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Abstract: In this study, the percolation inception, actual filler amount, and concentration of nets are
expressed using the filler size and agglomeration, interphase depth, and tunneling size. A modified
form of the power-law model is recommended for the conductivity of graphene–polymer products
using the mentioned characteristics. The modified model is used to plot and evaluate the conductivity
at dissimilar ranges of factors. In addition, the prediction results of the model are compared with
the experimented values of several samples. A low percolation inception and high-volume portion
of nets that improve the conductivity of nanoparticles are achieved at a low agglomeration extent,
thick interphase, large aspect ratio of the nanosheets, and large tunnels. The developed equation for
percolation inception accurately predicts the results assuming tunneling and interphase parts. The
innovative model predicts the conductivity for the samples, demonstrating good agreement with
the experimented values. This model is appropriate to improve breast cancer biosensors, because
conductivity plays a key role in sensing.

Keywords: graphene–polymer products; tunneling effect; conductivity; interphase; agglomeration

1. Introduction

The conductivity of nanocomposites (referred to as conductivity in this study) sud-
denly increases at percolation inception, because nanoparticles produce the filler network
at this point [1,2]. Hence, major focus has been on the achievement of low percolation
inception in nanocomposites. The aspect ratio of the filler (length per thickness/diameter)
is an important parameter influencing percolation inception [3]. As such, percolation incep-
tion decreases with increasing filler aspect ratio, i.e., by big and thin nanosheets. Graphene
is composed of a monolayer or a few layers of carbon with desirable mechanical, thermal,
physical, and electrical properties [4–17]. The high aspect ratio of graphene nanosheets
results in the establishment of conductive nets by a low filler concentration.

The size, concentration, and morphology (dispersion quality and aggregation/
agglomeration) of fillers significantly impact the conductivity of polymer nanocompos-
ites [18,19]. A higher amount of thinner and longer nanosheets increases the conductivity.
Moreover, the large interfacial area of nanofillers yields the interphase part, which changes
the performance of polymer nanocomposites [20,21]. A thicker interphase produces a
tougher sample. Studies on the reinforcement of the interphase in the samples have found
that the formation of the interphase leads to a decrease in percolation inception [2]. The pos-
itive impacts of a thick interphase on the percolation inception and conductivity have also
been reported [3,22]. The conductivity of graphene products is dependent on the tunneling
effect, because electrons can move over the tunnels between nearby nanoparticles based on
quantum mechanics [23,24]. Hence, the percolation inception of graphene nanosheets is
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linked to the interphase part and tunneling effect between nanosheets, although a number
of researchers have only correlated the percolation inception to filler aspect ratio [25,26].

Previous authors have applied the traditional power-law percolation model to cal-
culate and evaluate the percolation inception and conductivity in graphene-filled sam-
ples [27–29]. This model applies the filler amount, percolation inception, and a factor for
the estimation of conductivity, neglecting interphase deepness and tunneling dimension.
Generally, there are some models for the conductivity of polymer graphene nanocompos-
ites. However, many models disregarded the interphase or tunneling distance [30–32],
although these parts effectively affect the percolation onset and conductivity. Actually, the
former models commonly considered the amount and conductivity of graphene, as well as
percolation onset in the conductivity. Moreover, recent papers considered the interphase
and tunneling sections, but they neglected the agglomeration extent [24,33–35], which is
inevitable in nanocomposites. In other words, a comprehensive model for conductivity
should consider the effective terms for the graphene, interphase, and tunneling region by
simple and meaningful parameters.

In this study, a modified form of the power-law model is developed for estimating the
conductivity of graphene products. In our model, the percolation inception of nanopar-
ticles is expressed using filler geometry, agglomeration extent, interphase thickness, and
tunneling size. As only nanosheets belonging to the nets can improve the conductivity,
the volume portion of the nets is expressed and applied in the developed model. The
roles of dissimilar factors in the percolation level and concentration of nets are investi-
gated. Furthermore, the forecasts of the model are compared with the test data. The new
model is expected to help researchers study the conductivity of nanoparticles by assuming
novel phenomena in nanocomposites such as the agglomeration, interphase part, and
tunneling mechanism.

