”)/

G. oregonense/G. resinaceum, G. tsugae
3/42/23/11/27 [118]/[118]/[116]/

[119]/[114]

Grifola frondosa 15 [116]
Laetiporus sp. 2 [115]

Phanerochaete sp. 7 [117]
Piptoporous betulina (as “betulinus”) 8 [120]

Polyporellus sp. 2 [115]
Polyporus avleolaris/P. mylittae/

P. squamosus 3/3/8 [118]/[118]/[118]

Pycnoporus cinnabarinus 4 [121]
Trametes versicolor 19 [120]

Russulales Hericium erinaceus 4 [122]
Ascomycota Pezizales Morchella angusticeps 11 [114]

Xylariales Xylaria polymorpha/X.
hypoxylon/X. filiformis/X. longipes 4/4/3/1 [117]/[117]/[117]/[123]

Zygomycota n.d. n.d. 1 [124]

It is worth highlighting that patent documents do not provide detailed knowledge
concerning the effectiveness of the mentioned fungus species, as is typically seen in scientific
documents. Admittedly, all patent documents disclose the essence of the invention, but
conversely, providing too much information is clearly against the interests of the owner of
the invention. For this reason, patent documents contain a minimum of knowledge and
simultaneously make producing a similar solution as complicated as possible [125].

4. Substrate Type Analysis

Substrates for the production of Mycelium-Based Composites originate from three
sources: agricultural by-products, industrial waste, and post-consumer waste. In terms
of their composition, these substrates can be divided into annual plants, softwood, and
hardwood. Common bulk substrates include several components: wood chips or sawdust,
mulched straws (wheat, rice, and others), chopped corncobs, recycled paper, nut and seed
hulls or meal, coffee pulp or grounds, and brewer’s grain. An ideal substrate contains
enough nitrogen and carbohydrates for rapid fungal mycelium growth. Various substrates
are compared in scientific analyses or combined as mixtures in different proportions.
Combinations of various substrates in scientific experiments, described in 85 scientific
publications [21,23–38,40–42,45,46,49–53,57–68,70,72–84,86–109,111,112], are presented in
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Figure 8. The size of the circle shows the popularity of the substrate and the lines indicate
the most frequently used comparisons of substrates in scientific publications.

Materials 2022, 15, x FOR PEER REVIEW 8 of 34 
 

 

It is worth highlighting that patent documents do not provide detailed knowledge 
concerning the effectiveness of the mentioned fungus species, as is typically seen in scien-
tific documents. Admittedly, all patent documents disclose the essence of the invention, 
but conversely, providing too much information is clearly against the interests of the 
owner of the invention. For this reason, patent documents contain a minimum of 
knowledge and simultaneously make producing a similar solution as complicated as pos-
sible [125]. 

4. Substrate Type Analysis 
Substrates for the production of Mycelium-Based Composites originate from three 

sources: agricultural by-products, industrial waste, and post-consumer waste. In terms of 
their composition, these substrates can be divided into annual plants, softwood, and hard-
wood. Common bulk substrates include several components: wood chips or sawdust, 
mulched straws (wheat, rice, and others), chopped corncobs, recycled paper, nut and seed 
hulls or meal, coffee pulp or grounds, and brewer’s grain. An ideal substrate contains 
enough nitrogen and carbohydrates for rapid fungal mycelium growth. Various sub-
strates are compared in scientific analyses or combined as mixtures in different propor-
tions. Combinations of various substrates in scientific experiments, described in 85 scien-
tific publications [21,23–38,40–42,45,46,49–53,57–68,70,72–84,86–109,111,112], are pre-
sented in Figure 8. The size of the circle shows the popularity of the substrate and the lines 
indicate the most frequently used comparisons of substrates in scientific publications. 

 
Figure 8. Combinations of substrates used in scientific experiments. 

Figure 8. Combinations of substrates used in scientific experiments.

It can be seen from Figure 8 that pine wood is the wood material most commonly
used as a substrate. In turn, fibrous plants with high cellulose contents, i.e., hemp, cotton,
and wheat straw, were the most frequently used among annual plants. In terms of the
expected strength, the substrate materials should be long (strand type), thus wood chips
and straw are preferred. Regarding technological requirements, an abundant and uniform
supply of substrate materials is needed, while low acquisition cost is essential in the
production economy.

All these raw materials are lignocellulose materials. They are composed of 30–50% cellulose,
15–30% lignin, and 25–35% hemicelluloses as well as non-structural substances (e.g., pectins,
waxes, pigments, tannins, lipids, and minerals). Their composition is dependent on their
origin and species [126–128]. Cellulose is the primary structural component of all plant
fibers [129]. It is a natural polymer. Cellulose molecules consist of glucose units linked
together in long chains (β-1,4 glycoside linkages join the repeating units of D-anhydro
glucose C6H11O5), which in turn are linked together in bundles called microfibrils. This
principal component provides them with strength, stiffness, and stability. Hemicelluloses
are polysaccharides bonded together in relatively short, branching chains. They are closely
associated with cellulose microfibrils, embedding cellulose in a matrix. Hemicelluloses
are highly hydrophilic. The molecular weights of hemicelluloses are lower than that of
cellulose. Lignin is a complex aromatic hydrocarbon polymer that imparts rigidity to
plants. Without lignin, plants could not attain great heights. Lignin is a three-dimensional
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polymer with an amorphous structure and a high molecular weight, and it is less polar than
cellulose. It serves as a chemical adhesive within and between fibers. Lignin acts primarily
as a structural component by adding strength and rigidity to the cell walls. However, it
also allows the transport of water and solutes through the vascular system of plants and
provides physical barriers against invasions of phytopathogens and other environmental
stresses. It consists of three basic phenylpropanoic monomers known as monolignols:
p-coumaryl, coniferyl, and sinapyl alcohols [130].

When incorporated into the lignin polymer, the units that originated from the mono-
lignols are called p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units, respectively.
The amount of lignin varies according to the origin of the lignocellulosic starting material.
At the same time, the proportion of different monolignols and chemical bonds in the lignin
structure also depends on the lignocellulosic biomass, because these vary between hard-
wood, softwood, or grass. In softwoods, lignin is mainly composed of guaiacyl units linked
by ether and carbon-carbon bonds, whereas in hardwoods, lignin has equal amounts of
guaiacyl and syringyl units. The grass lignin is characterized by guaiacyl, syringyl, and
hydroxyphenyl units.

Several methods are employed to sterilize the substrate, thereby rendering the sub-
strate inert. This can be provided (1) by temperature, i.e., heat treatment, such as autoclav-
ing and pasteurization, or (2) treatment with chemical or microbial agents (Appendix A).
Sterilization in an autoclave is typically run at temperatures ranging from 115 to 121 ◦C
for 15 to 120 min. In turn, the pasteurization is run in water at a temperature of 100 ◦C for
approx. 100 min. Substrates may also be subjected to the action of a hydrogen peroxide
solution at a concentration ranging from 0.3% to 10%.

