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Abstract: Laser shock peening (LSP) has been employed to improve the mechanical properties
of repaired aerospace engine components via laser metal deposition (LMD). This study looked at
cross-sectional residual stress, microstructure and high cyclic fatigue performance. The outcomes
demonstrated that a compressive residual stress layer with a value of 240 MPa was formed at a
depth of 200 µm in the laser melting deposited zone and the microhardness was improved by 13.1%.
The findings of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM)
analysis revealed that misorientation increased and dislocation features were observed after LSP
which is beneficial to the enhancement of fatigue performance. The high cycle fatigue data illustrated
that the LMD+LSPned samples exhibited 61% improvement in comparison to the as-LMD samples.
In the aerospace sector, LSP and LMD are therefore very effective and promising techniques for
restoring high-value components.

Keywords: laser melting deposition; laser shock peening; microstructure; fatigue

1. Introduction

TC17 (Ti-5Al-2Sn-2Zr-4Mo-4Cr) titanium alloy has been widely employed in manu-
facturing aerospace engine components such as compressor blisks due to its outstanding
mechanical strength, excellent fracture toughness, high fatigue strength and good thermal
stability [1]. It was initially developed by the U.S. Air Force and General Electric Company
for manufacturing aircraft engine compressor disks. Nowadays, TC17 alloy is used to
manufacture aero-engine blades, compressor disks, blisks and heavy section forgings for
gas turbine engine components. However, due to harsh environments (e.g., high pressure,
temperature, foreign body damage (FOD)), aero-engine components are often cracked
during service time. The structural complexity of these components determine that reman-
ufacturing the damaged ones is financially rewarding instead of replacing them with newer
ones. Therefore, the advanced repair technology of titanium alloys plays an important role
to reduce engine manufacturing time and maintenance costs [2].

Laser metal deposition (LMD) is an advanced near-net-shape additive manufacturing
technique in manufacturing or repairing 3D components by adding materials layer-by-
layer via a CAD model. LMD possesses various advantages including low cost, high
flexible processing, short machining time, difficult machining materials and high material
utilization [1]. Additionally, due to the rapid cooling rate during the LMD process, the LMD
manufactured titanium possesses comparable or ever superior mechanical properties than
that of the wrought titanium alloys [3]. In order to decrease the economic losses and the
delivery time, LMD has been recently employed to repair high-value engine components.
Zhu et.al. [4] investigated the tensile mechanical properties of laser additive manufactured
TC11 titanium. The results illustrated that additively manufactured TC11 possesses good
tensile strength of 1033 ± 13 MPa and elongation of 6.8 ± 0.2%. Anand Kumar et al. [5] have
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successfully repaired a nickel-based single crystal fabricated aero-engine blade with direct
metal deposition. Additionally, previous investigations by Liu et al. [1] have demonstrated
that the tensile strength and elongation of the laser additively repaired TC17 could reach
1100 MPa and 10%, accounting for 91–98% of that of wrought TC17 alloy. Kun et al. [6]
employed point-mode forging and laser metal deposition to repair the Ti6Al4V alloy.
The 50% repaired-volume Ti6Al4V alloy exhibited better performance on yield strength,
ultimate tensile strength and elongation than the ASTM B381-2013 standard.

Although LMD could recover the original geometry morphology of the damaged
components with certain recovered mechanical properties, components repaired by LMD
still have issues such as tensile residual stress (TRS; formed during the LMD), reduced
fatigue strength, etc. Therefore, another technique called laser shock peening (LSP) was
employed to eliminate the tensile residual stress and improve the fatigue lives of LMD
repaired components. LSP is an effective surface strengthening modification technique
that can refine the surface microstructure, optimize the surface topology and induce com-
pressive residual stress, thereby extending the fatigue life [7]. Therefore, researchers
started to employ LSP as a post-strengthening processing technique in combination with
laser additive manufacturing to improve the properties of the as-repaired components.
Tong et al. [8] strengthened laser additively manufactured CoCrFeMnNi high-entropy alloy
with a Q-switched Nd-YAG LSP system. Nanoscale grains were formed on the surface
layer due to severe plastic deformation by LSP. Similar investigations on the repairing
technique were also carried out on the Ti6Al4V titanium alloy. Guo et al. [9] turned the
tensile residual stress on the additively manufactured Ti6Al4V samples to compressive
residual stress with an affected depth of around 700 µm. Lu et al. [10] printed Ti6Al4V
via a selective laser melting technique, followed by LSP. The tensile results show that the
ultimate tensile strength of SLMed samples is of 1004 MPa and 997 MPa while those of
SLM-LSPned samples are 1287 MPa and 1197 MPa in two printing directions. The high
strength and ductility can be obtained in SLM+LSPned samples due to the formation of
nanomechanical twins by LSP, leading to improvements of 14.3% and 18.3% in Lv et al.’s
work [11]. LSP can also be combined with wire and arc additive manufacture (WAAM) [12]
and the WAAM+LSPned samples exhibited higher elongation after LSP. Additionally,
Guo et al. [13] examined the high-temperature oxidation resistance of additive manufac-
tured TC4 subjected to LSP. It was found that after LSP, the Al-rich layer was changed
to three layers that effectively prevent the diffusion of oxygen, thereby strengthening the
oxidation resistance of the TC4 alloy.