2. Theoretical Views

Hu et al. [36] expanded the power-law model for carbon nanotube (CNT)-containing
samples using the aspect ratio of nanoparticles expressed as:

σ = σf 100.85[log(l/2R)−1](φ f − φp)
b (1)

where σf, l, R, φ f , and φp denote the conduction, length, radius, volume portion, and
percolation inception of the filler, respectively, and b is an exponent. Hu et al. reported that
the model correctly forecast the conductivity, although the filler agglomeration, interphase
part, and tunneling effect were not considered. In this study, Equation (1) is advanced for
determining the conductivity of graphene products.

The percolation inception in the materials consisting of haphazardly oriented graphite
is given [37] below:

φp =
27πD2t

4(D + d)3 (2)

where t and D are the thickness and diameter of the nanosheets, respectively, and d is
the tunneling size between the adjacent sheets. When D >> d, the latter equation can be
simplified as follows:

φp =
27πt
4D

(3)

The interphase part shifts the percolation inception to smaller filler portions. The
tunneling spaces produce the conductive nets between neighboring nanosheets with small
distances separating them. From this analysis, it can be suggested that the tunneling and
interphase parts decrease the percolation inception as shown:

φp =
27πt

4D + 2(Dti + Dd)
(4)
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where ti denotes the interphase depth.
The aspect ratio is α = D/t, so the latter equation is restructured into:

φp =
27π

(4 + 2ti + 2d)α
(5)

Due to the high superficial energy of nanoparticles and van der Waals attraction
between nanosheets, the agglomeration of nanosheets occurs in the system [38]. The
nanosheets assume a sphere-like structure in the nanocomposite, which seriously reduces
their aspect ratio [36].

The effect of agglomeration on the aspect ratio is expressed as:

αg =
α

g
(6)

where g shows the extent of agglomeration. When g = 1, well-dispersed nanosheets are
displayed in the nanocomposite (no agglomeration); a higher g value due to a stronger
agglomeration reduces the aspect ratio. g is determined by the size of agglomerated
graphene. For example, when the thickness of the nanosheets increases two times due to
agglomeration, g = 2. Actually, g depends on the agglomeration size. The value of g can be
determined using morphological images.

Assuming the agglomeration of nanoparticles due to a reduced aspect ratio, the
percolation inception can be expressed by substituting Equation (6) into Equation (5)
as shown:

φp =
27πg

(4 + 2ti + 2d)α
(7)

This equation can be utilized to calculate the percolation inception in nanocomposites.
Low percolation inception is realized assuming the tunneling and interphase part, while
agglomeration increases it.

The interphase part increases the actual concentration of nanoparticles in nanocompos-
ites. The volume portion of the interphase part in polymer graphene nanocomposites [39]
is expressed as:

φi = φ f (
2ti
t
) (8)

The actual volume portion of graphene in nanocomposites contains the total portions
of nanoparticles and the interphase as:

φe f f = φ f + φi = φ f (1 +
2ti
t
) (9)

Therefore, the thicknesses of nanosheets and the interphase control the actual filler
concentration in nanocomposites.

The portion of nanoparticles contributing to the conductive nets [40] is expressed by
percolation inception and filler concentration as:

f =
φ1/3

f − φ1/3
p

1 − φ1/3
p

(10)

where f can be developed by the interphase part, tunneling effect, and agglomeration level,
when the actual filler concentration and percolation inception from Equations (7) and (9)
are considered as:

f =
φ1/3

e f f − φ1/3
p

1 − φ1/3
p

(11)
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Nets handle the conductivity because of their ability to transfer charge, while the
detached particles have no effect on the conductivity. Consequently, estimating the volume
portion of nets is important.

The volume portion of nanosheets precipitating in the nets can be calculated as follows:

φN = f φ f (12)

when f from Equation (11) is substituted into the above equation and the actual concentra-
tion of nanoparticles is considered, φN can be calculated using:

φN =
φ1/3

e f f − φ1/3
p

1 − φ1/3
p

φe f f (13)

which relates to the sum and size of graphene, interphase depth, tunneling size, and
agglomeration extent.

Equation (1) can now be developed for the conductivity of graphene products by
interphase depth, tunneling size, filler agglomeration, and nets as follows:

σ = σf 100.85[log(αg)−1](φN − φp)
b (14)

where αg, φN , and φp are from Equations (6), (7), and (13), respectively. This model demon-
strates the impacts of several factors such as the interphase, tunneling effect, agglomeration,
and conductive nets on the conductivity.

3. Results and Discussion
3.1. Percolation Inception

The stimuli of dissimilar factors on the percolation inception were studied using the
developed equation (Equation (7)). Each contour plot shows the impacts of two factors on
the percolation level at D = 2 µm, t = 2 nm, ti = 5 nm, d = 5 nm, and g = 1.5.