The substrate has to contain the nutrients required for fungus growth to improve the
growth rate and modify mechanical strength properties, which the mycelium matrix attains
after growth. Simple sugars, such as glucose, are used as additives. The addition of glucose
to the lignocellulose material results in the lesser degradation of holocellulose at the pre-
liminary stage of degradation caused by fungi. Figure 9 illustrates lignocellulose substrates
linked with various fungus species in original articles related to Mycelium-based Compos-
ites [21,23–38,40–42,45,46,49–53,57–68,70,72–84,86–109,111,112]. As with Figures 7 and 8,
the size of the circle shows the popularity of the mushroom species or substrate, and
the lines indicate the most common combinations of fungal species and substrates in
scientific publications.

Substrates derived from both hardwood and softwood materials were typically com-
bined with white rot fungi, i.e., T. versicolor and P. ostreatus. Additionally, composites based
on fibrous plants were obtained mainly using white rot fungi T. versicolor, P. ostreatus, and
G. lucidum. The critical observation is that the white rot fungi can degrade lignin in the
plant cellwall by skipping cellulose, unlike the other wood degrading fungi. The following
patterns have been found when studying lignin bioconversion by basidiomycetes: (1) the
first stages include lignin demethoxylation and subsequent hydroxylation, which is accom-
panied by a decrease in the number of methoxy groups and an increase in hydroxyl groups;
(2) then the αC–βC bond is broken with oxidation of the first hydroxyl to carboxyl group;
and (3) the aromatic ring in lignin is broken [131].

Following mycelium growth, the resulting composite materials may be removed from
molds and hot pressed, dried in an oven or air-dried to dehydrate the obtained material
and neutralize the fungus. Consequently, fungi may no longer grow or spread while the
composite material is rigidified. Hot pressing and oven drying are preferred treatment
methods in industrial practice because they are the fastest dehydration methods. As a
result of hot pressing, the material is consolidated and condensed, which results in higher
values of mechanical strength properties.

A systematic review of applied MBC growth parameters is given in Appendix A.
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5. Discussion: Fungus Species Recommendations

The main purpose of the literature review described in this article is to indicate
attributes of an ideal fungus species to create mycelium-based materials. The 11 such
attributes have been identified: (1) rapid growth of hyphae, (2) high virulence, (3) dimitic or
trimitic hyphal structures, (4) white rot fungi, (5) high versatility in nutrition, (6) tolerance
to a wide range of substrate parameters and environmental conditions, (7) susceptible
to readily controlled ecological factors, (8) easy to deactivate, (9) saprophytic, (10) non-
mycotoxic, and (11) having the ability to biosynthesis natural active substances.

(1–2) A Mycelium-based Composite (MBC) for engineering usage needs to exhibit
isotropic physical properties, thus an optimal organism should bind the organic matrix into
a composite with such properties. In this case, it is best to select an appropriate organism
assuming the division proposed by Harper [132] into modular and autonomous organisms.
Modular organisms develop through repeated iterations of modules, and such a repeatable
structure facilitates the exploitation of a static resource (substrate) by an immobile organism
(a fungus). Mycelium hyphae absorb nutrients serving the role of building components in
the area where they are growing. A solution to the problem of nutrient depletion around
hyphae is offered by the regrowth of hyphae from the depleted substrate zone at the
simultaneous production of successive modules, i.e., hyphae located so that the zones
are devoid of nutrients do not overlap. Harper showed a lack of mutual overgrowth of
young hyphae. This mechanism ensures the rapid colonization of large substrate areas
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acting as a matrix in the biocomposite. Modular organisms may find food using two
strategies: guerrilla and phalanx. Fungi degrading lignocellulose materials find food using
the phalanx method. This phalanx growth type involves extensively branched hyphae
facilitating colonization of such a substrate. This type of growth is observed in white
rot fungi. Hyphae produce high local concentrations of extracellular enzymes and other
chemical substances, preventing the colonization of the substrate by other organisms. This
mechanism supports the axenic culture during biocomposite production. The hyphae’s
anatomy and the modular structure ensures fungal survival in the case of mechanical
damage to the mycelium. Internal organelles, such as Woronin’s bodies, can plug the septal
pores to prevent cytoplasm loss from hyphae. Every single hypha may reproduce, forming
another organism. This property makes it possible to obtain large amounts of the material
used as an inoculum within a short time.

Hyphae can regrow from the substrate, facilitating their transition through the gas
phase to penetrate new sites abundant in nutrients. This is because most currently known
fungi are organisms living in the terrestrial environment with the predominance of the gas
phase over the liquid phase. This property considerably facilitates the colonization of a
loose lignocellulose material. As it results from the above, the fungal mycelium seems to
be the most adequate for biocomposite production among all the organisms colonizing
our planet. More details concerning the modular structure of mycelium may be found in a
publication by Calile [133].

The rapid growth of hyphae, combined with the possibility to initiate the development
of new mycelium by its fragment, makes it possible to obtain large amounts of inoculum
within a short time. Increased inoculum density in the substrate results in a reduction in
lag phase time, increased specific growth rate, improved maximum efficiency, and lowered
substrate degradation. Jones et al. [134] were of the opinion that the optimum inoculation
density is 10–32% inoculum to substrate ratio (by volume) depending on the used inoculum,
whether in the liquid or solid form. In terms of the efficient formation of the biocomposite,
it is desirable to minimize the lag phase and provide optimal environmental conditions and
abundance of nutrients to maximize growth rate and efficiency and prevent the premature
transition to the stationary growth phase.

An isotropic composite has to be manufactured under sterile conditions, which is
required for the rapid and uniform colonization of the substrate in the axenic culture
(monoculture). This increases the chance of obtaining a material exhibiting comparable
properties over the entire material volume. In the case of incomplete substrate sterilization,
the produced biocomposite may exhibit various physical properties differing from those
assumed [135]. The colonization of dead wood by fungi under natural conditions takes the
form of microbial succession. Wood is first colonized by rapidly growing more primitive
microorganisms (e.g., mitosporic fungi), which are next replaced by higher fungi (white,
brown, and grey rot fungi). This is not an absolute requirement, but it depends rather on
the local conditions and present fungal strains. In the case of axenic cultures in mycelium-
based composite formation, we need to consider the phenomenon of the succession of
microorganisms colonizing the substrate. The division into three groups based on the
colonization rate of all substances also needs to be remembered. Primary colonizers
appear as the first microorganisms. A rapid growth rate characterizes them; they spread
fast and degrade simple compounds. Secondary colonizers rely on primary colonizers,
which partially degrade the organic matter before digestion of more complex compounds.
Tertiary colonizers appear towards the end of the degradation process, taking advantage
of the conditions created by primary and secondary colonizers. When the dependencies
mentioned earlier are not considered, the substrate colonization rate by the fungus used to
produce the biocomposite may be slower than initially assumed. This harms the economic
aspect of biocomposite manufacture.

