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Abstract: Bending stiffness (BS) is one of the two most important mechanical parameters of corrugated
board. The second is edge crush resistance (ECT). Both are used in many analytical formulas to assess
the load capacity of corrugated cardboard packaging. Therefore, the correct determination of bending
stiffness is crucial in the design of corrugated board structures. This paper focuses on the analytical
determination of BS based on the known parameters of the constituent papers and the geometry of
the corrugated layers. The work analyzes in detail the dependence of the bending stiffness of an
asymmetric, five-layer corrugated cardboard on the sample arrangement. A specimen bent so that the
layers on the lower wave side are compressed has approximately 10% higher stiffness value. This is
due to imperfections, which are particularly important in the case of compression of very thin liners.
The study showed that imperfection at the level of a few microns causes noticeable drops in bending
stiffness. The method has also been validated by means of experimental data from the literature and
simple numerical finite element model (FEM). The obtained compliance of the computational model
with the experimental model is very satisfactory. The work also included a critical discussion of the
already published data and observations of other scientists in the field.

Keywords: bending stiffness; analytical solution; imperfections; corrugated board; thin-walled structures

1. Introduction

A sign of the present times is the constant pursuit of the purchase of various merchan-
dise, and thus the need for their packaging and safe transport, both in traditional forms of
sale and e-commerce. The foremost desirable characteristics of the packaging are naturally
adequate strength in relation to light weight and, in the interest of the natural environment,
reusable, recyclable and biodegradable. Corrugated cardboard packaging perfectly meets
all the above-mentioned requirements. Going further, the popularity of this type of pack-
ages is associated with the intensive development of a separate branch of industry and
research. In view of the laws governing the free market, manufacturers strive for the most
cost-effective solutions while maintaining the appropriate load-bearing capacity of card-
board packaging. The scientists, who have been developing for many years new methods
to determine the material properties of the corrugated cardboard [1,2] and are constantly
trying to understand the nature of the packaging performance, through numerous studies,
involving a variety of techniques, are here to help. The task is challenging mainly due to the
layered structure of the corrugated cardboard with two characteristic in-plane directions
of orthotropy associated with the mechanical strength of the paperboard—the machine
direction (MD) perpendicular to the main axis of the fluting and parallel to the paper-
board fiber alignment, and cross direction (CD) which is parallel to the fluting. Moreover,
there are a number of factors that reduce the strength of a cardboard itself or corrugated
cardboard packaging, the impact of which has been analyzed and is still is the subject of
investigation, e.g., [3] in particular time and storing conditions [4,5], stacking load [6–8],
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openings, ventilation holes and perforations or indentations [9–14], shifted creases on the
flaps [15] or imprinting on packaging cardboard [16], e.g., product or seller logos.

Much of the research presented in the literature is devoted to the assessment of the
load-bearing capacity of the cardboard. Analytical methods were described 70 years
ago [17], where simple and fast solutions for the assessment of the strength of simple stan-
dard boxes was presented. The proposed formulae have evolved over the decades and have
been enriched, expanded and improved, i.e., by introducing the Poisson’s ratio, dimensions
of the box, the buckling influence or modification of constants and exponents [18–23]. A
conventional numerical approach engaged for the assessment of load-bearing capacity of a
cardboard is the finite element method (FEM). The numerical strength estimation of the
paperboard tubes was discussed in [24] while consideration on the corrugated board pack-
ages load-bearing capacity was presented in [25–28] and bending stiffness (BS) estimation
in [29,30]. Buckling and post-buckling phenomena while applying FEM have been taken
into account in [31], and torsional and transversal stiffness of orthotropic paper materials in-
fluence on the strength of cardboard in [32–36]. The acquisition of mechanical properties of
the paperboard during the simulation of its creasing involving FEM is discussed in [37–42].
FEM can also be utilized to perform a numerical homogenization [43]. Homogenization is
a method that enables to simplify a multi-layer model to a single-layered one and ascertain
the equivalent stiffnesses and effective thicknesses of the model. This procedure requires
the determination of material parameters of individual cardboard layers; however, it al-
lows for a significant saving of computation time while maintaining accurate results. This
approach is being intensively developed [44–52], as are analytical [53], asymptotic [54] and
multiple scales homogenization methods [55].