Figure 1a illustrates the impressions of t and D on the percolation inception. Low
t and high D produced a small percolation level, and the highest percolation inception
was perceived at the highest value of t and the smallest D. Accordingly, thin and large
nanosheets, which participate in conductive nets because of the large part they cover
in nanocomposites, obtained a desirable percolation inception. In other words, strong
interactions and contacts among thin and large nanosheets occurred in conductive nets.

Figure 1b shows the percolation inception at different levels of α and g. The lowest
percolation level of approximately 0.005 was obtained at α = 1000 and g = 1, whereas the
percolation level undesirably increased to 0.05 at α = 200 and g = 3. Accordingly, a high
α and low g yielded a low percolation inception. In other words, the smallest percolation
inception was realized by the highest aspect ratio and the lowest agglomeration. The
percolation inception is inversely proportional to the aspect ratio, because a high aspect
ratio by thin and large sheets decreases the percolation level. A high level of agglomeration
lowers the number and aspect ratio in the nanocomposites, weakening the networking
in the nanocomposites. A low level of agglomeration results in a desirable dispersion
of the high-aspect-ratio filler in the samples, causing the formation of nets by the small
concentration of nanosheets. As a result, the percolation inception is directly linked to the
agglomeration level.

Figure 1c illustrates the stimuli of ti and d on the percolation inception. These pa-
rameters inversely affected the percolation inception, and the lowest percolation level of
0.003 was obtained at ti = d > 7 nm. A poor percolation inception was obtained from a
thick interphase and large tunneling size. A thick interphase surrounding the nanosheets
reduces the separation distance and produces conductive nets from a small amount of
nanosheets. However, a thin interphase does not affect the percolation level because it
does not change the distance between nanosheets. In contrast, the conductive nets forming
the nanosheets are separated by the tunneling size. Therefore, a large tunneling size can
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involve a significant number of nanosheets in the percolated nets, creating a low percola-
tion inception. This demonstrates that obtaining a low percolation inception from a thick
interphase and large tunneling size is achievable.
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3.2. Volume Portion of Nets

The impacts of various parameters on the volume portion of percolated nanosheets
(Equation (13)) are illustrated in Figure 2. The average ranking of factors in the predictions
was deliberated at t = 2 nm, φ f = 0.01, ti = 5 nm, d = 5 nm, D = 2 µm, and g = 1.5.
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Figure 2a illustrates the impressions of t and D on φN . The maximum value of
φN = 0.45 was achieved at t = 1 nm and D = 5 µm, although φN decreased to 0 at t > 4 nm
and D < 2.5 µm. Thin and large nanosheets yielded a high portion of percolated nets in the
samples, which resulted in the reduction of the percolation level. Thin nanosheets produced
a desirable interphase part in the nanocomposites based on Equation (8). Therefore, it is log-
ical to obtain a high portion of percolated nanosheets by thin and large nanosheets, because
they make big nets including the interphase part and nanosheets in the nanocomposites.

Figure 2b depicts the effects of α and g on φN . The best outputs were obtained at
maximum α and minimum g; however, φN significantly decreased at low α and high g
values. A more desirable φN was achieved for a higher aspect ratio and less agglomeration.
The favorable roles of the aspect ratio in the percolation level and interphase part are
predictable due to a large interphase area yielded by a high aspect ratio, which decreases
the percolation level and promotes filler concentration in the samples. Similarly, a higher
aspect ratio leads to a higher φN in nanocomposites. In contrast, a high g lowers the
aspect ratio and superficial part of the nanofiller, which negatively impacts the percolation
level and the effectiveness of the nanoparticles. A high g limits the interphase part in
the nanocomposite, which destructively alters the percolation inception and actual filler
concentration. The developed equation suggests a high φN from a high aspect ratio and
low agglomeration.

The influences of tunneling size and interphase depth on the volume quota of perco-
lated nanosheets are shown in Figure 2c. The highest φN was obtained from the thickest
interphase, whereas the thinnest interphase and the shortest tunneling size produced the
lowest φN . It can be concluded that the interphase depth dominantly affects φN due to the
thickness of the interphase layer around nanoparticles controlling the percolation inception
and actual filler concentration, whereas the tunneling size only affects the percolation level.
A profuse interphase lowers the percolation level and causes a high actual filler portion
resulting from the large interphase area produced in the nanocomposites. However, a large
tunneling size decreases the percolation inception and has no effect on the effectiveness
of nanoparticles. A large φN is expected when using a deep interphase, whereas a thin
interphase and short tunneling size negatively affect φN .