(3) When considering fungus species for producing biomaterials, the species produc-
ing leathery or woody fruiting bodies should be considered. They have a complex system
of dimitic and trimitic hyphae. The function of fungal hyphae is to bind the biocomposite
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matrix. This is achieved most effectively by dimitic or trimitic hyphae, providing mycelium
with better physical properties than the mycelium containing only generative hyphae
(monomitic fungi). Apart from the generation of a branched network structure, the in-
creased contact area with the composite matrix hyphae should contain adhesive substances,
such as hydrophobins.

(4) Fungi used to produce biocomposites need to cause a simultaneous white rot
of the substrate. Regarding MBC strength, the cellulose in the substrate must remain
undegraded, therefore selective white rot is the preferred type of degradation during
mycelial growth. The selection of a fungus causing this type of degradation prevents the
defibration of wood during degradation even in a highly advanced process [136]. White
rot fungi causes xylem defibration, which will provide a composite with poorer physical
parameters. Fungi have to degrade lignin more effectively than holocellulose, thanks to
which better physical properties of the substrate are maintained, compared to fungi causing
brown or grey rot [137]. White rot fungi cause a uniform volumetric shrinkage of the
isotropic substrate, observable only when the loss of substrate mass exceeds 40–50% [138].
It minimizes volumetric changes in the composite matrix during the production process.
This is also reflected in the compressive strength of MBC, which is dependent on the
substrate structure (matrix). In the case of fungi causing brown or grey rot, the volumetric
changes of wood are anisotropic and found at a much earlier stage of degradation. Brown
and grey rot fungi cause an adverse loss of holocellulose, so the composite matrix has much
poorer physical parameters than the original parameters of wood.

(5) Optimal fungi for composite production must colonize and degrade many different
lignocellulose materials and other waste generated by the agricultural, forestry, and food
industries. Moreover, these fungus species should biodegrade various synthetic chemical
substances providing a wider range of potential substrate types to manufacture composites.
This makes it possible to use lignocellulose matrices contaminated with other substances.

(6) The properties of Mycelium-Based Composites are significantly affected by their
production parameters, such as growth time and conditions, incubation temperature, the
pH and moisture content of the substrate, access to light, and the material drying methods.
These parameters vary for different fungal strains and used substrates. Manufacturing
parameters may be modified to influence the properties of produced biocomposites. Incu-
bation time depends on substrate volume and ranges from 5 to 42 days depending on the
fungus species. The optimal incubation temperature ranges from 21 to 30 ◦C for different
fungus species.

(7) Similarly, the substrate pH level for optimal growth in the case of various fungi
ranges from 5 to 8, while humidity from 80 up to 100%. Because of biocomposite pro-
duction, the used fungal species have to be readily maintained in the anamorphic stage,
not producing fruiting bodies. This process may be controlled using CO2 concentration,
elevated temperature (30–35 ◦C), and lack of access to light. It results from the above that
the fungus species should be thermophilic and tolerate the CO2 content in the culture
chamber atmosphere.

Preferential conditions for the production of a biomaterial with high mycelium density
include a lack of light radiation, increased carbon dioxide concentration at a simultaneous
reduced oxygen concentration, and elevated temperature (18–35 ◦C). Figure 10 presents
parameters causing changes in the fungus development stage.

(8) Mycelium deactivation in MBCs may consist in heat denaturation or otherwise.
The heat denaturation requires the element made from an MBC to be placed in a drier.
To improve an economic efficiency of biocomposite production, the mycelium should be
deactivated at the lowest possible temperature, e.g., 60 ◦C, or applying other safe and, at
the same time economically viable methods, e.g., microwave radiation. This can facilitate
the deactivation process and provide the deactivation of large-sized elements.
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(9) Fungi used in biocomposite production have to be saprophytic, not parasitic,
since the latter are frequently pathogenic. Using saprophytes to produce biocomposites
will reduce health hazards for humans and other organisms, particularly homeothermic
animals, in the case of an uncontrolled release of biomaterials to the natural environment.
Such a situation may occur when no effective deactivation is performed following the
culture process.

(10) An important feature of pathogenic fungi is connected with the synthesis of
mycotoxins and microbial volatile organic compounds (MVOC). These substances of natural
origin very often cause various diseases in humans.

(11) For this reason, it seems advisable to consider either medicinal effects or the
neutral effect on the homeothermic organisms in the course of production and the use
of biocomposites. This will reduce the risk during composite production and use in
environmental protection aspects. It may even reduce manufacturing costs thanks to
the production of biologically active substances, such as medications. Secondary fungal
metabolites, which exhibit antimicrobial action, may be applied in materials used in the
food industry. The biocomposite obtained using mycelium synthesizing active substances
may have contact with food if the used organism is edible and free from toxic substances.
Such properties may be found in edible mushrooms and fungi used in natural medicine to
provide medicinal substances.

6. Summary and Conclusions

The most important reasons for using Mycelium-Based Biocomposites (MBC) in-
clude the management of by-products, the storage of carbon dioxide from the atmosphere,
reduced need for petrochemicals in produced materials, and recyclability as well as inter-
esting aesthetic features. Substrates for the manufacture of MBCs come from three primary
sources: agricultural by-products, industrial waste, and post-consumer waste. In the case
of substrates for industrial MBC production, it is vital to ensure their constant, abundant
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supply and availability. The functional properties of MBC are usually inferior to those
of the materials used currently; however, in some areas, advantages of this innovative
material need to be stressed, such as high acoustic attenuation, fire resistance, absence of
chemicals, and, finally, aesthetic features, even though the latter is difficult to parameterize.
The appropriate selection of the fungus species for the substrate is key to achieving the
expected MBC properties. Millions of fungus species are still unknown to science, thus
providing an excellent opportunity to identify fungi capable of producing MBCs with even
better characteristics. Based on the analysis of many literature sources, 11 features were
formulated to increase the effectiveness of fungi in the manufacture of MBC:

1. Rapid linear growth of hyphae will facilitate the production of large amounts of
inoculum in a short time and will contribute to the minimization of the biocom-
posite production time. Moreover, the substrate will not be excessively degraded
by mycelium.

2. High virulence. Fungi must be able to rapidly colonize the substrate before other
microorganisms do. The aim is to obtain an axenic, uniform, dense fungal culture in
the substrate. Thus, a biocomposite with isotropic physical properties is obtained.

3. Hyphal structures. The hyphae of the fungus, which provide a lattice for biocom-
posites, should be dimitic or trimitic, thus producing mycelium with better strength
properties than the mycelium containing only generative hyphae (monomitic fungi).
For this reason, the mycelia of mushrooms with hard leathery or woody fruiting
bodies need to be used because they form mainly dimitic and trimitic hyphae.

4. White rot fungi. Fungi that cause white rot are preferred. These fungi degrade lignin
in the cell walls of woody plants to a greater degree than they do with cellulose—thus,
the composite matric has better physical parameters compared to the application of
brown rot or grey rot fungi.

5. High versatility in nutrition. The fungus used in MBC needs to grow on a wide
range of lignocellulose materials and on many other materials, e.g., plastics. The
availability of various substrates will reduce the manufacturing costs of materials.

