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Abstract: Some Clayey soils are generally categorized as weak soils, and structures lying on such
soils have been exposed to severe damage. Therefore, the central thesis of this paper is the impact of a
waste material known as a silica fume as nano and micro material on soil’s behaviour. To evaluate the
effects of those additives on Atterberg limits, compaction characteristics and unconfined compressive
strength, clayey soil samples have been transformed using micro and nano silica fume (by-product
materials). In the current investigation, silica fume is used at four different percentages: 0, 2, 4, and
7%. The results show that the plasticity index of soil decreases with the addition of micro silica
and increases with the addition of nano-silica. Increasing nano silica percentage improves the dry
density of the compacted soil and reduces the optimum moisture content. An opposite behavior
is observed with adding micro silica to compacted soil. Finally, 4% of silica fume is found to be
the optimum dosage to improve the unconfined compressive strength of the treated soil with both
additives. As a result, treating the weak clay soil with micro and/or nano-silica fume has the potential
to be impactful.

Keywords: clayey soil; soil improvement; silica fume; nanomaterial

1. Introduction

One of the most prevalent issues worldwide is the location of civil engineering projects
in areas with unstable soils. Weak soil can cause severe damage to buildings and infras-
tructures, especially when the ground is liquefiable [1–9]. The traditional approach to
stabilizing soil involves removing the brittle soil and replacing it with a more potent sub-
stance. The high expense of this technology has prompted academics to hunt for cheaper
alternatives, one of which is the soil stabilization procedure.

A technique called soil stabilization was first used to make soils capable of satisfying
the demands of particular engineering projects many years ago [10]. Soils may need to be
stabilized if they are poor or have unwanted characteristics that make them inappropriate
for use in a geotechnical project. Several scientific methods for stabilizing soil have been
developed recently. Several studies have been conducted to improve the soil using additives
such as fly ash, cement, and lime. The techniques of soil stabilization frequently involve
additives as cementing agents, including cement, lime, or industrial by-products [11].
Historically, lime, cement, and specialized additives like pozzolanic materials have been
used to treat soils that make up the pavement subgrade to stabilize them. Fly ash, silica
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fume, and rice husk ash, considered wastes, are pozzolanic materials that can be utilized to
enhance soil [12].

Due to its tiny particles, large surface area, and high silicon dioxide concentration, silica
fume, one of the stabilizers, has drawn the most interest as a highly reactive pozzolan [13].
Portland cement was partially substituted with silica fume in concrete. Additionally,
silica fume has been suggested as a promising and effective alternative to enhance the
geotechnical characteristics of clayey soils as a stabilizing agent by enhancing unconfined
compressive strength and decreasing the permeability coefficient [14]. This stabilizer can
improve composite permeability, swelling pressure, and compressive strength, according
to research on the impact of silica fume on the geotechnical parameters of high plasticity
clay [15]. Additionally, pozzolanic additions were employed to enhance the properties of
swelling soils [16]. After the curing process, these additives can significantly reduce the dis-
persivity potential and plasticity index while increasing the soils’ unconfined compressive
strength (UCS). To improve the material properties used in many engineering applications,
particularly in civil engineering, nanomaterials and nanoparticles are extensively used as
additives nowadays [17]. Nanomaterials have many advantages when used as stabilizers.
A material’s relative surface area can impact materials’ strength or electrical qualities,
making them more chemically reactive.

Additionally, quantum effects can cause materials’ optical, electrical, and magnetic
properties to dominate their behavior at the nanoscale. The most significant benefits of
nanomaterials to improve quality of life and healthier lifestyles have been outlined as
reducing energy usage, saving money, saving time, and improving the quality of products.
Nanomaterials are thought to be a potentially strong stabilizer to enhance the characteristics
of soils based on the previously mentioned advantages [18].

Due to its low strength traits, clay is regarded as soil with weak properties. Based
on the justifications mentioned above, several studies used silica fume and nano-silica
as regularly used additives to enhance the geotechnical characteristics of various clay
soils [17]. For the reasons already stated, a study is being done to determine the influence
of a waste material known as-silica-fume as nano and micro material on poor clay, also
known as Hujaira’s clay, which is now being used as a filler material beneath projects being
implemented in Fallujah, Iraq, due to the lack of suitable soil.

The tests adopted in this research namely Atterberg limits, compaction, and uncon-
fined compressive strength (UCS) tests on stabilized soil, were conducted to achieve three
goals: at first, to improve the characteristics of such problematic soils so that they can be
used confidently in engineering practice; secondly to determine the ideal dosage needed to
improve the soil, and lastly to enhance the environmental impact by utilizing the use of a
by-product material called silica fume.

