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Abstract: In this study, the axial fatigue behaviour of hot forging tool steels at room temperature was
investigated. Fatigue tests were performed on two steels within the same H13 specification. The
fatigue tests were carried out in the high-cycle fatigue domain under normal conditions. These tests
were also performed on specimens in contact with a corrosive medium, applying stress values that led
to the high-cycle fatigue domain under normal conditions for the sake of comparison. Both materials
showed similar fatigue strengths when they were tested under normal conditions. In contrast,
corrosion fatigue lives were much lower than in normal tests and differed significantly between
the two steels. Crack initiation was triggered by microstructural and surface defects in the normal
tests, whereas the formation of corrosion pits caused crack initiation in the corrosion fatigue tests.
Moreover, a fracture surface analysis revealed dissimilar crack propagation areas between both steels,
which suggested that both steels had different fracture toughness. These results were in line with the
differences observed between the carbide and grain sizes of both of the material microstructures.

Keywords: high-cycle fatigue; corrosion fatigue; hot forging tool steels; AISI H13; failure analysis

1. Introduction

Hot forging tool steels present excellent mechanical properties, such as extraordinary
yield and tensile strengths even at high temperatures [1,2] and a fairly good balance be-
tween hardness and fracture toughness when they are subjected to an appropriate thermal
treatment [3]. Hence, these steels are extensively used for manufacturing forging dies,
pressure die casting tools, and extrusion tools [4]. However, in spite of their outstanding
mechanical properties, these steel tools suffer from severe damage when they are subjected
to thermal [5], mechanical [6], and tribological [7] fatigue loads, which cause the initiation
and propagation of cracks and eventually the fracture of these tools [8]. The fracture of
hot forging tools is a crucial issue for many industrial sectors since it requires large annual
investment in maintenance and tool replacement [9]. In order to reduce these costs and
maximise the replacement times of forging tools, a fundamental understanding of the
fatigue strength and the fatigue fracture mechanisms of hot forging tool steels is required.

The fatigue behaviour of hot forging tool steels depends strongly on their mechanical
properties, especially on the hardness and the fracture toughness. The surface hardness of
a material improves its fatigue strength, as a higher hardness results in a higher resistance
to the local plastic deformation required to open a crack [10]. Since fatigue cracks usually
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start at the surface of a component, a high surface hardness delays crack initiation and thus
extends the fatigue life of the component [11]. On the other hand, the fracture toughness
provides the resistance to support loads in the presence of cracks or defects, so a higher
fracture toughness improves the fatigue crack propagation behaviour of the material.

The mechanical properties of hot forging tool steels can be varied substantially by
modifying the variables of the heat treatment they are subjected to. The heat treatment of
these steels often consists of a quenching stage followed by two or even three tempering
stages. The effects of the quenching stage are controlled by the selection of an austenitising
temperature. An increase in the austenitising temperature promotes grain growth, which
causes a decrease in the yield strength (YS) and ultimate tensile strength (UTS) of the steel
according to the Hall–Petch equation [12]. Moreover, higher austenitising temperatures
also favour the dissolution of primary carbides that precipitate during the tempering stages
as smaller secondary carbides, thus enhancing the hardness of the steel [13]. As for the
tempering stages, it has been observed that higher tempering temperatures result in lower
values of the UTS and the hardness, whereas the fracture toughness is improved [14].
During tempering, a softening process takes place where the martensite microstructure
decomposes and carbides precipitate [4]. The presence of smaller carbides and their
homogeneous distribution is beneficial for the fracture toughness of the steels [3].

Most previous investigations into the fatigue behaviour of hot forging tool steels
have aimed to characterise the performance of these alloys in the low-cycle fatigue (LCF)
domain [15,16]. However, the results of the high-cycle fatigue (HCF) characterisation of
hot forging tool steels remain scarce in the literature. Shinde et al. [17] performed rotating
bending HCF tests on conventionally heat-treated H13 steel. As a result of these tests,
a fatigue strength of 566 MPa was obtained at 107 cycles. Likewise, Korade et al. [18]
evaluated the fatigue behaviour of H21 steel using rotating bending HCF tests up to 107

cycles. The resultant fatigue strength for conventionally heat-treated specimens was found
to be 560 MPa.

Work environments can worsen the fatigue behaviour of steels by causing corrosion
damage. For instance, Papageorgiou et al. [19] analysed the failure mechanisms of an H13
steel hot forging die that failed earlier than expected during its operation. This failure
analysis revealed that the cooling agent utilised in the working process of this die presented
a high salt concentration and caused a severe corrosion attack, which increased the surface
roughness of the die and thus accelerated the damage process. The corrosion fatigue
phenomenon can be triggered by many factors, such as contact with water, condensation of
moist air, or adsorption of gases [20]. Therefore, understanding the interaction between
corrosive environments and fatigue performance is also important to guarantee a high
durability of hot forging tool steel components.