3.3. Electrical Conductivity
3.3.1. Parameter Effects

The conductivity of polymer graphene nanocomposites was expressed by the new
model in Equation (14) at different ranges of factors when b = 6.

Figure 3 illustrates the effects of φ f and t on the conductivity. The conductivity
increased to 110 S/m at φ f = 0.025 and t = 1 nm, and an insulated product was perceived at
φ f < 0.018 or t > 2 nm. A high filler amount and thin nanosheets significantly increased
the conductivity, whereas a low filler amount and dense nanosheets did not increase
the conductivity.
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A low filler portion in a nanocomposite does not alter the percolation value required to
increase the conductivity. In contrast, a high portion of graphene yields large and compact
nets in the nanocomposite capable of transferring charge and increasing the conductivity.
Thin nanosheets positively affect the percolation level, interphase part, and net efficiency,
as they reduce the percolation inception, thicken the interphase layer, and increase the size
and compactness of nets.

Figure 4 portrays the variations of conductivity at different collections of D and ti. The
highest conductivity of 0.05 S/m was obtained at D = 5 µm and ti = 10 nm, whereas a very
poor conductivity was obtained at D < 1.4 µm and ti < 7 nm. Thus, the diameter of the
nanosheets and interphase depth govern conductivity, and the maximum conductivity was
reached for the largest nanosheets and thickest interphase.
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Large nanosheets enhance the aspect ratio, lower the percolation level, and develop the
portion of nanosheets in the nets, thereby significantly increasing the conductivity due to
the linkage with net properties [41,42]. Large nanosheets produce big nets, which transport
charge and create strong conductivity. Moreover, a plentiful interphase supports the
efficiency of nanoparticles, as the interphase part can enlarge the nets. A dense interphase
moves the percolation level to smaller filler portions and increases the actual filler portion.
These desirable levels produce favorable nets, which raise the charge conveyance in the
nanocomposite. Better conductivity is observed from a thicker interphase layer as compared
to a thin interphase, which has no effect on the general performance of nanocomposites.
Literature studies have discussed the positive impacts of the interphase on the percolation
inception and conductivity of polymer CNT nanocomposites [40].

The dependency of conductivity on α and σf is illustrated in Figure 5 (φ f = 0.015).
The best value of conductivity was achieved when the heights of α and σf were at the
maximum. This observation demonstrates that conductivity is controlled by the aspect
ratio and conduction of graphene sheets. A high aspect ratio decreases the percolation
level and increases the share of nanosheets in the nets, thereby governing the conductivity.
Graphene is the only conductive nanomaterial in nanocomposites, and its conduction level
affects the conductivity.

Previous studies discussed the direct influences of t, the aspect ratio, and the conduc-
tion of nanoparticles on the conductivity [43]. Therefore, increased conductivity can be
achieved from high levels of the aspect ratio and filler condition.

Figure 6 shows the effects of d and g on conductivity. The highest conductivity of
6 × 10−5 S/m was achieved at d = 10 nm and g = 1. An insulated nanocomposite was
achieved at high g levels. The diagram shows that a large tunneling size and poor agglom-
eration increased the conductivity, whereas the agglomeration of nanoparticles seriously
weakened it.
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A large tunneling size can allow the participation of the far nanosheets in the con-
ductive nets. Large nets are constructed by large tunnels, which improve the conductiv-
ity; however, the maximum level of the tunneling size reported in previous studies was
10 nm [44]. This means that tunneling sizes greater than 10 nm are ineffective at produc-
ing conductive nanocomposites. Nanocomposites are conductive when electron transfer
between the nanosheets occurs. The current model assumes the tunneling size using per-
colation inception (Equation (7)) and shows a direct dependency of conductivity on the
tunneling size; in contrast, other models displayed an opposite link between conductivity
and tunneling size [45,46]. The models observed the different influences of the tunneling
size on the conductivity due to a large tunnel, causing simultaneously quick percolation
and weak electron transport.

The agglomeration of nanosheets reduces the superficial area and aspect ratio of
the nanofiller and induces a large percolation inception and small interphase part. The
poor conductivity obtained from higher agglomeration is a result of the small conductive
nets produced, which do not transfer charge. The undesirable effect of agglomeration on
the rigidity of nanocomposites was also mentioned in previous studies [47,48]. It can be
concluded that agglomeration negatively governs conductivity. Furthermore, these factors
negligibly affect the conductivity from 0 to 6 × 10−5 S/m.