2. Materials and Methods
2.1. Clayey Soil

A soil sample from Al-Fallujah City in Iraq was brought over for this study. This soil
was taken as undisturbed sample using 100 mm tube with less than 20% area ratio (i.e.,
undisturbed sample) at a depth ranging from 0.5 to 1 m from the borrow pits. All soil sam-
ples are packaged in plastic bags, identified, and sent to the Al Maaref University College
Soil Mechanics Laboratory for testing (AUC). To obtain this soil to the soil mechanics lab,
plastic bags were used to carry it. Figure 1 displays the soil’s distribution of particle sizes.
Several tests, including sieve analysis, specific gravity (Gs), Atterberg’s limits (LL and PL),
compaction testing, and unconfined compression testing, are carried out in accordance
with established requirements to address the geotechnical properties of the soils employed.
The physical characteristics of the clay soil used in this study are shown in Table 1.
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Figure 1. Grain size distribution of soils.

Table 1. Properties of clayey soil used in the present research.

Property Clayey Soil
Unconfined compressive strength (kPa) 171

Liquid Limit LL (%) 52.6
Plastic limit (%) 35.3

Plasticity Index (%) 17.3
Specific Gravity, GS 2.72
Sand Content (%) 0
Silt Content (%) 37

Clay Content (%) 63
Max. Dry density (g/cm3) 1.69

Optimum Moisture Content (%) 15.6

2.2. Silica-Fume

Historically, silica fume, a very fine solid particle produced during silicon metal
manufacturing, has been considered a waste. It is a secondary product of ferrosilicon alloys
or silicon metal manufacture. Despite being an industrial waste, silica fume now ranks
among the most effective secondary product pozzolanic materials because of its highly
active pozzolanic properties. Concrete is one of silica fumes’ best applications. Due to
its chemistry and physics, it is a highly reactive pozzolan [15,19–21]. However, Table 2
provides an overview of its chemical and index characteristics.

Table 2. Chemical composition of the presently used silica fume.

Property Composition (%)
SiO2 94.3
Al2O3 0.31
Fe2O3 0.82
SO3 0.91
CaO 0.29
MgO 0.133
K2O 0.442
Na2O 0.081
Tio2 <0.02
Loss on ignition 3.38
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A pozzolanic substance with a high concentration of amorphous silicon dioxide and
very small, spherical particles is known as a grey-colored, densified silica fume. Calcium
silicate hydrate is created as a result of its reaction with calcium hydroxide (secondary gel).

The surface area of the very small vitreous particles that make up silica fume weighs
20,000 m2/kg. These particles are smaller by two orders of magnitude than the cement
particle’s average size. Due to its extreme fineness and high silica concentration, silica fume
is classified as a reactive pozzolanic material [15].

Additionally, it meets the ASTM C618 pozzolana chemical standard, as shown in
Table 3.

Table 3. Chemical requirement of pozzolans ASTM C618.

Oxide Composition Pozzolan Class N
SiO2 + Al2O3 + Fe2O3 (min. percent) 70
SO3 (max. percent) 4
Moisture content (max. percent) 3
Loss on ignition max. 10

2.3. Preparation of Nano-Materials

Depending on their use, nanometers are defined in many ways. Typically, in the nano
range, particles between the sizes of 1 nm and 100 nm are referred to as ultrafine particles,
while those between the sizes of 100 nm and 250 nm are considered finer particles. The
materials are, therefore, in the finer nanometer particle range, according to the results of
the particle size study [22].

The following process was utilized to convert the macro materials into nanomaterials,
which were then used as additions to strengthen the weak soil investigated in this study:

First, the stabilizing substance, silica fume, must be oven-dried. The sample is either
pulverized for 10–14 days or 10,000 revolutions in a ball mill.

The continual pulverization of the material sample is a challenging process since the
material particles adhere to the cylinder wall. For consistent pulverization, the cylinder
should be cleaned every four hours. As demonstrated in Figure 2, the Particle Size Analyser
analyses the fine ground sample to determine the particle size.
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The Dynamic Light Scattering Principle underlies how the Particle Size Analyser
operates (DLS). Measurements of particle size range from 0.3 nm to 8 m. Dispersing agents
like sodium hexametaphosphate, sodium carbonate, or KNO3 should be used to spread the
sample. As a result, 1 mg of the sample is dissolved in ethanol and placed in a test tube
for 30 min to distribute the material particles evenly. The test tube is then kept inside the
device for examination. Nano silica fume has particle sizes between (100–1000) nm and
an effective diameter of 408.35 nm, while nano fly ash has particle sizes between (10–1000)
nm and an effective diameter of 808.22 nm. The nanomaterial employed in this study is
thought to be coarser nanoscale particles with a three-dimensional nanostructure.