Numerous investigations have dealt with the corrosion fatigue analysis of various
types of steels. Yongmei et al. [21] performed axial fatigue tests on maraging steel specimens
within a chamber filled with a NaCl solution. The maraging steel showed a dramatic
decrease in the number of cycles to failure in the tests carried out in saline bath tests
compared to conventional fatigue tests. Amongst these results, it was also observed
that a lower loading frequency and a lower stress ratio decreased the fatigue lives of
the specimens. Ebara [22] analysed the effect of the corrosive medium concentration on
the corrosion fatigue results of a stainless steel, observing that a higher concentration of
NaCl in the corrosive medium affected fatigue strength and crack growth rates negatively.
May et al. [23] evaluated the failure mechanisms of a martensitic stainless steel submerged
in a saline solution. The origin of cracks was attributed to the rupture of local passive
films in the surface of the tested specimens, leading to an increased corrosion attack that
favoured crack initiation. Nevertheless, no results regarding the corrosion fatigue of hot
forging tool steels have yet been presented in the literature.

The purpose of this work was to analyse the fatigue behaviour and fracture mecha-
nisms of AISI H13 steel, which is one of the most common hot forging tool steels. This
analysis included a study of the dissimilar effects of the microstructure on the results
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of the corrosion fatigue (CF) tests when compared with the results of the conventional
fatigue tests. In order to achieve this goal, a microstructural analysis was performed on
H13 samples from two different manufacturers that underwent analogous heat treatments.
Hardness and tensile tests were carried out on both steels, since mechanical properties have
an important influence in the fatigue behaviour. Next, axial fatigue tests were performed at
room temperature in the HCF domain under normal conditions. Using a saline solution
as a corrosive medium and applying the same stress values that led to HCF failure under
normal conditions, CF tests were carried out. Finally, fracture surfaces were analysed to
identify the mechanisms that led to the failure of the specimens.

2. Materials and Methods
2.1. Materials

The materials analysed here were two hot forging tool steels from different manu-
facturers within the same AISI H13 specification. H13 steels were selected to carry out
this research as this specification is one of the most utilised for hot forging tool manufac-
turing. The H13 designation is also referred to in the literature as 1.2344 or SKD61 [24].
The chemical compositions in weight percentages of both the H13 steels, namely A and
B, are displayed in Table 1. It can be observed that both steels have considerably similar
chemical compositions and that H13 steels have high contents of chromium, molybdenum,
and vanadium. The content of chromium increases the resistance to oxidation and high
temperatures, whereas molybdenum improves the hardenability of the steel and vanadium
enhances its strength and toughness [25].

Table 1. Chemical compositions of the two H13 steels in weight percentages.

Name C Si Mn P S Cr Mo V Fe

H13 steel
A 0.40 1.01 0.36 0.012 0.0020 5.20 1.31 0.95 Balance

B 0.39 1.01 0.38 0.013 0.0005 5.11 1.43 0.92 Balance

Both H13 steels were manufactured using an electro-slag remelting (ESR) process.
The ESR process has been demonstrated to be an effective process for obtaining high-
strength steels with a high degree of cleanliness, smaller inclusions, and enhanced fatigue
strengths [26]. According to the assessment of the statistical influence of the ESR process
on the fatigue behaviour of H13 steels, it was proved that fatigue lives were significantly
enhanced for the refined steel specimens [27].

The H13 steels analysed in this study were obtained from actual crankshaft forging
dies. These dies were austenitised, quenched in water, and then tempered twice to attain
a hardness of 46 HRC. The A-steel forging die was austenitised to 1025 ◦C for 2.5 h and
tempered twice at temperatures of 570 ◦C and 605 ◦C for 4 h and 5 h, respectively. Similarly,
the B-steel forging die was austenitised to 1020 ◦C for 2.5 h and tempered twice for 4 h
and 5 h at a temperature of 600 ◦C. The heating procedure during the stages of the heat
treatments was adapted in order to ensure a homogeneous distribution of temperature in
the whole of the forging dies. Such recommended heat treatment procedures for H13 steel
can be found in NADCA no. 229.

2.2. Specimen Dimensions

Steel blocks were obtained from a crankshaft forging die, as represented in Figure 1a.
These forging dies were already subjected to the heat treatment specified previously. Next,
the specimens were machined from the steel blocks as per the geometry shown in Figure 1b,
where the dimensions are in millimetres. The main axis of the specimens was aligned
with the main axis of the crankshaft. These specimens were used for tensile and axial
fatigue testing.
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Figure 1. Origin of the steel specimens: (a) extraction of blocks from the crankshaft die and (b) speci-
men dimensions in millimetres after machining of the blocks.

It should be pointed out that the specimen size can also affect the fatigue test results,
as it raises the likelihood of presenting more and larger microstructural defects that may
lead to premature crack initiation [28]. Multiple studies have been carried out where larger
specimens showed significantly lower fatigue lives than smaller ones under the same
loading conditions [29].

It is well known that surface roughness weakens fatigue strength as rough profiles
present sharp stress concentrators that lead to premature crack initiation [30]. Therefore,
the fatigue specimens were polished in order to remove any surface defects that may have
originated throughout the manufacturing stage and to obtain a surface roughness below
Ra = 0.2 µm.