Experimental methods are very common and frequently used to assess the load
capacity of corrugated boards. The box compression test (BCT) and the edge crush test
(ECT) are the most prevalent. The bending test (BNT), which allows to define the bending
stiffness, the shear stiffness test (SST), the torsional stiffness test (TST) and humidity testing
are also pertinent to the assessment of the mechanical properties of the cardboard box.
Non-contact measurement methods are increasingly used to measure displacements or
strains, even in routine laboratory tests. A technique that allows to gather the data from
the outer surface of the specimen, in accordance with the measurement of the relative
distances between pairs of points tracked across images acquired at various load values, is
a video extensometry [56,57] which is similar to the digital image correlation (DIC) that is a
full-field non-contact optical measurement routine [36,58–64].

The two most significant mechanical parameters of corrugated board are the bending
stiffness (BS) and the edge crush resistance (ECT). They are exploited in analytical formulae
to estimate the load-bearing capacity of corrugated cardboard boxes. The paper presents
the analytical determination of BS of five-layer corrugated cardboard in four-point bend-
ing test basing on the known parameters of the constituent papers and the geometry of
the corrugated layers. It was assumed that only flat layers, without the participation of
corrugated layers are taken into account in the calculations. In the analytical model the
presence of initial imperfections in compressed segments of the corrugated board was
assumed. In addition, FEM numerical models have been built to validate the aforemen-
tioned assumptions. Two cases have been discussed—in the first one, both liners and
fluting were taken into account to determine BS and in the second one, the stiffness of the
corrugated layers was reduced to imitate a situation in which they are excluded from the
computation. The method has also been validated by means of experimental data taken
from the literature [29]. The obtained compliance of the computational model with the
experimental model was very satisfactory.

The optimal selection of the arrangement of corrugated cardboard layers is funda-
mental for the load-bearing capacity of packages. For that reason, sensitivity analysis
with respect to mechanical properties of liners and the flute geometric parameters was
conducted to answer the question of which of the parameters have the greatest impact on
BS. The main contribution of this study was the derivation of analytical relationships that
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explain the differences in the bending stiffness of asymmetrical corrugated boards when
the layers on the B or E flute side are compressed.

2. Materials and Methods
2.1. The Four-Point Bending Test of a Sample with an Asymmetric Cross-Section

In the case of four-point bending of a sample with an asymmetric cross-section, es-
pecially when its cross-section consists of thin-walled faces (an example of such board is
the corrugated cardboard), the dependence of the bending stiffness on the direction of the
moment can be noticed. Using theoretical models as well as linear numerical models, this
effect cannot be capture. This phenomenon belongs to the imperfection class of problems.

Since in the four-point bending test, the mid-segment is bent with a constant moment
M (see Figure 1) and all other section forces are not present, therefore, the problem is
greatly simplified. In the case of asymmetrical sections in such test, the sample can be
placed and, consequently, examined in two positions, which results in different values of
the determined bending stiffness.
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Figure 1. 4-point bending test.

Thin-walled structures, when they undergo bending (i.e., one part of the cross-section
is compressed and other part is in tension), have higher bending stiffness if the “stronger”
part of the cross-section is compressed (see Figure 2a). On the other hand, when the
“weaker” part of the cross-section is compressed (see Figure 2b), the BS is lower—this is due
to the preliminary buckling of the compressed fragments of the thin-walled cross-section.
More information and a short discussion on this phenomenon can be found in the following
subsections.
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Figure 2. Two possibilities of placing the corrugated board in the 4-point bending test: (a) B-flute
upwards (BE); (b) E-flute upwards (EB).

In our case, where a five-layer corrugated cardboard sample is tested, the stronger part
of the cross-section is on the E-wave side. Therefore, from now on, the following description
is used to distinguish two cases: (a) EB—compression of a part of the cross-section on the B
wave side (see Figure 2b) and (b) BE—compression of a part of the cross-section on the E
wave side (see Figure 2a). In the BE configuration, higher BS values are obtained.

