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Abstract: The safety and economy of an infrastructure project depends on the material and design
equations used to simulate the performance of a particular member. A variety of materials can be
used in conjunction to achieve a composite action, such as a hollow steel section filled with concrete,
which can be successfully utilized in the form of an axially loaded member. This study aims to model
the ultimate compressive strength (Pu) of concrete-filled hollow steel sections (CFSS) by formulating
a mathematical expression using gene expression programming (GEP). A total of 149 datapoints
were obtained from the literature, considering ten input parameters, including the outer diameter
of steel tube (D), wall thickness of steel tube, compressive strength of concrete (fc’), elastic modulus
of concrete (Ec), yield strength of steel (fv), elastic modulus of steel (Es), length of the column (L),
confinement factor (ζ), ratio of D to thickness of column, and the ratio of length to D of column. The
performance of the developed models was assessed using coefficient of regression R2, root mean
squared error RMSE, mean absolute error MAE and comparison of regression slopes. It was found
that the optimal GEP Model T3, having number of chromosomes Nc = 100, head size Hs = 8 and
number of genes Ng = 3, outperformed all the other models. For this particular model, R2

overall

equaled 0.99, RMSE values were 133.4 and 162.2, and MAE = 92.4 and 108.7, for training (TR) and
testing (TS) phases, respectively. Similarly, the comparison of regression slopes analysis revealed that
the Model T3 exhibited the highest R2 of 0.99 with m = 1, in both the TR and TS stages, respectively.
Finally, parametric analysis showed that the Pu of composite steel columns increased linearly with
the value of D, t and fy.

Keywords: concrete filled steel tubes; compression strength; GEP modelling; hyperparameters tuning;
parametric and sensitivity analysis

1. Introduction

Columns are a desideratum in designing the structural elements of a building. De-
pending upon the locality, application and resource availability, different materials, for
instance, concrete, steel and their combination can be utilized for column construction [1–5].
Reinforced concrete (RC) columns are vastly used around the globe due to a number of
reasons, i.e., easy availability of their constituent materials, known behavior under different
loading conditions, and development of design codes, such as the ACI 318 [6] design man-
ual and Euro code [7], among others. However, hollow steel sections filled with concrete
(HSSFC) represent an improved version in contrast to the other traditional RC columns,
both in terms of performance as well as construction costs, alongside possessing the merit
of no longitudinal and transverse reinforcement requirements [8]. For example, the hollow
steel section (from hereon, referred to as HSS) confines the concrete thus improving its
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mechanical properties while the buckling resistance of the steel section is enhanced due to
the presence of concrete. The composite action of the two materials increases the overall
strength, stiffness, ductility, buckling resistance of the element, and provides an improved
fire resistance. Since concrete is poured inside the HSS, the need for formwork is eliminated
and labor cost is also reduced [9–13].

The cross-sections of the HSS used in concrete-filled hollow steel sections (CFSS)
exhibit numerous shapes, i.e., circular, rectangular and square, wherein the most common
one is circular because of its high confinement performance [14–16]. On a global scale, a
number of design codes encompasses the provisions for axial and flexure capacity design
of the CFSS [17]. Examples include the Eurocode 4: Design of composite steel and concrete
structures (EN1994) [7], AISC-360: Specification for structural steel buildings [18], ACI-
318 [6], etc. In addition, the behavior of CFSS has been studied by a number of researchers by
considering a number of design parameters such as the slenderness ratio, eccentricity ratio,
end-moment ratio, thickness of internal steel tube and compressive strength of concrete,
in addition to others [19–21], using laboratory experiments and numerical modelling.
Although the current codes provide enough guidelines about the axial capacity of CFSS
columns, however, uncertainties in the nominal and actual mechanical properties of steel
and concrete make the design conservative. In this situation, artificial intelligence (AI)
models provide an accurate solution based on mechanical properties of steel and concrete.