The effects of f and b on the conductivity are illustrated in Figure 7. The uppermost
conductivity of 3 S/m was attained when f = 0.6 and b = 4, whereas the conductivity was
almost 0 at f < 0.4 or b > 4.8. An insulated sample was produced from the low percentage
of nanosheets in the nets and the high level of b, whereas a high portion of nanoparticles in
the nets and low b produced better conductivity.
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The effect of f on the conductivity is reasonable, as large nets can efficiently transfer
charge that establishes desirable conductivity. Additionally, a higher level of b suggests
poor conductivity due to the weakened effect of the net volume portion in the conductivity.
Recent studies on the original percolation models reported a similar influence of the b expo-
nent on the conductivity, that is poor conductivity was observed when the b exponent level
was high [27–29]. The current model shows the influences of f and b on the conductivity.

3.3.2. Examination of Developed Model by Experimental Data

Several graphene–polymer nanocomposites comprising epoxy [49], acrylonitrile buta-
diene styrene (ABS) [50], polystyrene (PS) [51], and poly(vinylidene fluoride) (PVDF) [28]
were selected from previous articles (Table 1). All details of the experimental processes
and synthesis of the nanocomposites are available in the references. We only indicate
the processing technique of the samples, the graphene dimensions, and the percolation
onset from the original references in Table 1. Moreover, morphological images of these
nanocomposites are depicted in Figure 8. Good dispersion of graphene nanosheets and
the formation of networks after percolation onset are evident in the morphological images.
Undoubtedly, the conductivity of samples relates to the dispersion quality and size of
the nanosheets, and the morphological pictures are useful to analyze the structure and
dimensions of the nanosheets. Furthermore, conductivity determinations were detailed in
the original references.

Table 1. Information of graphene–polymer samples.

Matrix [Ref.] Processing Technique D
(µm)

t
(nm) φp

ti
(nm)

d
(nm) b

Epoxy [49] In situ dispersion 2 2 0.0050 2 4 5.2
ABS [50] Coagulation method 4 1 0.0013 3 3 7.3
PS [51] Solution mixing 2 1 0.0010 8 8 5.5

PVDF [28] Solution mixing 2 1 0.0030 2 3 5.4

First, the experimental percolation onset was substituted into Equation (7) to determine
the average values of interphase deepness and tunneling size, as presented in Table 1. A
thick interphase and large tunnels were observed in the PS sample, due to the lowest
percolation level. It can be concluded that the developed equation correctly predicts the
percolation inception by the tunneling and interphase parts. Using the developed model
(g = 1 and σf = 105 S/m), the conductivity of the reported samples was estimated.
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graphene systems.

Figure 9 shows the experimented and predicted conductivity values estimated for
the examples. The developed model is able to predict the percolation-like behavior of
conductivity based on the test results. Consequently, the developed model predicts the
conductivity considering the stimuli of the interphase part, tunnels, agglomeration, and
nets. The values of b exponent were also calculated, as presented in Table 1. The highest
b value of 7.3 was observed in the ABS/graphene nanocomposite due to the poor conduc-
tivity levels. Other samples displayed different ranks for the conductivity and b exponent.
Since the calculated parameters for the interphases, tunnels, and b are reasonable and
meaningful, the developed methodology and its outputs are validated.
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4. Conclusions

A modified power-law equation was proposed to visualize the conductivity of a
graphene–polymer system using various parameters related to the interphase part, tunnel-
ing effect, and agglomeration. The conductivity was evaluated by the effects of various
parameters and experimented records of numerous samples. The desired levels of the
percolation inception, volume portion of percolated nanosheets, and conductivity were
obtained by thinner and larger nanosheets, a poorer agglomeration, a thicker interphase,
and a larger tunneling size. High conductivity was obtained from the high concentration
and high conduction of graphene and a low b exponent. The large variations of conductivity
were observed when the concentration and thickness of the graphene nanosheets changed,
whereas several parameters such as the tunneling size, agglomeration level, aspect ra-
tio, and filler conduction negligibly affected the conductivity. The model predicted the
percolation-like behavior of conductivity for the samples, and the results showed good
agreement with the experimented control levels. The new model is appropriate to improve
the performance of breast cancer biosensors, since conductivity plays an important role in
the detection of cancer cells.
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