2.2. Corrugated Cardboard-Samples

This study uses the results of the research presented in the work by Czechowski
et al. [29]. The authors presented the mechanical parameters of the component papers (cor-
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rugated and flat layers; see Table 1), the geometric parameters of the five-layer corrugated
cardboard (5EB; see Table 2) and the results of four-point bending tests for six boards made
of various combinations of component papers. In this paper, the above experimental data
were the starting point for in-depth studies on the cause of the difference in the bending
stiffness of samples bent with a positive and negative moment. The geometric characteris-
tics of the corrugated layers are also shown in Figure 3. It was assumed that the shape of
wavy layers is described by a trigonometric function with the amplitude hi and the period
2π/pi.

Table 1. Stiffness moduli for individual flat layers of corrugated board.

Mode ID
Stiffness Modulus E1 in MD (Nmm−2)

Liner 1 Liner 2 Liner 3

Board 1 5700 6460 5650
Board 2 6690 5200 5520
Board 3 5700 6460 5650
Board 4 5700 5720 5650
Board 5 6690 5200 5520
Board 6 5700 5730 5520

Table 2. Geometrical parameters of corrugated layers.

Layer Period (mm) Height (mm) Take-Up Factor

Flute E 3.40 1.20 1.262 1

Flute B 6.10 2.58 1.362 1

1 Length of medium to liner ratio.
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Since in the adopted calculation model (details will be discussed in the next subsection),
only flat layers affect the machine direction (MD) bending stiffness, therefore only the MD
stiffness moduli for liners only for all six boards are listed in Table 1.

The corrugated layers play the role of keeping the liners at the right distance to ensure
adequate bending stiffness. The geometry of the separated, undulating layers is presented
in Table 2.

In the geometrical description of the corrugated board, however, the thickness of the
individual layers should also be taken into account, see Figure 4.

Therefore, the total height of the corrugated cardboard 5EB is:

H =
N

∑
i=1

(h∗i ) +
t1

2
+

t3

2
, (1)

where h∗i are the distances between the central axes of the liners. So the corrected E-flute
height is:

h∗1 = h1 + 0.5t1 + 0.5t2 + t4, (2)
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while the corrected B-flute height is:

h∗2 = h2 + 0.5t2 + 0.5t3 + t5. (3)
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Table 3 summarizes the thicknesses of all corrugated cardboard layers for six boards
and the calculated distances between liners (i.e., corrected heights of the corrugated layers),
according to Equations (2) and (3).

Table 3. Thickness of individual layers of corrugated board and height of corrugated layers.

Mode ID
Thickness (µm) Height (mm)

Liner 1 Flute E Liner 2 Flute B Liner 3 h*
1 h*

2

Board 1 142 164 126 164 146 1.498 2.880
Board 2 185 227 177 199 186 1.608 2.961
Board 3 142 199 126 139 146 1.523 2.855
Board 4 142 177 139 177 146 1.518 2.899
Board 5 185 199 177 199 186 1.580 2.961
Board 6 142 177 164 177 186 1.530 2.930

As already mentioned, the measured thicknesses of the constituent papers (see Table 3)
and the geometry of the corrugated layers (see Table 2) were taken from [29].

2.3. Bending Stiffness of Assymetric Corrugated Board with Imperfections

It is assumed in this study that only liners are involved in bending in the MD, which
means that fluting has only the role of supporting the liners in the correct position. There-
fore, their tensile/compression and bending stiffnesses are negligible. In order to derive
the model, first, all liners were segmented between the supporting wave crests in the
corrugated layer (see Figure 5). Preliminary geometric imperfections were included in the
compressed segments, which reduced the stiffness of these elements. These assumptions
allow to capture the difference in BS depending on the sign of a bending moment in the
asymmetric boards.