2.3. Characterisation Methods

A microstructural analysis of the two studied steels was carried out on a JEOL JSM-
6010 LA scanning electron microscope (SEM). This analysis was complemented with X-ray
diffraction (XRD) to compare the diffraction patterns of both of the steels and to find
any potential difference between their microstructures. The XRD analysis was performed
using a PANalytical X’Pert Pro X-ray diffractometer by means of monochromatic Cu-Kα

radiation (wavelength 1.54 Å) over the 2θ range of 25–130◦ with a step size of 0.02◦. In
order to enable a clear observation of the microstructure, samples of both of the steels were
saw-cut using a refrigerant consisting of a mixture of oil and water so that heating and
microstructural changes were prevented. Next, the steel samples were ground with silicon
carbide sandpaper using water as a lubricant and then mirror-polished with 6 µm and 1
µm diamond suspensions. Finally, the samples were etched at room temperature with a
Nital 5% solution for 22 s.

Surface microhardness measurements were taken from the same samples that were
used for the microstructural analysis using an HMV-G21 Series micro Vickers hardness
tester. The applied load was 4.903 N (500 g) for 10 s. The Vickers hardness test was
repeated 10 times for each steel and the hardness was obtained as the average of all
the measurements.

Tensile tests were performed using a universal testing machine with a load capacity
of 250 kN in order to obtain the UTS and YS values for each steel. These tests were
displacement-controlled at a rate of 5 mm/min until fracture of the specimens. The UTS
was calculated as the maximum load reached during the test over the initial cross-section
area of the specimen, whereas the YS was obtained as the normal stress that corresponded
to a plastic normal strain of 0.2%.

A Walter-Bai LFV-25 servo hydraulic dynamic test machine was used to perform the
fatigue tests. This machine has a dynamic load capacity of ±25 kN, a maximum stroke
of ±50 mm, a frame stiffness of 200 kN/mm, and a servo actuator accuracy of ISO 7500
class 0.5. This machine allows one to hold specimens with steel clamps hardened up to
60 HRC, which makes it suitable for testing hot forging tool steels. Load-controlled axial
fatigue tests were carried out at room temperature according to the ISO 1099 standard [31].
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In all the tests, the load profile was sinusoidal with a loading frequency of 10 Hz and a
stress ratio equal to zero. In order to study the CF behaviour of these steels, the mid-section
of the specimens was placed in contact with a sponge soaked with a corrosive medium
throughout additional fatigue tests. The setup of these corrosion fatigue tests is shown
schematically in Figure 2. The corrosive medium was a sodium chloride (NaCl) solution
with a concentration of 0.1 M. All the specimens were tested at different load ranges up
to either specimen failure or 107 loading cycles (run-out). In the case of specimen failure,
the output of the test was the number of cycles to failure. The load values applied to the
specimens were selected to obtain fatigue lives within the HCF domain (104–107 cycles)
under normal conditions. The same load values were applied to the specimens subjected
to CF tests for the sake of comparison. The least squares method was applied for the
data fitting of the fatigue results to obtain the Wöhler diagrams. As a result of all the
combinations of the type of material (A-type and B-type steels) and test conditions (normal
HCF and CF), four Wöhler diagrams were considered.
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Figure 2. Schematics of the corrosion fatigue testing setup for surface soaking.

Fracture surface images were obtained using a Nikon SMZ1000 microscope and a
JEOL JSM-6010 LA SEM.

3. Results
3.1. Microstructure

The samples of both of the steels were taken using SEM analysis. Microstructure
images of these samples are displayed in Figure 3 at different magnifications. These
samples were mirror-polished and etched with an acid solution (Nital 5%) in order to
obtain a clear observation of the microstructures.
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As can be seen in Figure 3a,b, the grain boundaries of the steels were revealed due to
the acid attack. Furthermore, these images suggest that the grain size in the B-type steel
was slightly smaller than that in the A-type steel. In Figure 3c,d, the typical martensitic
laths with intermetallic carbides can be observed for both materials. Some grain boundaries
are highlighted with dashed lines for clarity. The microstructural features of both materials
resembled each other to some extent. However, the A-type steel showed a higher volume
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of carbides than the B-type steel. These carbides were significantly more abundant and
coarser, and they adopted grain boundaries as their preferential position. The images
shown in Figure 3e,f allowed us to confirm that the A-type steel was richer in primary
carbides, whereas the B-type steel presented a lower number of primary carbides but a
higher content of secondary carbides. The primary carbides had round and polygonal
shapes, with sizes between 100 and 500 nm, whilst the secondary carbides were significantly
smaller. The usual carbides observed in hot forging tool steels are chromium (M7C3 and
M23C6), molybdenum (M6C), and vanadium (M8C7 and MC) [32].