Besides the experimental studies for developing knowhow about the influence of
various input parameters on the structural performance, soft computing (SC)/machine
learning (ML)/(AI)/techniques are gaining popularity nowadays, because of their ability
to learn from training data so as to formulate a trained algorithm which can be used for
accurate prediction of the output(s) [22–25]. The accuracy of a typical AI model depends on
the number of data points used during the training process and the selection of influential
input variables (i.e., high Pearson correlation value). Therefore, several studies have
been undertaken recently for evaluating the behavior of CFSS columns under different
loading conditions. For example, Albero et al. [26] studied the ultimate resisting load
of CFSS under unequal eccentricities at both ends. It was found that the application of
unequal load eccentricities enhanced the ultimate resisting load with columns having
higher slenderness ratio of 27.78. Similarly, neural networks were successfully used for
modelling the strength of columns considering fv, fc’ and the diameter and wall thickness
of the HSS and they concluded that the ANN model successfully predicted the columns’
performance (coefficient of regression R2 > 0.98 in the training, test and validation phases)
and recommended it to be a reliable tool for assessing the columns’ performance based
on the ANN-based Monte Carlo method [27]. Likewise, the axial load capacity of a CFSS
having a circular cross-section was modelled using Artificial Neural Networks (ANN) and
Gene Expression Programming (GEP). For example, Naderpour et al. [28] deployed GEP,
ANN and group methods of data handling to predict the compressive strength of columns
confined with fiber reinforced polymers. It was observed that the ANN model had the
highest accuracy among its competitors, with R2 > 0.98. Similarly, the error percentage
(± 20% error range) of the forecasted output by ANN, GEP and GMDH was recorded as
94.7, 84.2 and 88.4%, respectively. Similarly, Azim et al. [29] utilized the GEP approach to
develop a prediction model for the compressive arch action capacity of RC beam-column
substructures. Again, GEP was successfully used for studying the behavior of H-section
steel columns (R2 > 0.94) under blast loading by Momeni et al. [30]. In addition, an empirical
equation was also generated from the GEP model for relating the damage index to the
displacement/rotational index. Wang et al. [31] studied the blast resistance and residual
strength of CFSS considering the thickness of steel tube and cross-section geometry. It was
observed that the CFSS retained up to 60% of its ultimate axial loading capacity even after
close-range blast loading and that their axial load capacity retention was enhanced with the
thickness of steel tubes. Similarly, Zhang et al. [32] also concluded that concrete filled steel
tubular columns showed excellent performance against flexural loads under both static
and dynamic loads.
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A literature survey reveals successful application of different AI techniques, such as
ANN, GEP and ANFIS alongside the combination of meta-heuristic optimization algorithms
and ML algorithms for predicting the mechanical performance of concrete as well as
soils [24,33–39]. However, the ANN and ANFIS provide lesser insight about the models
pertaining to their practical implications, e.g., to derive an empirical relation between the
input parameters and output(s), which can further be used for predicting the output(s) and
performing parametric and sensitivity analysis [40,41]. In addition, both these models are
termed as ‘black-box models’ in the literature [40,41], due to the complex interaction of
neurons present in different hidden layers. As a result, a useful empirical relation between
the input and output parameters is difficult to develop and has reliability issues [42].
In contrast, the white-box models, such as GEP, can provide a simple and easy-to-use
mathematical expression to forecast the output for a specific range of input parameters.
Using that expression sensitivity and parametric analyses could enable validation of the
developed GEP model [43]. Shahmansouri et al. [44] developed an empirical equation for
predicting the fc’ of geopolymer concrete by considering the specimen’s age, concentration
of alkaline activator (i.e., NaOH), natural zeolite, silica fume and blast furnace slag content
to be the most influential input parameters. Similarly, Naser et al. [45] developed design
equations for the structural response of the CFSS by utilizing the Genetic Algorithm (GA)
and GEP technique. They concluded that both GA and GEP models outperformed the
current design codes, such as Eurocode 4 [7], AISC 360-16 [18] and New Zealand code (NZS
2327) [46]. Both the models had high predictive capability as a majority of the data points
ranged within a 10% bounding error. In an effort to develop an empirical relation between
the mix design parameters of lightweight foamed concrete, Sami et al. [47] employed GEP
by using 191 data points to develop a model which could simulate the influence of input
parameters (i.e., amount of cement, fine aggregate, water to cement ratio and foam volume)
on two outputs (i.e., dry density and fc’). They revealed that GEP accurately modelled the
dry density and fc’ of foamed concrete, as evident from their higher values of the coefficient
of determination (R2) (i.e., 0.79 and 0.94, respectively).