Since the five-layer corrugated board consists of three liners, three different segment
lengths can be distinguished: L1 and L3 correspond to the E and B wave periods, respec-
tively. On the other hand, the length L2 can reach the maximum value of p1 (where p1 is a
lower wave period, see Figure 3). However, usually every second segment is divided into
two sections by the crest of wave B, indicated by L′2 on Figure 5. Therefore, the average
length equal to 2/3 p1 was adopted in the middle liner for further analyses.
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For a compressed i-th segment (see Figure 6) with a geometric imperfection, the longi-
tudinal shortening of i-th segment, δi can be computed by the classical equation:

δi =
∫ L

0

Ni Ni
Ei Ai

dx +
∫ L

0

Mi Mi
Ei Ii

dx, (4)

where: Ni = Pi is the normal force; Ni = 1 is a virtual normal force; Ai = bti is the cross-
section area (with b—segment width and t—segment thickness); Ii = bt3

i /12 is the cross-
section moment of inertia; Mi = Piwi(x) is the bending moment; and Mi = 1 wi(x) is a
virtual bending moment. By inserting all the relationships described above into Equation (4)
and taking all the constant values out of the integral, the longitudinal deflection takes
the form:

δi =
Pi

Eitib

∫ Li

0
dx +

12Pi

Eit3
i b

∫ Li

0
(wi(x))2dx, (5)

where the deflection function wi can be described by e.g., the sine function:

wi(x) = fi sin
(

2π
x
Li

)
, (6)

with the maximum deflection fi in the middle of the element span Li (see Figure 6), which
was assumed here as a small fraction of the element length: fi = Li · 10−k while the value
of k is a quantity assumed between 2 and 4.
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compressed and even when imperfections are present, the effect is less pronounced. 

Figure 6. Compression of a single segment with a geometric imperfection.

When measuring the bending stiffness of five-layer corrugated board one can place
a corrugated board sample with the E wave facing upwards or vice versa. As the result,
in one case, two liners are compressed on the E wave side (see Figure 7) while in the other
case, a single liner on the B wave side (see Figure 8) is compressed. In a case where two
liners on the E-flute side are compressed, a higher value of bending stiffness is usually
obtained. This is because larger number and shorter (therefore, less slender) segments are
compressed and even when imperfections are present, the effect is less pronounced.
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Figure 8. Corrugated board bending–compressing the layer of higher fluting.

In a four-point bending test, only the bending moment occurs in the center of the
specimen, so the model simplifies to pure bending. In this model, the moment is balanced
by the normal forces Pi acting in the liners on the arms zi (see Figure 7) with respect to the
neutral axis z0:

z0 =
∑N

i zitib

∑N
i tib

. (7)

The starting point for determining the bending stiffness is the kinematic excitation in
the form of rotation φ (see Figure 7), which causes elongation or contraction δi of liners
(see Figure 8). By taking a small value δ1 (e.g., 10−2 mm) and using the known values of zi,
the remaining values δi can be determined (see Figure 8) and finally the rotation angle φ
can be obtained:

φ = atan
(

δ1

z1

)
. (8)

By solving the integrals in Equation (5), it is possible to determine the longitudinal
deflection in liners under compression or tension:

δi =
PiLi
Eitib

+
6PiLi f 2

i
Eit3

i b
. (9)

For the known deflection δi, the compressive force Pi in the i-th liner can be determined:

Pi =
Eitiδib

Li

(
1 + 6 f 2

i t−2
i

) , (10)

while the tensile force Pi (for fi = 0) is:

Pi =
Eitiδib

Li
. (11)

The i-th bending moment is:

Mi =
N

∑
i=1

Pizi, (12)

and the bending stiffness can be calculated as the sum of the integrals from the formula:

EI =
N

∑
i

∫ Li

0

Mi
φ

dx =
N

∑
i=1

MiLi
φ

. (13)
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If, instead of bending, the corrugated board cross-section is compressed or stretched
in MD, the equation for compression/tensile stiffness can also be derived:

EA =
N

∑
i

∫ Li

0

Pi
δi

dx =
N

∑
i=1

PiLi
δi

. (14)

The theoretical bending stiffness (valid for a perfect model without imperfections) as
the product of the stiffness modulus in MD and the moment of inertia of liners only is:

EI = ∑N
i=1 Eib

(
t3
i

12
+ tiz2

i

)
. (15)

In order to normalize the theoretical values and the results of four-point bending
tests, both values are divided by the width of the sample b. Hence, ultimately, the bending
stiffness is:

BS =
EI
b

. (16)

The presented derivation allows to explain the differences between the bending stiff-
ness obtained from testing of the corrugated board sample placed with the E wave upwards
or vice versa—B wave.