As a result of the microstructural analysis, differences between the two studied steels
were observed. A possible reason for the bigger grain size of the A-type steel could be due
to the slightly higher austenitising temperature that this steel was subjected to. However,
since the discrepancy between the austenitising temperatures of both steels was minimal, it
seems more likely that different cooling rates were applied to the steels during quenching.
Increasing the quenching cooling rate would cause a decrease in the average grain size, as
well as a lower fraction and size of carbides. The reason for this phenomenon could be due
to the insufficient time given to the carbides to coarsen at high cooling rates [33]. Therefore,
it is likely that the B-type steel was subjected to a higher cooling rate than the A-type steel
during the quenching stage of the heat treatment.

3.2. XRD

XRD analysis was carried out to identify the phases in both of the materials and to
detect any potential differences between their microstructures. The results of the XRD
analysis are displayed in Figure 4, where the crystallographic plane indexes are indicated
for each diffraction peak. It was observed that both steels presented a characteristic
diffractogram of a martensitic microstructure, with no signs of the austenitic phase [34,35].
Furthermore, the positions of the diffraction peaks matched perfectly, which unequivocally
proved that both steels were constituted by identical phases.
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3.3. Hardness

Hardness measurements were obtained through Vickers tests for both of the steels.
The hardness of the A-type steel was 455 HV, and for the B-type steel it was 458 HV,
with combined standard uncertainties of 6 HV and 11 HV, respectively. Both materials
showed mean values considerably close to 46 HRC (≈460 HV), as specified. No significant
distinctions were observed between the measurements performed near the surface and in
the interior of the samples.
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Both of the steels presented an equal hardness despite the different grain sizes and
carbide distributions observed in the microstructural analysis. As a result of their equal
hardness, both of the steels should have a similar resistance to crack initiation and should
thus show comparably similar fatigue lives in HCF tests under normal conditions.

3.4. Tensile Tests

The specimens of both types of steel were subjected to tensile tests. The load applied to
each specimen was recorded as a function of the axial displacement, which was increased at
a rate of 5 mm/min during the test. The resultant UTS of each steel was calculated dividing
the maximum load reached during the test over the minimum cross-section area of the
specimen. The UTS of the A-type steel was 1470 MPa, whereas the UTS of the B-type steel
was 1580 MPa, with combined standard uncertainties of 40 MPa and 50 MPa, respectively.
Therefore, the mean UTS of the B-type steel was 7.5% higher than that of the A-type steel.
The YS of each steel was obtained as the stress value that caused a plastic strain of 0.2%.
The YS of the A-type steel was 1430 MPa, whereas the YS of the B-type steel was 1480 MPa,
with combined standard uncertainties of 40 MPa and 50 MPa, respectively. In this case, the
mean YS of the B-type steel was only 3.5% higher than the YS of the A-type steel.

The modest differences in the UTS and YS values of the steels were consistent with the
dissimilar grain sizes observed in the microstructural analysis as the B-type steel grains
were found to be marginally smaller than those of the A-type steel. Despite these minor
differences between the two types of steel, the results of these tensile tests demonstrated
that the H13 steels were able to provide remarkable mechanical strengths.

3.5. Fatigue Tests

Axial fatigue tests were carried out at room temperature. All the tests were load-
controlled using a sinusoidal waveform with a frequency of 10 Hz and a stress ratio equal
to zero. The output of all the fatigue tests was either the number of cycles to failure or a
run-out at 107 cycles. Each specimen was subjected to a unique maximum stress selected
so that the corresponding point in the Wöhler diagram fell within the HCF domain of the
material. Likewise, the CF tests were developed under analogous conditions, although in
these tests the surface of the specimen test section was placed in contact with a 0.1 M NaCl
aqueous solution. Nine specimens of each steel were subjected to HCF tests, whereas six
specimens of each steel underwent the CF tests. As a result of all the combinations of the
type of material and test conditions, four datasets were considered.

The least squares method was applied to each of the four datasets in order to describe
the HCF performance according to the Basquin exponential law for all the combinations of
the type of steel and test conditions [36]. Each dataset was fitted to Equation (1):

σMAX = aNb, (1)

where σMAX is the maximum stress applied on the fatigue test, N is the number of cycles
to failure, a is a coefficient of fatigue strength, and b is the exponent of fatigue strength.
As a result of this regression fit, the coefficients presented in Table 2 were obtained. The
coefficients of determination R2 were added to this table to evaluate the goodness of fit in
each case.

Table 2. Coefficients obtained from the regression analysis of the fatigue tests.