In connection to the use of AI models related to predicting the Pu of CFSS columns,
Sarir et al. [48] used a dataset of 303 points to compare the performance of a GEP model
with ANN model optimized by particle swarm optimization (PSO) algorithm, as listed in
Table 1. The concrete compressive strength (fc’), the column length (L), outer diameter (D),
tensile yield stress of the steel column (fy), and steel cover thickness (t) were considered
as input variables. The best performance was obtained for the GEP model interpreting R2

equaling 0.939. Javed et al. [49] included eccentricities at end supports (et, eb) alongside
the previously mentioned variables by employing 227 sample specimens. Khan et al. used
an extensive database yielding R2 of 0.9812 for test data; however, the value of MAE
recorded was comparatively high. Several other researchers (Ngo et al. [50], Jiang et al. [51],
Jayalekshmi et al. [52], Ahmadi et al. [53]) also developed Support Vector Regression (SVR)
optimized by Grey Wolf Optimization (GWO), GEP, and ANN models, and evaluated the
accuracy in terms of R2. The capabilities of the GEP model were not fully explored by
changing its genetic parameters, i.e., number of chromosomes (Nc), genes (Ng) and head
sizes (hs) to obtain the best hyperparameters. Nevertheless, this study utilized 10 variables
including the confinement factor (ζ) which was not used in the reported literature.

The ANN and various other such hybrid algorithms (e.g., ANFIS) are unable to provide
an empirical equation between the inputs and output(s). As a result, GEP is deployed to
robustly simulate the ultimate compressive strength (Pu) of the CFSS considering different
inputs parameters, i.e., (i) outer diameter of steel tube (D), (ii) wall thickness of steel tube
(t), (iii) compressive strength of concrete (fc’), (iv) elastic modulus of concrete (Ec), (v)
yield strength of steel (fv), (vi) elastic modulus of steel (Es), (vii) length of the column (L),
(viii) confinement factor (ζ), (ix) D/t ratio of column and (x) the L/D ratio of column. The
performance of the developed model was assessed using different statistical indices, i.e.,
R2, root mean square error (RMSE), mean absolute error (MAE), comparison of regression
slopes, predicted to experimental (P/E) ratios. In addition, parametric and sensitivity
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analyses were also carried out to assess the effect and contribution of input parameters on
the Pu of CFSS.

Table 1. Summary of the previous studies in the literature pertaining to prediction of axial capacity
of CFSS.

Reference Model Number of Data
Points

Input Variables Testing Data Performance

R2 MAE

Sarir et al. [48] GEP 303 fc’, L, D, fy, t 0.939 _
Javed et al. [49] GEP 227 fc’, L, D, fy, t, L/D 0.980 153.9
Khan et al. [54] GEP 702 fc’, L, D, fy, t, et, eb 0.981 290.36
Ngo et al. [50] SVR-GWO 802 fc’, L, D, fy, t, D/t 0.996 _

Jiang et al. [51] GEP 32 D, L, t, L/D, D/t,
fy, Es, f’c, Ec, υ _ _

Jayalekshmi et al. [52] ANN 633 D, t, fy, fc’, L 0.962 _
Ahmadi et al. [53] ANN 272 D, t, fy, fc’, L 0.801 _

This study GEP 149 D, t, fc’, Ec, fy, Es,
L, ζ, D/t, L/D 0.99 108.7

The flow of the paper is that the database is compiled, and the GEP modelling is
performed. The formulated GEP model is obtained after undertaking several trials and
the effect of genetic parameters on the model performance is studied. After selecting
the most optimal trial, the mathematical expression is determined. A variety of perfor-
mance measures (error indices) were calculated to check the performance of the optimal
model. Parametric and sensitivity analyses were also performed for the input parameters
considered in the formulated GEP model.

2. Methodology
2.1. Database Compilation

The database was compiled from the work published by Bardhan et al. [55], which
comprises a total of 149 datapoints of which 104 datapoints were used for the training
(TR) phase whereas the remaining 49 points were utilized for the testing (TS) phase. Ten
input parameters, i.e., D, t, fc’, Ec, fy, Es, L, ζ, ratio of D and t (i.e., D/t) and the ratio of
L and D (i.e., L/D) were considered in order to model their influence on the Pu of CFSS
using a genetic programming approach. The descriptive statistics of the dataset used
for developing the GEP model are listed in Table 2. In order to indicate the frequency
distribution of input parameters, the departure of data from the horizontal symmetry
(skewness) and the sharpness of the central peak, relative to a standard normal distribution
curve [56], the frequency histograms of the input parameters along with their respective
normal distribution fit are shown in Figure 1. The values of kurtosis and skewness in Table 2,
are in accordance with the aforementioned normal distribution curves. For example, the
values of kurtosis and skewness are positive for all the input parameters except for Ec
and Es, respectively. Referring to Figure 1a–c,e–j), the distribution is peaked with a thick
tail while Figure 1d shows that the distribution of Ec is flatter, which justifies the negative
kurtosis value. Similarly, the negative value of skewness for Es can be corroborated from
Figure 1a, since the distribution has a fatter tail on its left side.
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Table 2. Descriptive statistics of the input variables.