2.4. Test Methods

As mentioned before, the central aim of this research is to investigate the impact of a
waste material known as silica fume as nano and micro material on soil’s behavior of the
clayey soil that was employed in the research. The following tests were run to further the
research’s objectives:

2.4.1. Atterberg Tests (Consistency Limits)

Atterberg limits were assessed to ascertain the impact of silica fume on the consistency
behavior of compacted clayey soil samples. According to ASTM D 4318, the natural and
stabilized clayey soil samples were put through liquid and plastic limits.

2.4.2. Compaction Tests

In line with ASTM D 698, Standard Proctor tests were performed on soil samples of
natural and stabilized clayey soil to determine the ideal water concentrations. The values of
the ideal water content and maximum dry unit weight were calculated from the compaction
curves shown. To produce samples for the unconfined compressive strength, the native
clayey soil and the clayey soil-silica fume or nano-silica combinations were compacted at
the ideal water content.

2.4.3. Unconfined Compressive Strength Tests

Unconfined compression tests were used to measure the compressive strength of
samples of compacted clay with silica fume and nano silica (ASTM 2166). The unconfined
compression test is a popular and quick way to determine the approximate compressive
strength of cohesive soils. Four groups of samples with a length/diameter ratio of 2 were
prepared for this laboratory experiment (L: 70 mm and D: 35 mm).

2.5. Results and Discussion
2.5.1. Atterberg Limits

The Atterberg limits test assessed how silica fume and nano-silica affected the soil’s
plastic properties. The mean liquid limit (LL), plastic limit (PL), and plasticity index
(PI = LL-PL) of three replicates for each specimen are displayed in Figures 3–5. With the
addition of silica fume, the liquid limit and plasticity index were reduced. This might be
influenced by the kind of soil and its cation exchange capability [14]. These findings were
consistent with earlier research [14,23]. In thiss context, Kalkan and Akbulut showed
that higher silica fume content of clay soil by up to 50% causes the liquid limit and
plasticity index to drop [14]. As the silica fume level rises, it has also been demonstrated
that the plasticity index of smectite clay somewhat declines [23]. Silica fume coats and
binds all clay particles, even those with limited cementitious value and big particles, in
a process known as the pozzolanic reaction between silica fume and aluminous material,
which results in a decrease in the LL and PI [24]. The plastic limit reduced as the nano-silica
content rose, according to the testing findings depicted in Figures 3–5. The liquid limit and
plasticity index increased. When the dose of nano-silica exceeds 1%, it can be attributed to
the agglomeration of nanoparticles [25]. Due to their petite size, nano silica particles have a
high specific surface. The amount of water adsorbed and the wettable surface area would
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rise with a high specific surface material [26]. These characteristics may raise the plasticity
index and liquid limit while decreasing the plastic limit.

Materials 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

addition of silica fume, the liquid limit and plasticity index were reduced. This might be 
influenced by the kind of soil and its cation exchange capability [14]. These findings were 
consistent with earlier research [14,23]. In thiss context, Kalkan and Akbulut showed that 
higher silica fume content of clay soil by up to 50% causes the liquid limit and plasticity 
index to drop [14]. As the silica fume level rises, it has also been demonstrated that the 
plasticity index of smectite clay somewhat declines [23]. Silica fume coats and binds all 
clay particles, even those with limited cementitious value and big particles, in a process 
known as the pozzolanic reaction between silica fume and aluminous material, which re-
sults in a decrease in the LL and PI [24]. The plastic limit reduced as the nano-silica content 
rose, according to the testing findings depicted in Figures 3–5. The liquid limit and plas-
ticity index increased. When the dose of nano-silica exceeds 1%, it can be attributed to the 
agglomeration of nanoparticles [25]. Due to their petite size, nano silica particles have a 
high specific surface. The amount of water adsorbed and the wettable surface area would 
rise with a high specific surface material [26]. These characteristics may raise the plasticity 
index and liquid limit while decreasing the plastic limit. 

0 1 2 3 4 5 6 7 8

32

36

40

44

48

52

56

60

64

68

liq
ui

d 
lim

it 
%

additive % by mass

 silica fume
 nano silica fume

 
Figure 3. Effect of silica fume and nano silica on liquid limit. 

Figure 3. Effect of silica fume and nano silica on liquid limit.

Materials 2022, 15, x FOR PEER REVIEW 7 of 13 
 

 

0 1 2 3 4 5 6 7 8
20

25

30

35

40

45

50

pl
as

tic
 li

m
it 

%

additive % by mass

 silica fume
 nano silica fume

 
Figure 4. Effect of silica fume on Plastic limit. 