Material Condition a [MPa] b [-] R2

A
HCF 2240.0 −0.057 0.850

CF 16,662.6 −0.269 0.964

B
HCF 1711.7 −0.038 0.673

CF 11,808.1 −0.227 0.971
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The results of all the fatigue tests are displayed in Figure 5 as Wöhler diagrams. In
these diagrams, the maximum axial stress in MPa is plotted versus the number of cycles
to failure of the specimen using a semi-logarithmic scale. The filled dots shown in the
diagrams represent the specimens tested to HCF and the blank dots represent specimens
that were tested to CF. Moreover, the green square-shaped dots denote the fatigue test
results of the A-type steel specimens, whereas the blue diamond-shaped dots indicate the
fatigue test results obtained from the B-type steel. Run-out tests are indicated with an arrow
pointing rightwards at 107 cycles. As for the tendency curves calculated in the regression
analysis, the HCF curves are shown as continuous lines, whilst the CF curves are shown as
dashed lines.
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As can be observed in Figure 5, the fatigue behaviour under normal conditions was
similar for both H13 steels. Both steels were able to resist 107 loading cycles when they
were subjected to a maximum stress of 980 MPa (68% and 66% of the YS of the A-type and
B-type steel, respectively). Nevertheless, the fact that few A-type steel specimens failed
below that stress, while B-type steel specimens did not, suggests that the actual fatigue limit
of the A-type steel could be marginally lower than that of the B-type steel. The potentially
better fatigue limit of the B-type steel would be in good agreement with the microstructural
analysis carried out in this work, as the A-type steel showed a higher abundance of coarser
carbides than the B-type steel. Finer carbides should hinder crack propagation, whereas
coarser carbides and inclusions help promote crack initiation and are detrimental to fatigue
behaviour [17].

The scatter of the HCF results obtained here could be attributed to the bimodal
distribution of fatigue life in the transition between HCF and very-high-cycle fatigue
(VHCF) domains. This transition between domains extends within a certain range of stress
of the material. Within this range of stress, the probability of fracture in the HCF domain
decreases as the applied load decreases [37]. Moreover, microstructural heterogeneities and
a wide distribution of defects, such as coarse carbides and inclusions, may raise the scatter
of fatigue results within the transition between HCF and VHCF domains [38].

The methodology utilised in this study to develop the CF tests, despite being rather
simple, proved to be effective and economical. An abrupt decrease in fatigue lives in the CF
tests as compared with the HCF tests was perceptible. Moreover, this difference between
the fatigue lives in the test conditions was more noticeable at lower stress values than at
higher ones. As a result of these differences, the exponents of the fatigue strength calculated
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for the CF tests were much lower (more negative) than those of the datasets obtained from
the HCF tests. Lower exponents of fatigue strength resulted in steeper Wöhler diagrams.
Therefore, no signs of fatigue limit were observed for the CF tests within the stress levels
that they were subjected to in this study. All of the mentioned observations of the CF curves
were in accordance with the contributions of other researchers [39,40].

The CF lives of the B-type steel were approximately twice as long as those of the
A-type steel. Unlike the HCF tests, the Wöhler diagrams of both steels obtained from the
CF tests remained virtually parallel and did not overlap. It should also be pointed out that
the data were much less scattered for the CF tests than for the HCF tests. The coefficients
of determination, displayed in Table 2, were higher than 0.95 for the CF tests, whereas
they did not exceed the value of 0.85 for the HCF tests. It was not surprising that the data
scatter was reduced in the CF tests since the mechanism that triggered fatigue failure in
the CF tests was the formation of corrosion pits rather than microstructural features. The
corrosion pits acted as sharp stress concentrators that eventually opened a crack in the
surface of the specimen that was subjected to fatigue loads. In contrast, crack initiation
in HCF tests was attributed to the presence of surface defects and inclusions, so crack
initiation required more time to be developed. Therefore, the presence of microstructural
defects and inclusions seemed to play a minor role in the CF tests as compared to the HCF
tests as the specimen failure was advanced substantially in the CF tests. In order to further
understand these results, an analysis of the fracture surfaces of the specimens that failed in
the fatigue tests was carried out.

3.6. Fracture Analysis

Fracture surface analysis was carried out on several specimens that failed after the
fatigue tests. First, images of the whole fracture surfaces were taken using a stereoscopic
microscope. Next, a deeper fracture surface analysis was performed using SEM. SEM is a
powerful tool with a great depth of focus which permitted us to obtain good-quality images
at a high magnification.

Representative fracture surface images of the specimens tested under normal condi-
tions are presented in Figures 6–8. The images show the characteristic zones of a typical
axial fatigue fracture with no stress concentration [41], namely, the fatigue crack prop-
agation zone, the final fracture zone, and the shear lip. The remarkable symmetry and
crack directionality of these fracture surfaces confirmed that crack initiation took place at a
single point of the surface of the specimens. After the crack was opened, it started growing
at a rate dependent on the applied stress intensity range. Once the crack reached a size
such that the remaining cross-section was no longer able to support the applied load, a
sudden fracture of the specimen occurred. Therefore, it was not surprising that, for lower
stress amplitude values, the fatigue crack propagation area increased in size whilst the
final fracture area decreased. As a result of the overall fracture development process, the
fatigue crack propagation zones were comparatively smoother than the final fracture zones.
The shear lips indicated the ultimate failure location of the specimens, and they extended
throughout the perimeter of the final fracture areas.
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maximum stress of 1070 MPa (75% and 72% YS, respectively).

Some differences between the fracture surfaces of both steels were observed. It was
noted that for the same applied stress range, the size of the crack propagation areas and the
shear lip widths were greater in the B-type steel than in the A-type steel. This difference in
the crack propagation areas was in line with the results obtained in the tensile tests, as the
B-type steel presented higher YS and UTS values than the A-type steel. Under the same
fatigue test conditions, the material with higher UTS is expected to present a lower final
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fracture area. Moreover, the B-type steel fracture surfaces looked smoother than those of
the A-type steel. The distinctions observed in the fracture surface roughness of both steels
were attributed to their dissimilar microstructures, since the B-type steel proved to have a
lower grain size and finer carbides than the A-type steel.