Descriptive
Statistics

D
(mm)

T
(mm)

fc’
(MPa)

Ec
(MPa)

fy
(MPa)

Es
(MPa)

L
(mm)

ζ D/t
(mm/mm)

L/D
(mm/mm)

Average 164.38 3.71 65.60 3.5 × 104 339.85 201,767 485.07 0.86 58.07 2.94

Standard
Error 5.17 0.17 3.82 1.1 × 103 8.16 575.81 18.08 0.06 3.38 0.04

Standard
Deviation 63.09 2.08 46.58 1.3 × 104 99.57 7029 220.73 0.73 41.21 0.53

Sample
Variance 3980 4.34 2170 1.66 × 108 9914 49,401,978 48,721 1 1698 0

Kurtosis 5.18 1.90 0.80 −0.18 11.50 2.21 9.12 0.94 3.03 0.84

Skewness 1.79 1.40 1.24 0.83 2.75 −1.01 2.32 1.19 1.78 0.08

Minimum 60 0.86 18.03 1.8 × 104 186 177,000 180 0.05 17 1.8

Maximum 450 10.36 193.30 6.6 × 104 853 213,000 1760 3.22 221 4.90

2.2. GEP Modelling

GeneXprotools v5.0, developed by Candida Ferreira (Portugal), was employed for
developing the desired GEP models. For this purpose, the data was fed into the GEP
interface. Afterwards, the dataset was divided into two subsets namely; the TR dataset
(70%) and the TS dataset (30%). As a result, 104 datapoints were used for the TR phase
whereas the remaining 45 datapoints were used during the TS phase. The option of
normalization is readily available in the data tab of this tool; however, the authors did not
utilize this option in the current study and the models were trained using the actual values.
The authors opine that the statistical models are based upon the descriptive statistics of the
given dataset. Similar studies have been widely reported in the past literature [57,58]. In
order to achieve the best optimal model, the hyperparameter settings of GEP parameters
were adjusted accordingly. For example; the number of chromosomes (Nc) were varied
from 30 to 200, the number of genes (Ng) from 3 to 5 and, the head size (Hs) from 8 to 12.
Similarly, it was observed that the addition function provides the optimal performance.
This was achieved by exploring different linking functions (+, −, ×, /). The details of the
genetic parameters settings, i.e., mutation, transposition, and recombination rates are given
in Table 3. The details of 11 number of trials employing different values of hyperparameters
and the resulting model performance in terms of R2, RMSE and MAE for both the TR and
TS phases, respectively, are shown in Table 4. Moreover, Figure 2 shows the flowchart of
GEP modelling. The process starts with feeding the input parameters data followed by the
random partitioning of datasets. The process is continued by selecting the fitness function,
Nc, Hs, Ng and assigning suitable genetic operators. After assignment of linking functions
and terminals setting, the model is run and its performance can be checked using different
statistical tools such as R2, RMSE and MAE, as shown in Equations (1)–(3), respectively.

R2 = (
∑n

i=1 (ei − ei)(pi − pi)

∑n
i=1 (ei − ei)

2∑n
i=1 (pi − pi)

2 )
2

(1)

RRMSE =
1
|e|

√
∑n

i=1 (ei − pi)
2

n
(2)

MAE =
∑n

i=1|ei − pi|
n

(3)

where ei and pi are the ith experimental and predicted output values, respectively; ei and
pi are the average values of the experimental and predicted output values, respectively,
and n are the total samples.
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Figure 1. Frequency histograms of input variables. (a) Elastic modulus of concrete, (b) wall thickness
of steel tube, (c) compressive strength of concrete, (d) Elastic modulus of concrete, (e) Yield strength
of steel, (f) Elastic modulus of steel, (g) Length of column, (h) Confinement factor, (i) D/t, (j) L/D.
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Table 3. Parameters setting for GEP algorithms.