3. Results

In the first step, the theoretical assumption, in which only liners affect the stiffness
of the entire section, was validated. For this purpose, two simple numerical models of a
five-layer corrugated cardboard in a plane state (i.e., a beam model) were built (see Figure 9).
Both models consist of classic Bernoulli 2-node beam elements and were implemented in
Matlab software (Mathworks Inc., Natick, MA, USA) [65]. Small rotation φ was applied
in both ends and the corresponding reaction moments M were determined in order to
calculate BS from Equations (13) and (16). In all cases, displacements resulting from φ
rotation wrt neutral axis were applied on both ends of the model (in external nodes on the
left and right sides of the model).
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derive the BS in CD, where all liners as well as both corrugated layers are equally im-
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Figure 9. Numerical model of corrugated board: (a) 2-period FE model (b) 4-period FE model.

In the first model all layers were modeled according to their geometry and mechanical
parameters, while in the second model, the stiffness of the corrugated layers was signifi-
cantly reduced (by 100 times) to mimic a situation where only liners are active. The results
are shown in Figure 10. Naturally, this assumption is not valid if one would like to derive
the BS in CD, where all liners as well as both corrugated layers are equally important.

In order to eliminate a possible error related to the discretization of numerical models,
the influence of the number of finite elements and the number of waves in the model was
also checked. The results are summarized in Table 4. All FE models consist of 2-node linear
beam elements with a seed equal to 0.1 mm, which generated the following number of
nodes and elements in four models:

1. FEM-1 (1-wave), number of nodes: 375, number of elements: 377;
2. FEM-2 (2-waves), number of nodes: 746, number of elements: 754;
3. FEM-3 (3-waves); number of nodes: 1118, number of elements: 1131;
4. FEM-4 (4-waves); number of nodes: 1489, number of elements: 1508.
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Figure 10. BS calculated by a theoretical model for all 6 boards in which only flat layers are active
(blue bars) and by two numerical models where corrugated layers are included in the calculation (red
bars) or are excluded from the calculation (yellow bars).

Table 4. The bending stiffness computed by the numerical model with included fluting with different
number of periods. FEM-2–a model with two periods (see Figure 9a), FEM-4–a model with four
periods (see Figure 9b).

Name
BS (Nm)

FEM-1 FEM-2 FEM-3 FEM-4

Board 1 8.187 8.198 8.160 8.160
Board 2 12.129 12.135 12.069 12.069
Board 3 8.213 8.231 8.182 8.182
Board 4 8.322 8.332 8.292 8.293
Board 5 11.983 11.991 11.926 11.926
Board 6 9.652 9.669 9.625 9.626

In the next step, the influence of imperfection amount on the bending stiffness in
the analytical model was analyzed. The results for the parameter k ranging from 2 to 4
are shown in Figure 11. The selected value of k = 2.3 is marked on all graphs along
with corresponding BS values for both case EB and BE. The selected value of k gives the
best agreement between the results obtained with the proposed model and the available
experimental data.

Because the presented analytical model takes into account the initial imperfections
of compressed segments in the corrugated board, thus allows to distinguish between the
bending stiffness of the corrugated board whether the E wave or the B wave is compressed.
The bending stiffness not only decreases with the increase of the initial imperfection, but
also the BS difference between the EB and BE increases as the imperfections increase (see
Figure 12). In other words, as the initial imperfections increase, the bending stiffness of the
sample in the EB configuration (compression on the B wave side) decreases faster than the
bending stiffness of the sample in the BE configuration.
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here analytical model with imperfections. 