Our previous study was conducted in the cycle of 105 and a fatigue experiment was
carried out on the strengthened and repaired TC17 aero-engine blades by the combination
techniques of LMD and LSP [14]. In this work, we firstly investigated the effects of LSP on
the high-cycle fatigue performance (>106 cycles) of an as-LMDed TC17 alloy before and
after LSP. Residual stress and microhardness were measured via the hole drilling method
and Viker’s indentation method. The microstructure was characterized by EBSD and TEM
to investigate the effect of LSP on the microstructure of laser additively manufactured
samples. Finally, the combination technique was a promising method to apply to the
repairing of aero-engine blades.

2. Experiment and Microstructure Characterization
2.1. Materials

TC17 (Ti-5Al-2Sn-2Zr-4Mo-Cr) powder was supplied by Haibao Ltd., Hunan, China.
The elemental contents are given in Table 1. The diameter of spherical particles varied from
60 µm to 140 µm, measured using a laser diffraction particle analyzer.

Table 1. Element composition of as-received TC17 powder.

Element Al Sn Zr Mo Cr H O N Ti

Content wt% 4.6–5.4 1.6–2.6 1.5–2.5 3.6–4.4 3.5–4.6 <0.011 0.078–0.14 <0.05 Bal
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2.2. Laser Melting Deposition and Laser Shock Peening

As shown in Figure 1, the schematic image of LMD (a) and LSP (b), a 4 kW fiber laser
with a laser wavelength of 1064 nm, a nozzle with a four-way coaxial powder feeder and
an ABB six-axis robot were employed to carry out the LMD experiment. The detailed LMD
processing parameters are given in Table 2. A TC17 plate with dimensions of 100 mm by
100 mm by 30 mm was used as substrate. The laser melting deposited fatigue samples
were designed as 130 mm by 30 mm by 50 mm (as shown in Figure 2a) and machined to
the dimensions shown in Figure 2b,c. The LSP process area is in the center of the fatigue
sample. Both sides of the fatigue sample were strengthened by LSP.
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Figure 1. The schematic image of LMD (a) and LSP (b).

Table 2. The detailed laser melting deposition and laser shock peening parameters.

LMD LSP

Laser Power 700 w Laser Energy 5 J

Scanning Speed 500 mm/min Spot Size 3 mm
Powder Flow 0.4 r/min Overlap 50%

Spot Size 1.6 mm Pulse Duration 20 ns
Overlapping 50% Confinement Layer water
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areas (b) and the fractured as-LMD sample (c).
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An LSP schematic diagram is given in Figure 1a. A nanosecond pulsed Nd: YAG laser
system manufactured by Tyrida, Ltd. was employed. The calculated laser density for each
pulse was 3.5 GW/cm2. The wavelength is 1064 nm, the pulse duration is 15 ns. Black tape
was used as an absorbing layer and tap water (thickness of 1 mm) for confining plasma
shock waves. The detailed LSP processing parameters are listed in Table 2.