Parameters Settings

Axial Capacity (Pu) of CFSS

Numerical constants

Constant per gene 10
Floating number

10
[−10, 10]

Type of data
Maximum complexity
Ephemeral random constant

Genetic operators

Rate of mutation 0.00138
Inversion rate

0.00546IS transposition rate
RIS transposition rate

1-point recombination rate

0.00277
2-point recombination rate

Gene recombination rate
Gene transposition rate

Table 4. Details of the different trials/models conducted to obtain optimal model.

Trial/Model No. of
Variables

No. of
Chromosomes

Head
Size

No. of
Genes

TR Phase TS Phase

R2 RMSE MAE R2 RMSE MAE

T1 5 30 8 3 0.92 644.4 443.6 0.94 432.9 323.9

T2 7 50 8 3 0.98 236.5 173.8 0.98 205.3 159.6

T3 7 100 8 3 0.99 133.4 92.4 0.99 162.2 108.7

T4 8 150 8 3 0.98 287.8 198.1 0.97 325.5 221.7

T5 9 200 8 3 0.98 255.1 154.9 0.99 162.3 126.0

T6 7 100 9 3 0.98 298.5 202.1 0.96 363.1 243.8

T7 8 100 10 3 0.97 389.0 257.9 0.96 358.3 242.7

T8 7 100 11 3 0.93 605.8 373.1 0.84 828.0 501.3

T9 8 100 12 3 0.97 385.1 276.0 0.96 386.0 279.8

T10 8 100 8 4 0.98 313.6 209.9 0.97 298.2 222.7

T11 8 100 8 5 0.96 443.8 286.2 0.98 288.9 218.5

A trial and error approach was used for setting the GEP parameters, such that an
optimal performing model with the best hyperparameter settings could be obtained. This
practice would help avoiding overfitting the data during the TR phase, and, subsequently,
improve their performance in the TS phase. In the past, researchers have addressed the
problem of overfitting [59]. For example, Gandomi and Roke [60] selected the model with
minimum objective function (OF) value which varies from 0 to maximum value, with
the model having OF ≈ 0 is considered to have the best performance. Here, statistical
evaluation was used to select a non-overfitted model. Table 5 shows the ideal values of the
three performance indices, i.e., R2, RMSE and MAE, used to assess the models’ performance.
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Figure 2. Flowchart of GEP modelling.

Table 5. Ideal values of performance indices.

Index Range/Ideal Value

R2 (0–1)/1

RMSE (0–∞)/0

MAE (0–∞)/0

3. Results & Discussion
3.1. Variation of Genetic Parameters

Table 4 depicts that a total of 11 trials (Model T1 to T11) were conducted by varying
the different parameters of the GEP model (Nc, Hs and Ng). As discussed earlier, the
hyperparameters of GEP models were varied to achieve an optimal GEP model. A total
of 11 trials (i.e., Model T1 to T11) were employed with varying values of Nc, Ng and Hs
(Table 4). Firstly, the values of Nc were varied from 30 to 200, while keeping the Hs and Ng
constant (i.e., 8 and 3, respectively). In the second stage, the Hs was changed from 8 to 12,
while keeping both Nc and Ng constant. Similar practice was followed for Ng as well. The
values of Nc, Hs and Ng for the best performing model (Model T3) came out to be 100, 8
and 3, respectively. For all the trials, the performance of the models was assessed using R2,
RMSE and MAE. It is evident from Table 4 that the model T3 has the highest R2 and, lowest
RMSE and MAE, in both the TR and TS phases, respectively.

Figure 3 shows the influence of Nc on the R2, RMSE and MAE of the models, in both
the TR and TS phases, respectively. It can be seen from Figure 3a that, the value of R2