All the corrosion fatigue specimens failed due to surface crack initiation. The fracture
surfaces of two specimens from the corrosion fatigue tests are shown in Figure 9. These
specimens were tested to a maximum stress of 750 MPa (52% and 51% of the YS of A-type
and B-type steel, respectively), which means that they would have been run-outs if they
were tested under normal conditions. Essentially, these images revealed almost the same
features as those of normal fatigue tests. However, it was noted that failure took place due
to the development of a corrosion pit on the surface of the specimens. The corrosion pits
are indicated with arrows in Figure 9. The formation of these corrosion pits accelerated the
crack initiation process and thus decreased the fatigue lives of these specimens dramatically.
In this case, the size of the crack propagation area was significantly greater in the B-type
steel than in the A-type steel.
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Figure 9. Fracture surfaces after fatigue tests of (a) A-type and (b) B-type H13 steels, tested in a
corrosive medium to a maximum stress of 750 MPa (52% and 51% YS, respectively).

Fracture surface images with a high magnification were obtained using SEM. Under
normal test conditions, most of the specimens revealed that crack initiation took place at a
single point on the surface of the specimens. Examples of specimens that presented surface
crack initiation are shown in Figures 10 and 11. The predominant mechanism of the crack
initiation region was a transgranular fracture. Crack initiation was likely to occur in a
surface defect of these specimens, such as a small scratch or an indentation that acted as
a notch and raised the stress locally. Intermetallic carbides could have also intervened as
stress concentrators that triggered crack initiation in these steels as they are heterogeneities
present in the material [42]. Crack opening was driven by shear stress at this point. After
the crack reached a size of a few micrometres, it started to propagate perpendicularly
to the tension load applied to the specimen [43]. Underneath the surface, even though
the fractures were predominantly transgranular, signs of intergranular fracture could be
observed at higher magnifications.
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1070 MPa (72% YS) at (a) ×300 and (b) ×1000.

Unlike most of the tested specimens, two A-type steel specimens failed due to internal
crack initiation. The fracture surfaces of these specimens are shown in Figures 12 and 13.
In these specimens, crack initiation occurred at an inner point of the material and extended
radially. Furthermore, a circular dark area can be distinguished in Figures 12a and 13a,
which is commonly known as the fish-eye region. At the centre of these circular areas, the
presence of an inclusion or a cluster of inclusions was revealed. The size of these inclusions
was greater than 10 µm, and they might have led to premature crack initiation on the
sample. These inclusions were mainly oxides of calcium, magnesium, and aluminium
from the electrode, which survived the ESR manufacturing process due to their high
melting point [44]. No internal crack initiation or inclusions were observed in the B-type
steel specimens.
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maximum stress of 890 MPa (62% YS) for 8,370,000 cycles at (a) ×30 and (b) ×1000.

On the fracture surfaces analysed in this study, the so-called fish-eye morphology was
present, but no fine granular area (FGA) was observed [45]. The darkness of the fish-eye
was ascribed to the absence of air contact with the fracture surface until the crack reached
the specimen surface [46]. Moreover, the size of the fish-eye area was strongly correlated
with the depth of the inclusion that initiated the main crack [47], which is in accordance
with the observations shown in Figures 12 and 13.

The likelihood of internal crack initiation depends on the applied stress range and the
average size of inclusions. When these inclusions reach a size of several micrometres, they
can be treated as effective cracks [48]. At lower stress values, the stress concentration due
to the surface defects may not be as high as at inclusions, so the likelihood of internal crack
initiation is enhanced. In fact, mathematical models have been proposed that estimate
the fatigue strength of steels in the VHCF regime using the inclusion area as one of the
main parameters of the model [49]. Even though internal crack initiation is a usual fracture
mechanism of the VHCF regime, internal crack initiation has also been observed at cycles
to failure as low as 105 cycles [50].

Plastic deformation in the stable crack growth area of an A-type steel and a B-type
steel is shown in Figures 14 and 15, respectively. Striations of less than 1 µm in width can be
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distinguished in these specimens, which revealed the slip plane during crack propagation.
These striations were often located in individual grains within a fracture surface caused
by transgranular plastic deformation. The width of the striations can be associated with
the crack growth rate during the fatigue test. Secondary cracks can also be seen in the
fracture surfaces, usually perpendicular to the direction of the main crack propagation.
These secondary cracks are also evidence of a high crack propagation rate. Furthermore, it
was observed that the main crack propagated through non-coplanar grains.
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The SEM images also revealed a more gradual transition of the crack propagation
through non-coplanar grains in the B-type steel (Figure 15a) as compared to the A-type steel
(Figure 14a). Intermetallic carbides could have acted as obstacles for crack propagation [17],
deviating the main crack to different non-coplanar grains during crack growth. Therefore,
the presence of coarser carbides in the A-type steel specimens would explain why the
fracture surfaces of these specimens were rougher than those of the B-type steel.