2.3. Microstructure Characterization and Mechanical Property Measurement

The microstructure of additively manufactured alloy was characterized by SEM/EDS,
EBSD and TEM techniques. The as-received bulk sample with dimensions of 5 mm by
5 mm by 5 mm was cut into sample pieces, followed by the procedures of grinding using
silicon carbide papers and polishing with 9 µm, 3 µm and oxide polishing suspensions
(OPSs) to a mirror-like surface. The EBSD detector (symmetry, Oxford instrument, Oxford
UK) was equipped with a field emission scanning electron microscope (FESM, JEOL Model
7800, Tokyo, Japan). The texture was characterized by orientation density function (ODF)
and the deviation angle for the texture component was 20◦. The TEM sample was prepared
with a focusing ion beam (FIB) on a Zeiss SEM 440 Model using various currents (30 nA,
3 nA, 300 pA, 50 pA and low kV polishing), as shown in Figure 3. A JEOL 2100F electron
microscope was used for TEM observation.
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Figure 3. The position of the TEM lamella sample using the in situ lift-out FIB method.

The vibration fatigue test was conducted with a QBG-100 fatigue tester (Jinan, China)
at room temperature. All samples were tested with tension–tension (axial) fatigue at a
20 Hz frequency and an R = 0.1 stress ratio, and the applied stress was 300 MPa. For each
condition, the fatigue tests were repeated three times for statistical purposes. In terms of
residual stress measurement, detailed procedures can be found in [15]. Finally, a SEM was
employed to analyze the fracture morphologies of the fractured samples.

3. Results
3.1. Microhardness and Residual Stress

The higher surface hardness exhibited better performance on wear resistance and for-
eign object damage tolerance [16,17]. Figure 4 illustrates the cross-sectional microhardness
distribution of as-LMD and LMD+LSPned samples. It can be seen that the microhardness
of the as-deposited area is harder than the heat-affected zone and substrate. The micro-
hardness in the substrate area is around 320 HV0.1 while the surface microhardness of the
as-LMD sample is around 380 HV0.1. After LSP, this value is increased to 430 HV0.1 with an
increase of 13.1%.
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With the effect of the laser-induced plasma shock waves, compressive residual stress
was formed in the material along the cross-sectional direction [15,18]. Figure 5 shows the
in-depth residual stress curves of as-LMD and LMD+LSPned samples. The in-depth surface
of as-LMD samples exhibited an non-uniform tensile stress layer from the top surface of
100 MPa then fluctuated to its top peak of 500 MPa at the depth of 600 MPa. By contrast, after
LSP, the tensile stress was transferred into compressive residual stress. The compressive
residual stress reaches the maximum (−240 MPa) at around 200 µm. Then, the compressive
residual stress decreases to 0 MPa at the depth of 500 µm and as the depth increases, the
compressive residual stress transfers to tensile status. This is because the shock waves
decline along the in-depth direction and less plastic deformation is generated [19].

Materials 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

surface of as-LMD samples exhibited an non-uniform tensile stress layer from the top 
surface of 100 MPa then fluctuated to its top peak of 500 MPa at the depth of 600 MPa. By 
contrast, after LSP, the tensile stress was transferred into compressive residual stress. The 
compressive residual stress reaches the maximum (−240 MPa) at around 200 µm. Then, 
the compressive residual stress decreases to 0 MPa at the depth of 500 µm and as the depth 
increases, the compressive residual stress transfers to tensile status. This is because the 
shock waves decline along the in-depth direction and less plastic deformation is generated 
[19]. 

 
Figure 5. The in−depth residual stress distribution of as-LMD and LAM+LSPned samples. 

3.2. Microstructure Characterization 
Figure 6 illustrates the EBSD mappings of the as-deposited area of as-LMD and 

LMD+LSPned samples. According to the IPF Z and pole figures (as shown in Figure 6a,b), 
the grain orientation of the as-deposited area is distributed randomly. The phase 
mappings (as shown in Figure 6c,d) show the as-deposited area consisting of cubic 
titanium and there is no hcp-Ti formed. This corresponded with the work by [4]. 
Misorientation is the difference in crystallographic orientation between two crystallites in 
a polycrystalline material. By comparing the misorientation of as-LMD and LMD+LSPned 
samples, as illustrated by the misorientation angles in Figures 6e,f and 7, it can be seen 
that after LSP the misorientation index was increased from 0.386 to 0.681. LSP can greatly 
increase the misorientation in the as-LMD sample. 

Figure 5. The in−depth residual stress distribution of as-LMD and LAM+LSPned samples.