increases with the Nc till it drops for Nc = 150. A further increase in Nc (i.e., from 150 to
200) enhances the R2 again. Similar improvement in the performance of the models with
the increase in Nc up to 100 can be observed in Figure 3b,c. It is evident from these Figures
that the value of RMSE and MAE plummets with the increase in Nc; however, the model
performs poorly for Nc = 150 as evident from its lower R2 = 0.98, 0.97, higher RMSE = 287.8,
325.5, and MAE = 198.1, 221.7, in the TR and TS phases, respectively.
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The influence of Hs on the performance of models (both TR and TS phases) in terms of
R2, RMSE and MAE can be observed in Figure 4a–c, respectively. It is evident from Figure 4a
that, R2 decreases with increasing Hs. The model depicts immensely poor performance for
Hs = 11; however, upon further increase in the Hs = 12, the value of R2 improves. A similar
trend can be observed in the case of Figure 4b,c, wherein the RMSE and MAE increase with
the Hs. The model performs poorly as is evident from its high RMSE and MAE values for
Hs = 11. The influence of Ng on the performance of models (TR and TS phases) in terms
of R2, RMSE and MAE can be observed in Figure 5a–c, respectively. Considering the TR
phase, it is evident from Figure 5a, that the value of R2 increases with the increase in the
Ng up to 4. Further increase in value of Ng (i.e., 4 to 5) lowers the value of R2. Similar trend
can be observed from Figure 5b,c, wherein the value of RMSE and MAE decrease with the
value of Ng (i.e., 3 to 4). When the Ng is further increased from 4 to 5, the accuracy of the
model decreased as is evident from its high RMSE and MAE values for Ng = 5. However,
the performance of the model improves at higher Ng in the TS phase, as evident from its
higher R2 value = 0.98, and lower RMSE and MAE values of 288.9 and 218.5, respectively.
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3.2. Models’ Performance
3.2.1. Statistical Evaluation

It can be seen from Table 4 that the performance of the Model T3 is better (R2 = 0.99
for both the TR and TS phase) followed by Model T5 (R2 = 0.98 in TR phase, and 0.99 for
TS phase). The observed values of R2 shows a good agreement between the predicted and
experimental values. However, a model cannot be declared as the “best performing model”
solely on the basis of R2. Other statistical error indices must also be considered, such as
RMSE and MAE, in addition to others. In this regard, the values of RMSE and MAE were
also studied in the current study while assessing the performance of different models. It is
evident from Table 4 that, in addition to a higher R2 value, Model T3 exhibited the lowest
RMSE (133.4 in TR phase, and 162.2 in TS phase) and MAE (92.4 in TR phase and 108.7 in
TS phase). Similarly, the Model T5 performed as second-best model having RMSE = 255.1
in the TR phase, and, RMSE = 478.2, and MAE = 386.6 in the TS phase, respectively. Model
T2 also performed better as it possessed the second highest R2 and second lowest value
of RMSE in the TR phase, respectively. The ranking of the models based on the different
statistical indices has also been shown in Table 6.

Table 6. Ranking of models based on R2 and RMSE.

Statistic R2 RMSE MAE

Rank 1st 2nd 1st 2nd 1st 2nd

TR Phase T3 T2, T5 T3 T2 T3 T5

TS Phase T3 T5 T3 T5 T3 T5

3.2.2. Comparison of Regression Slopes

Prediction models can be evaluated by plotting a trend line between the experimental
and predicted values. This assessment method has also been used in this study and as a
result, regression slopes have been plotted for all the 11 models, in both the TR and TS
phases, respectively. It is noteworthy to mention that an ideal trend line has a slope “m”
value of unity (=1.0) and, its angle of inclination with both the X- and Y-axis in the cartesian
coordinate system equals 45◦. The performance of the model is considered to be reliable
and accurate provided the plot between the forecasted and experimental values follow the
ideal trend line (i.e., inclined at an angle of 45◦ with the X-axis). A regression line whose
m value approaches one, and, its correlation value i.e., R ≥ 0.8 are considered reliable in
forecasting new data [61].

Figure 6 shows the values of R2 and m for both the TR and TS phases, respectively.
It is evident from the Figure 6 that R2 exceeds 0.90 for all of the models. In the TR phase,
Model T3 has the best fit with an R2 value of 0.99 and m = 1 whereas, Model T1 has a lower
value of R2 = 0.92 and m = 0.91. Similarly, the performance of the models improved in
the TS phase, as indicated from the higher R2 values and the m values becoming closer to
one. All the models have R2 ≥ 0.90. It can also be observed from Figure 6 that, the highest
value of m = 1 has been obtained for the optimal model T3 in both the TR and TS phases,
respectively. However, Figure 7 shows that in addition to model T3, other models (except
T2 and T6) had m values equaling one. It is important to mention here that for m = 1, the
slope of the regression line will be exactly 45◦. In comparison to other models, the values
of ‘m’ and R2 observed for the Model T3 are closer to one. Therefore, it can be concluded
that the Model T3 is the best performing model, compared to the others.
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Figure 7. P/E ratio distribution of the best performing model T3, (a) TR phase, (b) TS phase.