6. High tolerance to a wide range of substrate parameters and environmental condi-
tions. Selected fungal specie should exhibit high tolerance to various environmental
conditions, i.e., temperature and humidity, as well as the analogous parameters of
the substrate, including non-uniform substrate moisture content and pH. This can
simplify an MBC manufacturing technology.

7. Fungi susceptible to readily controlled ecological factors, such as temperature, light
intensity, carbon dioxide concentration, oxygen concentration, or other technological
factors. These parameters may promote the rapid linear growth of hyphae while
preventing the formation of fruiting bodies.

8. Mycelium easy to deactivate. Mycelium in an MBC should be susceptible to deacti-
vation using various methods. This will enable the production of large MBC elements
and increase the human acceptance level of manufactured MBC products.

9. Saprophytic fungi. Fungi for the production of MBC may not be facultative parasites,
since otherwise, the produced biocomposite may be hazardous for humans.

10. Non-mycotoxic fungi. The fungus should not synthesize harmful metabolites, e.g.,
mycotoxins or microbial volatile organic compounds (mVOC). Mycotoxins and mVOC
may cause disease or even death in humans and other animals.

11. The biosynthesis of natural active substances. Fungi preferred in the production of
biocomposites might synthesize natural active substances. This will reduce production
costs and provide biocomposites with unique properties.
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Appendix A

Table A1. A systematic review of fungus species, growth parameters, and main results in the scientific literature.

Fungi Substrate Substrate
Sterilization

Incubation and
Growing Denaturing and Drying Product/Application Results Reference

1 Ganoderma sp.

Cotton-based
(processed cotton
carpel, cotton seed

hull, starch,
and gypsum)

115 ◦C, 28 min

21 ◦C, 5 days in the
plastic mold shaped

as the piece to
be fabricated.

60 ◦C, 8 h Packaging material
MBC meets or exceeds the
characteristics of extruded

polystyrene foam
[21]

2 Ganoderma lucidum

Red oak wood,
nutrient solution

(pending IP); 5.0 to
15 mm chips

Not specified Not specified

220 ◦C, 120 min, from
60–65% to 10–20% MC,

then seasoned to ca.
6% MC

Foam core of
sandwich board

MBC is frangible resulting in a low
ultimate tensile strength and a high

stiffness. The strength of MBC
increases with decreasing moisture
content. The MBC has an average

density and strength; its properties
are closest to those of expanded

polystyrene foam

[22]

3
Not specified
(supplied by

Ecovative Design)

Rice husk, wheat
grain (three variants:
50/50, 70/30, 30/70)

In high pressure
saturated steam,

121 ◦C, 15–20 min.

21 days in the
container 50 ◦C, 46 h Insulative packaging

material

Comparing to polystyrene foam the
MBC are 100% biodegradable,

non-toxic, produce ten time less
carbon dioxide (CO2) and require

about eight times less energy
to produce.

[23]

4 Not specified
(probably as [21])

Rice straw, hemp
pith, kenaf fiber,

switch grass,
sorghum fiber,

cotton bur fiber and
flax shive

Through the process
reported by [21] As [21] As [21] Insulation panels

Optimal performance at the noise
frequency of 1000 Hz. MBC are

comparable to polyurethane foam
board and are better than plywood

[24]

5 Ganoderma lucidum As [22] Not specified vacuum skin mold
(bag) As [22] Foam core of

sandwich board

The flexibility of layered structures
depends on the technological

parameters used.
[25]

6
Probably Pleurotus
ostreatus (Oyster

mushroom)

Cotton seed hulls,
carboxylated styrene

butadiene rubber
(sbr) latex, and silane

coupling agent

Not specified 5–7 days Oven
The latex-mycelium
composite insulation

material

5% latex admixture increases the
strength of the MBC, 10% latex kills

the mycelium. Silane slightly
increases strength, does not harm

the mycelium

[26]
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Table A1. Cont.

Fungi Substrate Substrate
Sterilization

Incubation and
Growing Denaturing and Drying Product/Application Results Reference

7 Not specified
Spent mushrooms

compost (from 0% to
17%), clay

Compost oven-dried
at 110 ◦C No incubation Not applicable Brick (to build walls) 17% reduction in compost of 10%

thermal transmittance [27]

8 T. versicolor, Pleurotus
ostreatus

Hemp
(hurd/mat/fibers),

wood chips (not
specified)

Boiling 100 min.
or 0.3%

hydrogen-peroxide

Room temp., 90 to
100% RH, dark

conditions, 30 days
Oven at 125 ◦C, 120 min. Insulating foam Hemp-mat + T. versicolor has the

highest compressive strength [29]

9 Ceriporia lacerata Soybean straw Without sterilization 25 ◦C for 5 days Dried at 60 ◦C Construction board
High compressive strength, good

thermal insulation and good
sound absorption

[30]

10 Ganoderma lucidum Wood and additives
(not specified) Not specified 25 ± 3 ◦C, low light,

14 days Above 70 ◦C, to 5% MH
Checking the

susceptibility to
machining

– [31]

11
Lentinula edodes,

Pleurotus ostreatus,
Ganoderma lucidum

Straw, wood
shavings, corn stalk,

rice husks
hydrogen-peroxide

Under moist
conditions in the

dark, about 2 weeks
Not specified Panels

Mold disinfection is crucial to avoid
growth of any species other than

the fungi
[32]

12 Pleurotus sp.

Crop residues,
carrageenan,

chitosan,
xanthan gum

85 ◦C for 120 min 23 ◦C, 30 days,
wooden molds 25 ◦C, 48 h Packaging material MBCs do not pose as an alternative to

expanded polystyrene [33]

13 Not specified

Core: agricultural
waste substrates;
outer layers: jute,

flax, cellulose

10% hydrogen
peroxide

Semi-permeable
polypropylene bag,

up to 98% RH,
incubation process:

5 days, 24 ◦C.

A convection oven at
82 ◦C for 12 h and 93 ◦C
for 8 h, pressed at 250 ◦C

for 20 min

Packaging material

Flexural strength depends on the
degree of colonization of the

mycelium within the outer layers and
the bonding between the outer layers
and the core. Stiffness depends on the
core (weakly bound outer layers only

slightly increase bending strength)

[34]

14 Not specified

Cotton ginning
waste and hemp pith

(core), fiber fabric
(surface)

Not specified Not specified 110 ◦C, 24 h Three layered
packaging material

The MCB is light, buoyant, and
hydrophilic, and has a soft outer

surface with high elasticity. Tensile
and compression properties confirm
the use of MBC in packaging instead

of expanded polystyrene

[35]
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Table A1. Cont.