In summary, fracture surface analysis was carried out to further understand and
explain the results obtained from the fatigue tests of hot forging tool steels. Most spec-
imens presented a unique crack initiation site located on the surface. Moreover, it was



Materials 2022, 15, 7411 16 of 20

demonstrated that a few A-type steel specimens failed due to internal cracks originating
at inclusion locations. The sizes of the crack propagation areas of the B-type steel were
significantly lower and smoother than those of the A-type steel. These differences were
attributed to the coarser carbides observed in the A-type steel through the microstructural
analysis. Overall, these observations suggest that the more homogeneous microstructure
of the B-type steel provided a higher resistance to fracture than the A-type steel in the
presence of cracks.

4. Discussion

In the present work, the axial fatigue behaviour within the HCF domain of two H13
steels has been studied. As a novel contribution, the CF results of these H13 steels have
been analysed for the first time. On the one hand, a microstructural analysis was carried
out prior to the fatigue tests. The microstructural analysis revealed some dissimilarities
between the steels studied here regarding their grain sizes and carbide distributions. These
dissimilarities anticipated potential differences in the fatigue behaviour of both materials,
despite belonging to the same steel specification. On the other hand, the phase compositions,
hardness, and the specimens utilised in the fatigue tests were identical for both steels.
Hence, this work has allowed us to analyse the effect of some microstructural features on
the fatigue behaviour of hot forging tool steels under different work environments.

Both steels presented reasonably similar results in the HCF tests under normal condi-
tions. The HCF results were presented as the maximum stresses supported in axial tests
when the stress ratio was zero. If these results were converted to stress amplitudes, the
resultant values would be approximately 75–85% of those reported by Shinde et al. [17]
for H13 or by Korade et al. [18] for H21 in rotating bending tests. This proportion aligns
with the experimental differences observed between the axial and bending fatigue tests.
The different results of both of the test methodologies are due to the fact that a higher
proportion of the specimen’s volume is subjected to the maximum stress in the axial fatigue
tests as compared to the rotating bending fatigue tests [51].

The corrosion fatigue lives of the H13 steels were dramatically lower than the fatigue
lives obtained under normal conditions. Moreover, this reduction in the fatigue life results
was more evident as the applied stress range was decreased. At higher stress levels, the
mechanical damage due to the applied stress was much higher than the corrosion damage;
thus, the fatigue lives were found to be similar regardless of the test environment. At
lower stress levels, corrosion damage was reported to overcome mechanical damage as
the formation of corrosion pits takes place [21]. The corrosion fatigue behaviour of the
H13 steels observed in the present study was in good agreement with the findings of other
studies regarding the corrosion fatigue of martensitic steels [22,23].

Interestingly, the coefficients of determination obtained for each material and test
condition were higher for the CF tests than for the HCF tests. These results meant that
the data scatter was greater in the conventional HCF tests. In the conventional HCF
tests, microstructural defects are known to be an important source of scatter [38]. Crack
initiation is appreciably sensitive to the size distribution of defects and the microstructural
heterogeneities of the specimen. Under such conditions, the time invested in crack initiation
represents almost the totality of the fatigue lives in the HCF domain.

In contrast, crack initiation occurred due to the formation of corrosion pits in the CF
tests. The formation of corrosion pits advanced the failure of specimens substantially. The
loading frequency plays a key role in the development of corrosion pits. Lower loading
frequencies proved to result in lower corrosion fatigue lives [21]. If two specimens were
subjected to CF tests at different loading frequencies, the one with the lower frequency
would undergo a lower number of loading cycles than the other at the same time instants.
The fatigue lives of the specimens in the CF tests should depend strongly on the time
required to develop a corrosion pit, as corrosion pits are the mechanisms that trigger crack
initiation in these tests. The kinetics of corrosion pit formation depend mostly on the
loading frequency [52], the salt concentration [53], the temperature, and the pH of the
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corrosive medium [54]. Since all these variables remained identical for all the specimens,
the crack initiation times of the CF tests are believed to have been virtually alike. As a
result, similar crack initiation times led to lower data scatter.

Another feature that should be emphasised is the difference observed between the
crack propagation areas of both the steels when they were tested at the same stress level.
The A-type steel presented smaller crack growth regions than the B-type steel. Furthermore,
this difference between crack growth regions was more remarkable at lower stresses. This
observation suggested that, for a certain crack size, the B-type steel was able to support a
higher load than the A-type steel. The fact that the B-type steel showed marginally higher
strength than the A-type steel accords with the tensile test results. In the tensile test results,
the B-type steel had a UTS that was 7.5% higher and a YS 3.5% that was higher than those
of the A-type steel. Nevertheless, this discrepancy between the YS and UTS values did not
seem significant enough to explain the large difference between the crack growth region
sizes of both steels at low stress ranges (see Figure 9). These different crack propagation
sizes suggested that the B-type steel had higher fracture toughness than the A-type steel, as
fracture toughness characterises the material’s resistance to crack propagation.