Materials 2022, 15, 6501 6 of 12

3.2. Microstructure Characterization

Figure 6 illustrates the EBSD mappings of the as-deposited area of as-LMD and
LMD+LSPned samples. According to the IPF Z and pole figures (as shown in Figure 6a,b),
the grain orientation of the as-deposited area is distributed randomly. The phase mappings
(as shown in Figure 6c,d) show the as-deposited area consisting of cubic titanium and
there is no hcp-Ti formed. This corresponded with the work by [4]. Misorientation is
the difference in crystallographic orientation between two crystallites in a polycrystalline
material. By comparing the misorientation of as-LMD and LMD+LSPned samples, as
illustrated by the misorientation angles in Figure 6e,f and Figure 7, it can be seen that after
LSP the misorientation index was increased from 0.386 to 0.681. LSP can greatly increase
the misorientation in the as-LMD sample.
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(a) as-LMD, (b) LMD+LSPned.

Additionally, Figure 8 shows the IPF Z, KAM and phase mappings in the heat affected
zone (HAZ). In this area, as illustrated by Figure 8c,d, Ti-Hex phase starts to emerge in
the HAZ area and the matrix phase is the Ti-cubic phase. The grain orientations of cubic
and hcp titanium are still random as shown in Figure 8a,b and Figure 8g–j. Unlike the
as-deposited area, the effects of LSP on the misorientation are limited as illustrated by
KAM maps in Figure 8e,f and the misorientation index in Figure 9. In both as-LMD and
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LMD+LSPned samples, the misorientations are much higher in the HAZ area than that
in the as-deposited area. Additionally, the misorientation index values of cubic and hcp
titanium of as-LMD samples are 0.157 and 0.797 while such values of LMD-LSPned samples
are 0.183 and 0.751, respectively. There are nearly no changes in the misorientation between
as-LMD and LMD+LSPned samples. This is because the LSP-induced microstructure
movements cannot reach the inner HAZ.
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It is well known that LPS-induced strain on the surface can reach a 106/s level and the
plastic strain decays from the top surface to the inner microstructure [20]. As mentioned
in the residual stress section and the as-deposited KAM results, it is necessary to further
investigate the microstructure at the sub-surface of the LMD+LSPned sample. Therefore,
TEM observations at the depth of around 180 µm were carried out. Figure 10 shows the
TEM bright field image and the corresponding SEAD image of the LMD+LSPned sample
at 180 µm. It can be seen that there are nanowide laths embedding in the matrix and, as
indexed by SEAD, it is a beta lath. Since the size of the cubic lath is around 100 nanometers,
it is impossible for it to be directly mapped by the EBSD technique. That is why in the EBSD
data the grain size of the as-deposited results is very large. According to the Hall–Petch
relationship (grain refinement strengthening mechanism), grain refining causes more grains
in the affected region to be rotated to have various orientations and more grain barriers to
form, which prevents dislocations from passing through, moving through and collecting
between grains, slowing the spread of cracks and enhancing material working hardening.
That is why, although according to the EBSD data it is coarse grain in the as-deposited area
and fine grains in the substrate area, the microhardness of the as-deposited area is higher
than that of the substrate area.
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3.3. High Cycle Fatigue and Fractural Morphology Observation

The high cycle fatigue performance of as-LMD and LMD+LSPned samples is shown
in Figure 11. The average fatigue cycle of as-LMD samples is around 2.867 × 106 cycles
while that of the LMD+LSPned samples is 9.22 × 106 cycles. The fatigue cycles are counted
automatically with three averages and the errors are in a small range that can be accepted.
It can be seen that the fatigue cycles of as-LMDed samples vary from 2.4 to 3.44 (×106)
while those of LMD+LSPned vary from 8.51 to 10 (×106). The fatigue performance is
determined by both LMD and LSP. As we know, there are defects such as voids of unmelted
powders and microcracks in the as-LMD sample that could dramatically influence the
fatigue performance. Even with the defective sample, it can still be seen that there is a three-
fold increase in the high cycle fatigue performance after laser shock peening, therefore LSP
is an effective way to improve the fatigue performance of the LMD repaired components.
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However, it should also be noted that LSP has limited or even no effectiveness on defective
repaired samples as indicated in [21]. Therefore, the repaired quality of the metallic sample
is also one of the crucial factors in the fatigue performance.
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to the as-LMD).

In order to better understand the failure mechanism, the fractural morphologies were
observed via SEM.