Fungi Substrate Substrate
Sterilization

Incubation and
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15

Pleurotus
pulmonarius,
P. ostreatus,

P. salmoneo-stramineus,
Cyclocybe aegerita

(specified as
A. agrocibe)

Woodchips of
eucalyptus, oak,
pine, apple, vine

Autoclaved at 121 ◦C
for 1 h 25 ◦C, 4–5 weeks 105 ◦C, 48 h A foam

The most efficient bonding was
observed for P. ostreatus grown on

apple or vine woodchips
[36]

16 Pleurotus ostreatus
Agar, seed, straw,

wood, sand
and plastic

Autoclaving 22 ◦C, not specified Not specified Spherical fungal
assembly elements

Elements made of mycelium may be
self-assembling [37]

17 Pleurotus ostreatus,
Fomes fomentarius

Beech, European oak,
pear, spruce, sand

or gravel
Autoclaving 25–28 ◦C, 14–28 days 95 ◦C Building component

MBC have advantageous insulating
properties, but their stiffness, tensile

and compressive strength are
not sufficient

[38]

18 Basidiomycetes [21] Agricultural
by-products

Via the process
reported by [21] As [21] As [21] Low-density board,

5 levels of densities

Uncompressed MBC boards are
low-VOC alternatives to acoustical

ceiling tiles in sound shielding
applications; Densified MBC boards

are alternatives to OSB and MDF.
After reaching a density of 0.9 g/cm3,
the MBC properties do not improve

[40]

19 Ganoderma lucidum,
Pleurotus ostreatus

Cellulose and
cellulose/potato-

dextrose
(PDB)

autoclaved at 120 ◦C,
15 min

25–30 ◦C, 70–80%
RH, 20 days,

agar plug
60 ◦C, 2 h Easy-to-grow fibrous

mycelium film

The substrate should be
homogeneous. The addition of PDB
to the substrate increases stiffness of

mycelium-based composites

[41]

20 Irpex lacteus

Sawdust pulp (Betula
neoalaskana), millet
grain, wheat bran,

natural fiber,
calcium sulfate

pasteurization 14–42 days 60 ◦C for 24 h foam

Densely packed MBC samples have
comparable, elastic moduli,

compressive strength, and thermal
conductivity to the polymeric thermal

foams except dry density

[42]

21
Not specified
(supplied by

Ecovative Design)

Biotex Jute, Biotex
Flax, BioMid

cellulose plain
weave

10% hydrogen
peroxide 24 ◦C, 5 days

82 ◦C, 12 h and 93 ◦C, 8 h
then pressed (250 ◦C,

20 min)

Core of sandwich
structure

Strength depends on the intensity of
mycelium colonization within the

skin and the bond between the skin
and the core and the substrate. The

used fungi preferred flax
reinforcement, strength was

significantly higher than the jute
and cellulose

[43]
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22

Trametes versicolor,
Daedaleopsis
confragosa,

Ganoderma resinaceum

Cellulosic fibers:
corn stover, kenaf
pith, hemp pith

115 ◦C, 28 min 2 ◦C, 5 days Convection oven, 60 ◦C,
8 h

Improvement of
termite resistance

Addition of guayule resin caused
maximum MBC repellency to

termites; vetiver oil was slightly less
effective. Addition of borax was least

effective as a termiticide.

[44]

23

Not specified
(obtained from

Ecovative Design,
LLC)

Not specified,
Nutrition (calcium
and carbohydrate)

Not specified Not specified
Dried at “elevated
temperature” for
“several hours”

Pure mycelium

In tension: linear elastic at low strain,
and then yields and strain hardening
before rupture. In compression: the

stress–strain curve has first a
linear-elastic form followed by a

plateau form with a softened
response (similar to open cell foam).

In loading and unloading cycles:
strain is dependent on hysteresis and

progressive stress softening effect
(Mullins effect).

[45]

24

Pleurotus ostreatus,
Schizophyllum

commune, Trametes
multicolor

Azolla filiculoides 121 ◦C, 20 min. 25 ◦C, 7 days 60 ◦C Extractable paste for
3D printing

Applicable for robotic manufacturing
of biocomposite structures [46]

25

Schizophyllum
commune wild type
strain (CBS 341.81)

and its
derivative ∆sc3

Not applivable. N.A.
30 ◦C, 1 + 3 + 5 days,

in the light or in
the dark

dried at room
temperature. Pure mycelium

Mechanical properties of the
mycelium of S. commune can be
changed by inactivating the sc3
hydrophobin gene. Mechanical

properties of wild type mycelium
were similar to natural materials,

while those of ∆sc3 were more similar
to thermoplastics

[48]

26 Not specified Corn stover (three
particle size ranges)

Sterilized for 2 h at
15 psi (103.4 kPa)

temp. not specified,
4 + 4 days 100 ◦C for several hours Tiles

Increasing supplemental nutrition
after a homogenization step increases

the mechanical properties of MBC
(observed continuity of the mycelium

network was greater)

[51]

27
Trametes sp.,

Schizo-phyllum
commune

Agricultural waste
and fruit/

vegetable peels
Not specified 25–30 ◦C, +21 days Drying above 60 ◦C

Not compressed,
cold and hot

compressed boards

Useful for packaging material,
furniture, footwear and others [53]
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28

Oxyporus
latermarginatus

(EM26),
Megasporoporia minor

MG65, Ganoderma
resinaceum GR33

Wheat straw Autoclaving, 115 ◦C,
15 min 28 ◦C, 8 weeks 70 ◦C Insulation materials

The choice of fungi species depends
on the degradation rate of different

substrates. Rapid colonization of the
substrate is required because

excessive degradation of the substrate
leads to weakening of the MBC. MBC

shown good thermal performance

[49]

29 Trametes versicolor Glass fines, wheat
grains, and rice hulls

121 ◦C, 15 psi
(103.4 kPa), 40 min

25 ◦C, 50% RH,
12 days 50 ◦C, 48 h Fire safe mycelium

biocomposites

MBC are safer than the typical
construction materials: producing
much lower heat release rates, less
smoke and CO2 and longer time to

flashover. The composites with glass
fines had the best fire performance.

[50]

30
As [45] (supplied by

Ecovative Design,
LLC)

Corn stover particles
and nutrition
(calcium and
carbohydrate)

Not specified 25 ◦C, 4 + 4 days 100 ◦C, 4 h

Mycelium
composites

reinforced with
agro-waste

The soft elastic response of pure
mycelium at small strains (stiffening

at larger strains), stress softening
effect and hysteresis under cyclic

compression were observed

[52]

31

Trametes multicolor
(T. ochracea) (Mycelia

BVBAM9915);
Pleurotus ostreatus

(SPOPO Sylvan 195)

Beech sawdust,
rapeseed straw,

non-woven
cotton fiber

Autoclaving 25 ◦C, 24 days, RH
55–70%, darkness 150 ◦C, 20 min. Boards

Straw-based mycelium composites
are stiffer and less moisture-resistant

than cotton-based
[57]

32 Not specified

Jute, flax, and
cellulose textile as

outer layers;
mycelium-bound
agricultural waste
with a soy-based
bioresin as cores

As in [139] As in [139] As in [139] Three-layer
sandwich-structure

Soy-based bioresin significantly
increased the mechanical properties

of the MBC.
[58]

33 Trametes versicolor,
Polyporus brumalis

Agricultural
by-products (wheat

straw, rice hulls,
sugarcane bagasse,

blackstrap molasses)
and agricultural
products (wheat

grains, malt extract)

Autoclaved at 121 ◦C
for 20 min.