3.2.3. Model Predicted to Experimental Ratio (P/E)

The performance of the generated models as a result of different trials (by varying Nc,
Hs and Ng) was further studied using the P/E ratio. Figure 7a,b depict the distribution of
the P/E ratios for the optimal performing Model T3 in the TR and TS phases, respectively.
The bin range has been varied between 0 and 2 using a uniform interval of 0.2. It can be ob-
served from both Figure 7a,b that most of the P/E values (higher frequencies) concentrated
in the bin range proximal to one. This serves another statistical check in evaluating the
performance of the formulated model and acts as visual justification in case of the optimal
performance Model T3.
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3.3. GEP Formulations

In addition to successful simulation of the Pu of CFSS considering a number of input
parameters, another novel achievement of this research work is to obtain an empirical
equation which can be used for predicting the Pu of the CFSS using the different input
variables. For this purpose, the optimal performing Model T3 was used to develop the
empirical equation. The expression tree for the Model T3 (Figure 8) and the MATLAB
model were utilized to obtain the mathematical expression, which can be further used for
forecasting the Pu of the CFSS, and, sensitivity and parametric analysis can be performed
as well. As a result, Equation (4) was obtained, which is able to predict the Pu of CFSS
using various input variables (i.e., D, t, fc’, Ec, fv, Es, L, ζ, ratio of D to thickness of column
and, the ratio of length to D of column). It is highly recommended to use the prediction
equation for input variables whose range and other details have already been discussed in
Section 2.1 [62,63].

Pu =
(−36.9− fy) ∗ (D− 25.2) ∗ t

17.2 ∗ (ζ− 17.2)
+

((2.3 ∗ fy)− L) ∗ 21.2
L/D ∗ ζ ∗ f c′

+
(( fy − 17.2) ∗ t) ∗ (D + 2.2)

ζ ∗ 34.4
(4)Materials 2022, 15, x FOR PEER REVIEW 14 of 21 
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The values of the constants (c), as present in Figure 8 are as follows:
Sub-ET1: c8 =−36.9; c2 = 25.2; c4 = 17.2; Sub-ET2: c7 = 2.3; c3 = 10.6; Sub-ET3: c4 = 17.2;

c3 = 2.2;
Whereas, d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 represents the input parameters such as

D, t, fc’, Ec, fy, Es, L, ζ, D/t and L/D, respectively.
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This Equation (4) is a simple-to-use mathematical expression for designers and prac-
titioners, who can robustly determine the Pu of the CFSS when the easily determinable
parameters are available.

3.4. Parametric and Sensitivity Analysis

The reliability of different AI models can be verified by conducting parametric analysis
of the input features. In this study, the parametric analysis was also carried out for all the
input parameters viz., D, t, fc’, Ec, fv, Es, L, ζ, ratio of D to column, and the ratio of L to D,
in order to evaluate their effect on the resulting Pu of the CFSS columns. Table 7 shows
the possible combination of the study input parameters, considered for the parametric
analysis. Hence, a dataset was generated such that one of the input variables (first variable,
D) was varied between its extreme values (lower to maximum value in the dataset) in
equal increments, while, keeping the remaining input parameters at their average values.
In the next step, a second input parameter (i.e., t) was altered in a similar manner, while,
keeping the other input features at their mean values. This practice was repeated for all the
input parameters. The prediction equation (as given by Equation (1)) was utilized to obtain
the corresponding change in the target variable. The range of input variables and their
corresponding influence on the Pu of CFSS columns was plotted to study their relationship.
The net change in the output (Pu of CFSS columns) due to changing a particular input
feature, was calculated in terms of weighted percentage, in order to find the sensitivity of
each input attribute, as well. Note that the sensitivity analysis shows the response of the
prediction model by varying the input parameters [64]. The relative contribution of the
input parameters can be studied using this analysis as shown in Equation (5) and (6) below.

Pi = fmax(si)− fmin(si)× N (5)

Sensitivity(%) =
Pi

∑n
i=1 Pj

× 100 (6)

Table 7. Dataset used for parametric analysis.