Figure 12. The difference in BS between the EB and BE configuration: (a) Board 1; (b) Board 2;
(c) Board 3; (d) Board 4; (e) Board 5; (f) Board 6.

The difference in bending stiffness between the EB and BE configurations can be as
high as 25%. However, this applies to cross-sections in which the imperfection amounts to
1% of the initial length of the compressed segment, Li. In our case, the initial imperfection,
for the selected value of the k-factor, is 0.5% of Li. The practically zero difference between
EB and BE case can be observed for the coefficient k equals to 3, i.e., initial imperfection
equals to 0.1% of Li.

Table 5 gathers all bending stiffness values for all 6 boards determined from experi-
mental data [29], theoretical model (no imperfections), simplified FEM model (2D beam
model—no imperfections), full 3D shell FE model [29]—no imperfections, and proposed
here analytical model with imperfections.
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Table 5. BS for all considered models. The values in parentheses represent BS calculated using the
FEM-Beam model without taking into account both corrugated layers.

Title 1 Face-up EXP (Mean) Theoretical FEM-Beam FEM [29] Analytical
(Nm) EI/b (Nm) (Nm) (Nm) (Nm)

Board 1
EB 8.32

8.11 8.20 (8.14)
7.62 7.13

BE 8.47 7.58 7.84

Board 2
EB 10.97

11.92 12.14 (12.02)
9.88 11.15

BE 11.58 9.81 11.65

Board 3
EB 7.25

8.12 8.23 (8.15)
7.61 7.15

BE 9.50 7.53 7.85

Board 4
EB 9.10

8.24 8.32 (8.27)
7.53 7.24

BE 11.10 7.45 7.98

Board 5
EB 11.46

11.78 11.99 (11.89)
10.42 10.89

BE 12.97 10.37 11.52

Board 6
EB 8.20

9.60 9.67 (9.60)
8.45 8.86

BE 9.12 8.40 9.27

As the differences in the results summarized in Table 5, especially the differences
between the experimental measurements and all computational models, suggest some
errors in the experimental data, the sensitivity analysis was performed in the last step. This
analysis was to show which of the parameters have the greatest impact on BS and therefore
to point out which measurements require careful re-checking in order to find possible
inaccuracies in experimental data presented in [29]. Figure 13 presents all sensitivities of
BS in two configurations: EB and BE with respect to mechanical properties of corrugated
board and the flute geometric parameters.

All graphs in Figure 13 show the BS sensitivity to 10% perturbations of (a) thickness
of all corrugated cardboard layers, (b) liners stiffness moduli as well as (c) E and B wave
heights. All other parameters do not affect the bending stiffness in both wave orientation
(E wave up or B wave up). Certainly, the shape of the corrugated layer (apart from the
amplitude) has no effect on BS because, as already proved in this paper, the flute itself
contributes less than 1% to overall bending stiffness of corrugated cardboard.
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4. Discussion

The results presented in the study were obtained while using derived analytical or
numerical models, in which the experimental data presented in [29] were utilized. All
experimental data used in the work are summarized in Tables 1 and 2. The heights of the
corrugated layers (E-flute and B-flute) have been corrected and are compiled in Table 3.
To the best of our knowledge, there are no other studies in the literature on this subject,
although several observations made by various scientific groups have already indicated
this phenomenon, e.g., Östlund and Niskanen [66].

The proposed analytical model does not take into account the corrugated layers in the
calculation of the bending stiffness of the five-layer corrugated cardboard. Two numerical
models were therefore built to validate this assumption. In the first of them, both flat and
corrugated layers were used to determine BS. In the second one, the stiffness of the wavy
layers was reduced to emulate a situation in which corrugated layers are excluded from
the computation. For the comparison, the theoretical model was additionally employed, in
which also just flat layers are considered in BS computation. All three models gave almost
the same results presented in Figure 10. The differences were between 0.72% and 1.75%.