25 ◦C, 7 days,
without light 85 ◦C, 1 h Pure mycelium

Mycelium grew slow on rice hull,
sugarcane bagasse and wheat straw.

Liquid blackstrap molasses
accelerates growth, outperforming

laboratory malt extracts.

[59]
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34

Not specified
(white-rot

basidiomycete
mycelium)

Mixture of spruce,
pine, and fir Not specified Not specified Dried at 43 ◦C Particleboard

Cellulose nanofibers added to the
substrate improved the mechanical

properties of MBC by 5%
[60]

35 Colorius sp., Trametes
sp., Ganoderma sp.

Vine and apple
tree-pruning

woodchips with 1%
flour and 3%
wheat straw

Autoclaved at
100 ◦C, 1 h

23 ◦C, 95% RH,
14 days 60 ◦C, 48 h Foam

Some disadvantages of the material
can be turned into advantages, for

example, high water absorption could
be beneficial in specific applications.

[61]

36 Coprinopsis cinerea,
Pleurotus djamor Not applicable Not applicable

cultured at 28 and
37 ◦C in the dark,

then 25 ◦C under a
12 h light/12 h

dark cycle

Biochemically stopped Not applicable
Biochemical solution to regulate the
fruiting body formation, which may

replace heat killing of mycelium
[62]

37

Fomitopsis pinicola,
Gloeophyllum

sepiarium, Laetiporus
sulphureus, Phaeolus

schweinitzii,
Piptoporus betulinus,
Pleurotus ostreatus,

Polyporus arcularius,
Trametes pubescens,

T. suaveolens,
Trichaptum abietinum

Birch, aspen, spruce,
pine, fir sawdust

and shavings

Sterilized at 121 ◦C
for 60 min. 23 ◦C, 21 + 21 days 140 ◦C, 120 min. Boards

Polyporus arcularius and Trametes
suaveolens and birch wood shavings

are the best combination
[63]

38

Lentinula edodes LED
AJU1, L. edodes LED
CHI, L. edodes LED

96/18

Coconut powder,
wheat bran

Autoclaved at 121 ◦C
for 60 min.

25 ± 1 ◦C,
7 + 23 days,

without light
50 ◦C, 24 h Test samples The tested composite is suitable as a

packaging material [64]

39 Trametes versicolor
(M9912)

Flax dust, flax long,
wheat straw dust,

wheat straw, hemp
fibres and pine
wood shavings

Autoclaved at 121 ◦C
for 20 min. 28 ◦C, 16 days 70 ◦C, 5–10 h Thermal insulation

The thermal conductivity and water
absorption coefficient of MBC are

comparable to rock wool, glass wool
and extruded polystyrene. The

mechanical performance of the MBC
depends more on the fiber

arrangement than on the chemical
composition of the fibers

[65]
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40 Trametes versicolor Spruce wood
particles

121 ◦C, 1.25 kPa,
60 min

30 ± 2 ◦C, 21 days,
without light 60 ◦C, 8 h Construction

material (samples)
Mycelial bond strength is equivalent

to synthetic resin bond strength [66]

41

Pycnoporus
sanguineus 14G
(MIUCS 778),

Pleurotus albidus
88F.13 (MIUCS 1586),

Lentinus velutinus
180H.18

(MIUCS 1196)

Pinus sawdust,
wheat bran, agar,
calcium carbonate

Autoclaved, 30 min,
1 atm

28 ◦C, for 10 days
and 24 ± 2 ◦C for

15 days
80 ◦C, 24 h. Biofoams

Thermogravimetric profile similar to
expanded polystyrene, lower thermal
stability, but remaining stable up to
350 ◦C. The compression strength is
60% greater; MBC are biodegradable

[67]

42 Ganoderma sp.

56.3% corn stover,
27% grain spawn,
2.4% maltodextrin,

0.8% calcium sulfate,
and 13.5% complex

of nutrients and
mineral mixture

Not specified 30–35 ◦C Dried at 43 ◦C Board of pure fungal
mycelium

Pure mycelium foams is suitable for
acoustic shielding products,

especially for low to mid-frequency
range noise. The mycelium biofoam

is also suitable for fire-resistant layers,
shoe textile support foams, clothing,

and even scaffolding for medical
bio-organs and as substitute of meat

[68]

43 Ganoderma lucidum
Cassava bagasse,
palm sugar fiber,

rice bran
Not specified Room temperature

for 12 days 55–60 ◦C for about 20 h Construction board

composition of the raw materials
affected the density, swelling

thickness, water absorption, MOE
and MOR

[69]

44 Ganoderma lucidum Cotton stalk 121 ◦C for 1 h 25 ◦C, 65% RH for 7
days 65 ◦C for 10 h Pressed block

Properties were significantly
improved with the increase of

hot-pressing temperature
[70]

45 Ganoderma boninense Polyester resin,
epoxy resin Not applicable Not applicable Not applicable Block of composites

mushrooms + resin
Mushrooms above 5% decrease in

composite hardness [75]

46 Ganoderma lucidum Cotton stalk, bran 121 ◦C for 1 h. 25 ◦C, 65% RH for
7 days

Hot-pressed at 200 ◦C for
6 min

The mat of
500 × 300 × 12 mm

Strong natural fibers, such as wood
and bamboo, are recommended [80]

47 Trametes versicolor Hemp shives and
hardwood chips Sterilized 22 ± 2 ◦C, 70 ± 5%

RH 93 ◦C Lightweight, thermal
insulation materials

The strength, water absorption, and
biodegradability of 5 combinations of
fungi and substrates were compared.

[78]

48 Ganoderma lucidum Bamboo fiber Pasteurization 30–35 ◦C, 21 days 80 ◦C, 9 h Boards Non-structural function in buildings [72]

49 Ganoderma lucidum
Potato dextrose

broth, D-glucose,
alkali lignin

Autoclaved 27 ◦C, 28 days,
78% RH, in the dark 50 ◦C, 15 h

Test samples of pure
mycelium or

mycelium cellulose
composite

All mycelia are more or
less hydrophobic [73]
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50
Not specified

(obtained from
Ecovative Design)

Not specified
(obtained from

Ecovative Design) +
wheat flour

Autoclaved 23 °C, 6–10 days 95 ◦C, 4 h 3D printed samples 3D printing with biomass–fungi
material is possible [76]

51
Pleurotus ostreatus, P.

citrinopileatus, P.
eryngii, G. lucidum

An undyed
nonwoven fabric mat
with a fiber content
of 45% recycled jute,

49% cotton,
15% cornstarch

80–90 ◦C, time
not specified 25 ◦C, 7 days 90 ◦C, 2 h Biodegradable

footwear

Fungi species and substrate (fabric)
affected the density. Higher density
causes higher compressive strength.