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

pl
as

tic
ity

 in
de

x

additive % by mass

 silica fume
 nano silica fume

 
Figure 5. Effect of silica fume on plasticity index. 

2.5.2. Compaction Parameters 
Figures 6–9 show the compaction behavior of soil-silica fume and soil-nano silica 

mixes. These numbers came from five samples that were examined for each stabilizer per-
centage. According to these data, silica fume addition lowers maximum dry density and 
raises optimal moisture content, whereas nano-silica addition increases maximum dry 

Figure 4. Effect of silica fume on Plastic limit.



Materials 2022, 15, 7148 7 of 12

Materials 2022, 15, x FOR PEER REVIEW 7 of 13 
 

 

0 1 2 3 4 5 6 7 8
20

25

30

35

40

45

50

pl
as

tic
 li

m
it 

%

additive % by mass

 silica fume
 nano silica fume

 
Figure 4. Effect of silica fume on Plastic limit. 

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

pl
as

tic
ity

 in
de

x

additive % by mass

 silica fume
 nano silica fume

 
Figure 5. Effect of silica fume on plasticity index. 

2.5.2. Compaction Parameters 
Figures 6–9 show the compaction behavior of soil-silica fume and soil-nano silica 

mixes. These numbers came from five samples that were examined for each stabilizer per-
centage. According to these data, silica fume addition lowers maximum dry density and 
raises optimal moisture content, whereas nano-silica addition increases maximum dry 

Figure 5. Effect of silica fume on plasticity index.

2.5.2. Compaction Parameters

Figures 6–9 show the compaction behavior of soil-silica fume and soil-nano silica
mixes. These numbers came from five samples that were examined for each stabilizer
percentage. According to these data, silica fume addition lowers maximum dry density
and raises optimal moisture content, whereas nano-silica addition increases maximum dry
density and decreases optimal moisture content for the studied samples. The substitution
of soil with lower specific gravity for soil with a higher specific gravity led to a lowered
maximum dry density when silica fume was added. In addition, silica fume gives samples
a greater surface area than raw soil does. This suggests that additional water is required to
compact the mixes before the ideal moisture content is raised. Because silica fume acts as a
drying agent and adding micro material may increase the optimal moisture level by causing
the compound to absorb more water due to pozzolanic reactions, more water is required to
compact the soil-compound mixes. Additionally, ordinary materials are regarded as coarse
materials in comparison to nanomaterials; therefore, when such additives interact with soil,
the treated soil tends to be a coarser material with large surface areas formed; as a result,
these processes require additional water to be carried out and decrease the amount of free
clay fractions [15].
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The tendency of nanomaterials to absorb water from moist soil, which decreases
the ideal water content in soil due to the high surface area of nanomaterial particles,
maybe the reason for the decrease in the optimal moisture content in soil treated with
nanomaterials [27]. Figure 8 shows that adding micromaterials causes a reduction in
maximum dry density, whereas adding nano-materials causes an increase. The coating
of the soil by the compound mixing, which results in large particles with large voids
(increasing particle size leads to an increase in void ratio) and therefore reduced density,
may be attributed to the cause beyond the reduction in the case of adding silica fume [15].
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2.5.3. Unconfined Compressive Strength

Studies were carried out to investigate the impact of silica fume and nano-silica on the
clay from Hujaira’s unconfined compressive strength. Figures 10 and 11 show the average
of these measurements for three replicates of each sample.
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It may be determined that the unconfined compressive strength increased with the
addition of silica fume and nano-silica. This is linked to the pozzolanic reaction between
silica fume and clayey soil, which produces cementitious materials compounds that
bind soil aggregates and may be caused by internal friction of silica fume particles. The
unconfined compression test is frequently employed as a quick and affordable way to
determine the cohesive soil’s approximative compressive strength. It is important to
note that adding 4% silica fume as nano and micro materials results in the tested samples
having the maximum strength.
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3. Conclusions

The current study looked into how silica fume as nano and micro materials affected
the compaction characteristics and strength of clayey soil known locally as Hujaira’s
clay. The results demonstrate that silica fume in the form of nanomaterial can be used to
improve the compaction characteristics and strength of poor strength clayey soil, known
locally as Hujairas clay. Differently from the micro silica, which has a positive impact on
the unconfined compressive strength, not the compaction characteristics. The following
conclusions may be drawn from the current research:

• The Atterberg limits test results show that the addition of silica fume decreases the
plasticity index of the treated soil while the latter increases with the addition of nano
silica fume.

• Silica fume addition lowers the maximum dry density and increases optimum moisture
content, whereas nano-silica addition increases maximum dry density and decreases
optimal moisture content for the studied samples.

• The addition of 4% silica fume or nano silica lead to increasing the unconfined com-
pressive strength of the tested samples.
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