Input Variables Constant Input Parameters No. of DataPoints
Parameter Range

D 60–450 t = 3.71, fc’ = 65.60, fy = 339.85, L = 485.07, ζ = 0.86, L/D = 2.94

10

t 0.86–10.36 D = 164.34, fc’ = 65.60, fy = 339.85, L = 485.07, ζ = 0.86, L/D = 2.94

fc’ 18.03–193.30 D = 164.34, t = 3.71, fy = 339.85, L = 485.07, ζ = 0.86, L/D = 2.94

fy 186–853 D = 164.34, t = 3.71, fc’ = 65.60, L = 485.07, ζ = 0.86, L/D = 2.94

L 180–1760 D = 164.34, t = 3.71, fc’ = 65.60, fy = 339.85, ζ = 0.86, L/D = 2.94

ζ 0.045–3.221 D = 164.34, t = 3.71, fc’ = 65.60, fy = 339.85, L = 485.07, L/D = 2.94

L/D 1.8–4.9 D = 164.34, t = 3.71, fc’ = 65.60, fy = 339.85, L = 485.07, ζ = 0.86,

Here, fmax(si) and fmin(si) refer to the maximum and minimum GEP estimated values
for the i’th input domains, where the remaining input factors = 1. The value of sensitivity
analysis is between 0 and 1 which depicts the relative contribution of input parameters
among each input attribute as well as the predicted output variable.

Figure 9 shows the variation of the Pu of CFSS columns in response to the change
in each input variable, as explained above. It is apparent from Figure 9a,b,d that the
Pu of CFSS columns increases linearly with the values of D, t and fy while it decreases
with the amount of fc’, L, ζ and L/D ratio, as is evident from Figure 9c,e–g), respectively.
The parametric analysis also revealed that the input parameters, such as Ec, Es and the
ratio of D/t had least influence on the output parameter, i.e., Pu. Moreover, Figure 9c,f
reveal that the value of Pu plummets with the increasing values of fc’ and ζ. Similarly,
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different equations such as linear, 3-, 4- and 6-degree polynomial equations were fitted to
the resulting parametric analysis, which illustrate good agreement with the datapoints,
i.e., all the parameters exhibit R2 ≥ 0.99. The sensitivity analysis of the input variables
(as shown in Figure 10) reveals that ζ has the highest value of sensitivity (59%) followed
by D and t (14.5%, each). It is also evident that L/D has the least sensitivity value = 0.2.
This can be explained from the fact that the confinement of concrete enhances its strength
and ductility, which enhances the Pu. Similarly, increasing value of D and t reduces the
slenderness ratio of a column and enables the steel casing to withstand higher tensile
stresses imparted by the confined concrete, respectively [21].
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4. Conclusions

This research study aims to model the ultimate compressive strength (Pu) of concrete-
filled hollow steel sections (CFSS) columns by formulating an empirical relation between
the output and input parameters. A total of 149 datapoints were taken from the literature,
considering a number of input parameters such as outer diameter of steel tube (D), wall
thickness of steel tube, compressive strength of concrete, elastic modulus of concrete
(Ec), yield strength of steel (fv), elastic modulus of steel (Es), length of the column (L),
confinement factor (ζ), ratio of D to thickness of column and the ratio of length to D of
column. Different trials were undertaken to develop GEP models using various settings of
the hyperparameters.

1. The performance of the developed models was assessed using variety of performance
indices, i.e., R2, RMSE, MAE and comparison of regression slopes. It was found
that Model T3 having Nc = 100, Hs = 8 and Ng = 3 was the optimally performing
model among all others. The model exhibits the highest R2 value of 0.99, and the
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lowest RMSE = 133.4 and 162.2 and MAE = 92.4 and 108.7, in the training and testing
phases, respectively.

2. Similarly, the comparison of regression slopes analysis reveals that the Model T3
possess the highest value of R2 equaling 0.99 and m = 1, which represents its high
performance and robustness.

3. Finally, the parametric analysis depicts that the Pu of CFSS columns increases linearly
with the value of D, t and fy while, Ec, Es and the ratio of D/t had the least influence
on the output parameter. The sensitivity analysis of input variables reveals that the ζ

is recorded to have the highest value of sensitivity (59%) whereas L/D has the least
effect (i.e., 0.2%) in governing the Pu of the CFSS.

4. It is highly recommended to use the prediction equation (Equation (4)) for input
variables whose range and other details are considered in the descriptive statistics of
the current study. The following simple-to-use mathematical expression can be used
to predict the Pu of the CFSS with higher accuracy.
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