[74]

52

Trichoderma
asperellum, Agaricus
bisporus, P. ostreatus

(HAMBI FBCC0515),
G. lucidum (HAMBI

FBCC665),
P. ostreatus sajor caju
(HAMBI FBCC471),

P. ostreatus florida
(HAMBI FBCC469),
K. mutabilis (HAMBI

FBCC2164), F.
velutipes (HAMBI

FBCC583

Oat husk 1:1, oat and
birch sawdust 1:2,

oat straw 1:2,
rapeseed cake 4:3

120 ◦C, 20 min 21 ◦C, 21 days 98 ◦C, 5 min Block

MBC with Agaricus bisporus gave high
resistance to moisture.

Hydromechanical stress factors via
dynamic mechanical analysis (DMA)

are effective to simulate potential
conditions for mycelium composites

during expected usage.

[77]

53 Ganoderma lucidum Bamboo culms,
chitosan 121 ◦C, 1 h

25–28 ◦C, RH
65–80%, 7–28 days

and 23 ± 0.5 ◦C, RH
65–70%, 20 days

Dried in an oven Extrudable paste
Chitosan with mycelium-enriched

bamboo is suitable for building
elements with complex shapes

[79]

54
Ganoderma lucidum,
Pleurotus ostreatus,

Auricularia polytricha

Rubber tree (Hevea
brasliensis) sawdust,

rice bran, lime
powder, diaper core,
coffee, banana skin,
eggshell, sugarcane

Not specified Not specified 20 min under a 10 MPa
pressure at 160 ◦C Board

It is possible to produce
formaldehyde free bio-boards from

spent mushroom substrate.
[81]

55 Ganoderma lucidum,
Pleurotus ostreatus

Clay, sawdust
(mixed wood

species), bleached
and unbleached

cellulose

117–120 ◦C, 0.8–1 bar,
120 min

24 ◦C, 80% RH,
14 days

600 ◦C, 6 h, and 960 ◦C,
2.5 h Fired brick

Mycelium enhances tensile strength
along the extrusion axis and the
connection between the layers

[82]
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56

Ganoderma lucidum,
Trametes hirsuta,

Pycnoporus
sanguineus, Fomes

fomentarius

Beech, spruce 121 ◦C, 2 × 60 min 25 ◦C, 21–35 days 80 ◦C, 22 h Block
The use of wood chips as a substrate
causes a higher density of MBC and

increases its strength
[83]

57

Trametes hirsuta,
Schizophyllum

commune,
Kuehneromyces

mutabilis, Bjerkandera
adusta, Gloeophyllum

odoratum, Lenzites
betulina, Xylaria

hypoxylon,
Daedalopsis configrosa,
Coprinellus micaceus

Sorghum seeds,
rapeseed straw Not specified 25 ◦C in the dark for

7–10 days + 28 days
6 min at 130 ◦C with

28 MPa. Small cylinder
There is a correlation between the

extent of colonization and the
strength of the material

[1]

58 Pleurotus ostreatus Wood (not specified
sawdust)

121 ◦C, 15 min,
sawdust was

chemically sterilized

25 ◦C, 5 days and
24–27 ◦C, RH 80%,

8–10 days
Not specified Cylinder

The mycelium biocomposite could
substitute expanded

polystyrene (EPS)
[84]

59 Fomes fomentarius Fungus fruit body Not applicable Not specified Not applied Test samples
The fruit bodies of bracket fungi

show surprising recovery properties
in the wet state

[85]

60
Trametes versicolor
M9921, Ganoderma
resinaceum M9726

Hemp hurds,
beechwood sawdust 121 ◦C, 20 min 26 ◦C, in darkness,

9 days + 22 days 125 ◦C, 10 h Compressed board
Producing complex shapes with

mycelium materials at the
architectural scale is possible

[86]

61

Ganoderma
applanatum, Fomes

fomentarius, Agaricus
bisporus, Trametes

versicolor

Bleached softwood
Kraft fibers,
Hemp fibers

165 ◦C, 75 min and
chemically washed Not specified Not specified Test samples

G. applanatum, F. fomentarius,
A. bisporus, T. versicolor are applicable

for blending with cellulose fibers
[87]

62 Pleurotus ostreatus
Coir-pith and wood

(not specified
sawdust)

120 ◦C, 15 psi
(103.4 kPa), 15 min

27 ◦C, RH 80%,
4 + 14 days 140 ◦C, 20 min Board

The mycelium biocomposite could
substitute EPS in

packaging application
[88]

63 Ganoderma lucidum

Wheat straws (90%),
polypropylene with

bacterial spores
(10%)

70% ethanol, rinsed
in sterilize water, UV
radiation for 10 min

30 ◦C, 30–35 days 80 ◦C, for 5 to 10 h Board

The fungal biocomposite presented
similar compressive strength and

improved thermal insulation capacity
compared to polystyrene

[89]
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64 Pleurotus ostreatus

Hemp, rice straw,
lacquer tree wood

chips, and oak
wood chips

121 ◦C, 90 min 20 ◦C, 65% RH, no
light, 7 + 25 days Not specified Mycelium composite

panels

There is a difference in water
absorption rates of the

different substrates
[90]

65 Pleurotus ostreatus

Sugarcane bagasse,
sawdust, rice husk,
calcium carbonate,

rice bran

Autoclaved at 121 ◦C
for 15 min

25 ◦C, dark,
7 + 11 days, 100 ◦C, 24 h Amorphic biofoam

P. ostreatus grows best on rice husk
and poorly on sawdust and

sugarcane bagasse
[91]

66 Pycnoporus
sanguineus

Coconut powder,
with 30% wheat bran

24, 48 and 72 h at 50,
60 and 70 ◦C 20 + 13 days 120 ◦C, 1 atm Test samples (cubes)

The time and temperature of drying
affect the physical properties and

microstructure of the biocomposite
[92]

67 Ganoderma
resinaceum

Hemp shives,
soybean hulls Not specified 22 ◦C, dark, 7 days Not applied Block

There are changes in electrical spiking
activity of mycelium bound

composites in response to applied
heavy loads

[93]

68 Pleurotus ostreatus,
F. oxysporum Sodium silicate 120 ◦C, 15 min 24 ± 1 ◦C Pure mycelium

samples

Adding 3% Si to thenutrient media
for F. oxysporum increased its thermal

stability. The fibers produced by
P. ostreatus compared with the fibers

produced by F. oxysporum and
improved thermal stability (higher
decomposition temperature, lower

degradation rate, and higher
residual weight)

[56,94]

69

Basidiomycete
(biomass–fungi

material
(“Grow-It-Yourself”)

obtained from
Ecovative Design)

Psyllium husk
powder, wheat flour Not specified 23 ◦C, 3–5 days Drying during 3D

printing Pasta to 3D printing
The ratio of psyllium husk powder to
water from 1:40 to 2:40 improved 3D

print quality
[95]

70

Pleurotus ostreatus,
Oudemansiella

radicata,
Acremonium sp.