The potentially higher fracture toughness of the B-type steel could also explain its
better performance as compared to the A-type steel in the CF tests. It has been stated
that all the CF tests should reveal similar crack initiation times as this time depends on
the kinetics of the development of corrosion pits. The fact that the B-type steel presented
fatigue lives that were approximately twice as high as those of the A-type steel in all the CF
tests should be attributed to longer crack propagation times. The longer crack propagation
times of the B-type steel specimens would also align with the larger extension of their crack
propagation areas. Moreover, the presence of coarser carbides and inclusions in the A-type
steel is believed to have accelerated the fractures [17].

The mechanical properties of hot forging tool steels are strongly controlled by the
parameters of the heat treatments that these steels are subjected to. Such mechanical
properties include the UTS, hardness, and fracture toughness [3,4,12–14]. These properties
are a consequence of the grain size and carbide distribution obtained at the end of the heat
treatment. Slight discrepancies in the austenitising or tempering temperatures, times, or
heating/cooling rates could have been factors that led to the dissimilar microstructures
of the two types of steel. In this study, it is likely that the B-type steel was subjected to a
higher cooling rate than the A-type steel during the quenching stage of the heat treatment,
as this fact would explain the lower grain size and finer carbides of the B-type steel.

In summary, hot forging tool steels present outstanding static and dynamic mechanical
properties. Nevertheless, an aggressive environment may result in the premature failure
of these steels under cyclic loads. We encourage the study of the crack initiation and
propagation phenomena of hot forging tool steels under different working environments in
future research. Understanding the fatigue fracture mechanisms of these steels is crucial to
guaranteeing the correct design of hot forging dies, thereby also saving resources invested
in the maintenance of such tools.

5. Conclusions

For the first time, this study presents the comparative results of H13 steels subjected
to axial high-cycle fatigue tests under normal conditions and corrosion fatigue tests. The
understanding of these damage processes in hot forging tool steels is fundamental to
ensuring the extensive lives of forging tools, especially under aggressive environments.

The two H13 steels studied here, namely, the A-type and the B-type, were found to
have identical microstructural phases and hardness values, with only slight differences in
their YS and UTS values. Nevertheless, the B-type steel had a lower grain size than that of
the A-type steel. Moreover, carbides in the A-type steel were coarser and more abundant
than those in the B-type steel. These discrepancies were attributed to marginal variations
in the heat treatments of both materials.
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The results of all the axial fatigue tests were fitted to the Basquin equation to mathemat-
ically represent the relationship between the maximum stress of the specimens, σMAX, and
the number of cycles to failure, N, for each material and test condition. As a result, the fa-
tigue behaviours of the A-type and B-type steel under normal conditions were modelled by
σMAX = 2240.0 N−0.057 (R2 = 0.850

)
and σMAX = 1711.7 N−0.038 (R2 = 0.673

)
, respectively,

whereas their corrosion fatigue behaviours were modelled by σMAX = 16, 662.6 N−0.269(
R2 = 0.964

)
and σMAX = 11, 808.1 N−0.227 (

R2 = 0.971
)
, respectively.

Both of the H13 steels showed outstanding fatigue strengths in conventional high-
cycle fatigue tests, reaching values of maximum stress as high as 980 MPa at 107 cycles.
However, the corrosion fatigue lives of the two types of steel were much lower than the
conventional high-cycle fatigue lives, showing no signs of fatigue limit for the same range of
applied stress. The significant decrease in the exponents of fatigue strength in the corrosion
fatigue tests demonstrated that the effect of the corrosive agent on the fatigue lives was
more noticeable at lower stress values. Furthermore, the coefficients of determination
for the Basquin equations were much higher in the CF tests than in the HCF tests, which
indicated a lower tendency of data scatter in the CF tests. The crack initiation stage in the
conventional HCF tests involved greater randomness as it depended strongly on the size
and distribution of the microstructural defects. In contrast, it is believed that the crack
initiation times were similar in all the CF tests, as they mainly relied on the time required
to create a corrosion pit due to exposure of the steels to the corrosive medium.

Interestingly, both of the steels presented similar fatigue behaviour under the con-
ventional HCF tests, whereas their CF lives were significantly different. The corrosion
fatigue lives in the B-type steel were twice as high as those in the A-type steel. This dif-
ference between the corrosion fatigue lives was in line with the greater extension of the
crack propagation regions in the B-type steel as compared to the A-type steel. Overall, the
higher corrosion fatigue lives of the B-type steel can be attributed to its higher resistance to
crack propagation.

The results obtained in the present study have emphasised the important influence of
the steel microstructure on the fatigue behaviour and fracture toughness. The specimens
with coarser carbides and higher grain sizes were found to have lower fracture strengths
during crack propagation. The effect of fracture toughness on the steel durability was
more noticeable in the CF tests than in the conventional HCF tests. Therefore, we propose
analyses of the crack growth rate of hot forging tool steels under different aggressive
environments as worthwhile research to be carried out in the future.
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