Since the presented model takes into account the influence of initial imperfections in
the compressed segment of the corrugated board, the first attention was focused on deter-
mining the initial imperfection values. Figures 11 and 12 present BS in two configurations:
(a) EB—E wave upwards and (b) BE—B wave upwards, as a function of imperfection value.
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In Figure 11 it can be clearly noticed that for the imperfection value at the level of 0.1% of the
initial length of the compressed segments (which corresponds to k equal to 3), not only the
difference between the EB and BE configurations is not noticeable, but also the difference
between the BS values for both EB and EB do not differ from the reference value (dashed
lines) computed while using the theoretical model (see Equation (15)). The difference
between the bending stiffness in the case of EB and BE increases with the augmentation of
the imperfection coefficient and for the value k = 2 (i.e., imperfection equals to Li · 10−2)
it is between 12% and about 22% (see Figure 12). In this work the assumed imperfection
coefficient is 2.3, which corresponds to the initial imperfections in the compressed elements
at the level of 0.5% of the initial length of these segments.

Table 5 summarizes all calculated and literature values of bending stiffness for six
examples of five-layer corrugated board. It is clearly seen than in just two cases the
theoretical BS is higher than the experimentally measured BS. It can be evidently noticed
that only in two cases (Board 2 and Board 6) the theoretical BS is higher than experimentally
measured BS. This is an alarming observation, because in the case of real structures made of
corrugated board, the cross-section is rarely ideal (usually the corrugated board is slightly
crushed [67,68]), which means that the measured bending stiffness values should rather be
lower than theoretical. Not only the theoretical values of BS are lower than those measured
experimentally. Virtually all the results presented in Table 5 follow a similar trend, both the
results obtained with the use of analytical and numerical models, including the results from
the literature (column 6) [29]. Due to this observation, the results of experimental research
presented in [29] may contain some errors or are incorrectly ordered. Despite these doubts
the results obtained while using the analytical model are very good for Examples 2 and 6
(marked in Table 6), for other Examples the results are not as good but still better than
results presented in [29] (see Table 6). The mean absolute error generated by the analytical
model is 11.7% for all cases while the mean absolute error of the results presented in [29]
is 16.4%.

Table 6. Percentage error between BS measured experimentally and computed BS.

Title 1 Face-up FEM [29] Analytical
(%) (%)

Board 1
EB 9.18 16.69
BE 11.74 8.04
EB 11.03 1.61

Board 2 BE 18.04 0.60

Board 3
EB 4.73 1.40
BE 26.16 21.02

Board 4
EB 20.85 25.69
BE 48.99 39.10

Board 5
EB 9.98 5.23
BE 25.07 12.59
EB 2.95 7.45

Board 6 BE 8.57 1.62

Due to the relatively large discrepancies between the calculated and measured values
of bending stiffness, and due to the suspected measurement error or incorrect compilation
of results in [29], the sensitivity analysis of the analytical model was also carried out in this
study. The graphs shown in Figure 13 clearly indicate that both the EB and BE models have
the greatest sensitivity to the change in the stiffness modulus and thickness of the flat inner
and outer layers (i.e., Liner-1 and Liner-3). The sensitivity of BS to changes in the height of
the corrugated layer B, h2, is similarly high. Thus, even a small change of these parameters
(just a few percent), can dramatically change the computational value of bending stiffness
of the corrugated board.
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5. Conclusions

In this study, a detailed analysis of the effect of imperfections in thin-walled asym-
metrical sections bent with a constant moment was carried out. The main contribution
of this work was the derivation of analytical relationships that accurately describe the
phenomenon of the difference in bending stiffness depending on the sign of the moment
loading the asymmetric corrugated cardboard sample in machine direction. The paper
showed that the applied analytical model satisfactorily reflects the real behavior of bent five-
layer corrugated cardboard. The adopted simplifications did not affect the quality of the
proposed solution, which was proved by a simple numerical model. Finally, the developed
model was compared with the results of experimental research available in the literature.
The obtained results are much closer to the experimental results than the results generated
by other models available in the literature. Additionally, proposed model is very easy to
implement, which makes it possible to use it in practice by cardboard manufacturers. This
study also includes the sensitivity analysis, which indicates the most important parameters
directly affecting the BS and, therefore, can be very helpful in more conscious design of
optimal corrugated board.
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