Cotton stalk,
wheat bran 120 ◦C, 120 kPa, 2 h,

24 ± 1 ◦C,
28–37 days,
RH = 50%

24 ◦C, 72 h Block

All tested MBCs presented lower
thermal stability but higher residue

mass compared to expanded
polystyrene. The MBCs proposed in

the article could be used as
lightweight backfill materials

[96]
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71 Fomes fomentarius

Hemp shives,
rapeseed straw,

poplar wood chips,
rye grain

Not specified 24 ◦C, 7 + 7+ 12
+ 7 days 70 ◦C Brick

The LCA analysis shows an
improvement in most impact

categories compared to typical
building bricks

[97]

72 Ganoderma lucidum
(M9720)

Empty Fruit Bunch
(EFB) fibers, sawdust
(Albizia chinensis),

wheat bran

120 ◦C, 60 min 28 ◦C, 14 days 70 ◦C, 48 h Board
The coating is able to retain the

material strength over the weathering
period in all the loading scenarios

[98]

73
Pleurotus ostreatus

(FBCC0515), T.
hirsuta (FBCC1239)

Softwood shavings,
oat bran 30 min. at 120 ◦C

Growth at 27 ◦C for
24–27 days, stored at

5 ◦C for 23 days
at 60, 90, or 120 ◦C for 3 h Test samples (beams)

The structure of mycelium more
significantly affects the physical
characteristics of the mycelium

composites than fungal decay modes

[99]

74 Ganoderma lucidum Cellulose fiber,
rapeseed bagasse 40 min. at 121 ◦C 30 ◦C, 58% RH,

21 + 7 days Not specified Foam (wall
insulation)

Rapeseed bagasse substrate
performed the best in thermal

conductivity with the lowest density
and good dimension stability, close to

conventional EPS polymer

[100]

75

Trametes versicolor,
(M9912-5LSR-2

O447A) Ganoderma
resinaceum (M9726)

Beechwood, hemp
fiber 20 min. at 121 ◦C 28 ◦C for 16 days 70 ◦C, 5–10 h

Composite and pure
mycelium test

samples

A method for the disintegration of
the mycelium based material

was established
[101]

76 Ganoderma lucidum

Hemp fibers, hemp
hurds, pine wood

sawdust, Silvergrass
(Miscanthus)

shavings

60 min at 121 ◦C 26–28 ◦C, 70–80%
RH for 14 days 60–70 ◦C for 2–3 days Boards with wood

reinforcement

The dense boards reinforced with one
low-density lattice are the

most promising
[102]

77 Pleurotus ostreatus Wood (not specified),
hemp fibers Pasteurization 20–25 ◦C for 21 days

Prototype furniture
made of rattan frame
and hemp sheet, jute

sheet, hemp rope

The necessity to stop the growth
process is the main limitation in the

manufacturing on an
architectural scale

[103]

78 Trametes hirsuta Cellulose pulp 45 min at 1.5 atm
and 121 ◦C 28 ◦C for 14 days Drying Test samples

A fungal mycelium appears in place
of the cellulose microfibrils, but the

size of the hyphae differs by an order
of magnitude from the size of the

cellulose microfibrils.

[104]
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79 Pleurotus ostreatus Oak sawdust, Wheat
straw, Wheat flour 40 min. at 121 ◦C

Growth in the bags
(14, 21, 28 days) +

growth in the
formwork (14, 21, 28

days)

2 days at 92 ◦C Test samples (cubes)
Substrate mixtures with more

sawdust content are harder than
straw-based substrate mixtures

[105]

80 Pleurotus ostreatus,
Ganoderma lucidum

beech sawdust, oak
sawdust, bleached

cellulose pulp,
shredded cardboard,
shredded newspaper,
cotton fibers, soy silk

fibers, wheat bran,
wheat straw, burlap,

clay, and sand

45 min at 121 ◦C 22–24 ◦C for
20 + 5 days Dehydration at 40 ◦C Test samples (bricks

and beams)

Using a mycelium strain that is more
resistant to the water uptake is not

sufficient. Hygroscopicity of MBC is
highly dependent on the type of

substrate used

[106]

81 Trametes versicolor
(M9912)

Hemp fibers,
montmorillonite clay 121 ◦C for 20 min. 26 ◦C, 60% RH for

5 + 12 + days 70 ◦C for 10 h 15 mm board The nanoclay does not significantly
affect the bending behavior [107]

82 Fomes fomentarius
(GaG41)

Hemp shives,
rapeseed straw Autoclaving 25 ◦C for 7 + 14 days 60 ◦C for 2 days Test samples

The impact of particle size on
compression behavior was more

profound for large rapeseed
straw particles

[108]

83 Ganoderma lucidum

Primary: 11%
mycelium spawn,

56% paper pulp, 1%
xanthan gum and

32% water by weight.
Secondary: sand,

gravel, wood chips

Sterilized

The inoculated paper
pulp was 3D printed,
then the remaining

space was filled by a
supporting material

Drying In a mold of 150 ×
90 × 90 mm

A multi-material process of
fabricating with MBC is required [109]

84
Trametes versicolor,
Ganoderma sessile,

Trametes multicolor

Wood (eucalyptus,
vine, apple,
pine, oak)

121 ◦C, 1 h 25 ◦C, 4–5 weeks 105 ◦C, 48 h

Dense bio
composites with low

water absorbance
and high mechanical

properties

Results indicate a correlation between
fungi species, substrate, and growth
protocol on final MBC characteristics
(density, water absorbency, and the

compressive strength)

[110]

85 Ganoderma
resinaceum (GA1M)

Rose flowers and
lavender straw Sterilized

28 ◦C and 220 rpm
for 7 days + 25 ◦C,
95% RH, for 7 days

60 ◦C for 8 h Blocks 40 × 40
× 40 mm

Outer mycelium layer, fibrous
internal microporous structure and

integrity are appropriate
[111]
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Table A1. Cont.

Fungi Substrate Substrate
Sterilization

Incubation and
Growing Denaturing and Drying Product/Application Results Reference

86 Ganoderma lucidum
(M9726)

The 0.2–1.25 mm
beechwood sawdust
mixed with psyllium

husk (Plantago
indica), corn starch,

xanthan gum, paper
cellulose, guar gum,
and locust bean gum

Autoclaved
separately for 20 min

at 121 ◦C (corn
starch was heated to
100 ◦C for 40 min)

26 ◦C and 60% RH,
for 10 days 70 ◦C for 5 h

3D printed substrate
in form of cylinder

specimens
(h = 38 mm,
d = 100 mm)

The mycelium mitigates crack
formation during printing. The core
of the extrudable filament was not
colonized sufficiently. To 3D print
with living materials a dynamic

adjustment of nozzle height during
printing by scanning the previous
layer and control of the deposition

is needed.

[112]

87 Trametes versicolor Yellow birch wood
particles

Steam-sterilized at
121 ◦C for 60 min

7-day preincubation,
incubated at 28 ◦C,
80% RH for 8 days,

melted and
incubated at 28 ◦C,
80% RH for up to

30 days

Oven-dried for 48 h at
50 ◦C and hot-pressed at

180 ◦C for 8 min

Foams, samples with
varied dimensions

In the low-density foam, the mycelia
bind the particles together, with little
impact on the mechanical properties.

In hot-pressed panels, the mycelia
strengthen the material as a network

of hyphae and act as an adhesive.

[113]
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