The fracture surface was characterized by river-like patterns in LMD+LSPned samples,
as shown in Figure 12. It was observed that the crack initiation sites at the sub-surface
where the initiation sites were located at the depth of 120 µm. Figure 12a–e show typical
fracture morphologies of the LMD-LSPned sample. The fracture morphology features
smooth cleavage planes, illustrating a typical cleavage fracture mode in the LMD-LSPned
sample as shown in Figure 12b. Additionally, microdimples and fatigue striations are
also observed in Figure 12d,e, indicating ductile fracture also exists. Fatigue striations are
helpful for limiting fatigue crack propagation [16]. According to previous work [19], a
high density of fatigue striations suggests a slower rate of crack propagation. Additionally,
the secondary cracks can also aid in slowing down the initial microcrack growth rates
since they can consume lots of energy [22]. The width of the fatigue striations varies from
600 nm to 972 nm. Therefore, it can be seen that there is a mixture of ductile and cleavage
fractures in the LMD+LSPned TC17 sample. Chi et al. [23] also observed a combination of
morphologies of ductile and cleavage fractures in a DED+LSPned titanium alloy.
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4. Discussion

In terms of the combination technique of laser shock peening and additive manufac-
turing, some researchers have investigated different materials and AM techniques and
the results vary. Chi et al. [23] strengthened the direct energy deposited TA15/TC17 wall
with laser shock peening. The UTS and YS of as-deposited TA15/TC17 were improved
by 12.45% and 11.92% after LSP. Additionally, Lu et al. [24] also printed Ti6Al4V alloy by
laser directed energy deposition (LDED), followed by LSP processing. The tensile results
illustrate that UTS and elongation were increased by 20.8% and 67.2%. However, fatigue
tests were not conducted on the LDED+LSPned samples. Jiang et al. [21] employed LSP to
post-process the selective laser melted Ti6Al4V alloy and examined the ultra-high cycle
fatigue performance. However, the fatigue results of the SLM+LSPned samples exhibited
a lower S-N curve than as-SLMed samples. This is because the inherent defects such as
unmelted powders and lack of fusion facilitate crack initiation, expansion and, finally,
premature failure, thereby dominating the fatigue failure of the SLMed samples.

Its well known that the inherent TRS can deteriorate the mechanical properties of the
metallic component. As discussed in Section 3.1, the inherent tensile residual stress was
formed in the as-LMD sample as shown in Figure 5. The TRS increases the effective net
stress range and the mean stress during fatigue loading, thereby accelerating the fatigue
crack initiation and increasing the fatigue crack propagation rate.

Additionally, the inherent defects aided in early fracture initiation and propagation.
As a result, the majority of fatigue cracks are initiated from inherent defects. The schematic
microstructure of the LMD+LSPned sample is shown in Figure 13 which is consistent
with that found by Zhu et al. [4]. As depicted in the substrate, the microstructure consists
of lamellar α and β grains. In the HAZ, the α phase exists as a form of equiaxed grain
distributed randomly in the β matrix. In the as-deposited area, the large β grains are
observed with the EBSD technique, and there are nano β lath grains inside the large β

grains as shown in the TEM image. The dislocations can be observed near the nano β lath
grains as illustrated in Figure 13.
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Figure 13. Schematic diagram showing the microstructure evolution in the LMD+LSPned sample.

The greatest difference between as-LMD and LMD+LSPned samples is the in-depth
residual stress field. There are micropores or voids in the sub-surfaces of both samples.
These flaws are the result of gas entraining and rapid cooling rate brought by turbulence in
the molten pool, which eventually results in stress concentration and the increase in the
rate of crack growth under the fatigue load [11]. LSP transformed the residual stress in the
surface of the as-LMD sample from the tensile to the compressive state. By contrast, during
the crack growth process, compressive residual stresses reduce the effective applied stress
and stress intensity factor range at the crack tip, simultaneously causing a crack closure
effect, which decreases the crack propagation rate and consequently increases the cyclic life
of the LMD+LSPned sample [25].
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5. Conclusions

In this work, the fatigue performance of laser metal deposited TC17 samples before
and after LSP was investigated. The main findings are as follows:

1. The tensile residual stress in the surface of as-LMD samples was transferred to com-
pressive residual stress after LSP. The maximum CRS of 240 MPa was obtained at the
depth of 200 µm.

2. The fatigue cycles of LMD+LSPned samples were increased by 212% compared to
those of the as-LMD samples.

3. The fatigue cracks initiated from the defects formed during the 3D printing process
and LSP-induced CRS can effectively delay the crack propagation, thereby increasing
the fatigue lives of laser additive manufactured components.
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