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Abstract: The insect Plutella xylostella is known worldwide to cause severe damage to brassica planta-
tions because of its resistance against several groups of chemicals and pesticides. Efforts have been
conducted to overcome the barrier of P. xylostella genetic resistance. Because of their easy production
and effective insecticidal activity against different insect orders, silver nanoparticles are proposed
as an alternative for agricultural pest control. The use of entomopathogenic fungi for nanoparticle
production may offer additional advantages since fungal biomolecules may synergistically improve
the nanoparticle’s effectiveness. The present study aimed to synthesize silver nanoparticles using
aqueous extracts of Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea isolates and to
evaluate their insecticidal activity against P. xylostella, as innovative nano-ecofriendly pest control.
The produced silver nanoparticles were evaluated by measuring the UV–vis spectrum and the mean
particle size by dynamic light scattering (DLS). I. fumosorosea aqueous extract with 3-mM silver
nitrate solution showed the most promising results (86-nm mean diameter and 0.37 of polydisper-
sity). Scanning electron microscopy showed spherical nanoparticles and Fourier-Transform Infrared
Spectroscopy revealed the presence of amine and amide groups, possibly responsible for nanoparti-
cles’ reduction and stabilization. The CL50 value of 0.691 mg mL−1 was determined at 72-h for the
second-instar larvae of the P. xylostella, promoting a 78% of cumulative mortality rate after the entire
larval stage. From our results, the synthesis of silver nanoparticles mediated by entomopathogenic
fungi was successful in obtaining an efficient product for insect pest control. The I. fumosorosea was
the most suitable isolate for the synthesis of silver nanoparticles contributing to the development of a
green nanoproduct and the potential control of P. xylostella.

Keywords: biological synthesis; silver nanoparticles; entomopathogenic fungi; agricultural pest control;
biological control

1. Introduction

The diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) is a microlepi-
dopteran, popularly known as the cabbage moth. This species is one of the most studied
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insect pests in the world and is reported to cause extensive damage to vegetable crops
of the Brassicaceae family, including cabbage, cauliflower, mustard, and rapeseed, among
others [1]. The damage caused by this insect to the host plant is related to the feeding habits
in the larval stage. The caterpillars tend to scrape the parenchyma tissue, making holes
in the leaf surface and reducing the photosynthetically active area. Besides this, its high
rate of reproduction (e.g., more than 20 generations per year in tropical regions) increases
plant damage quite rapidly, making the entire crop harvesting unfeasible, if no containment
measures are adopted. In addition, the low incidence of natural enemies and the high
genetic variability of this insect facilitate/promotes the development of chemical pesticide
resistance [2,3].

The control of P. xylostella costs a minimum of USD 1.4 billion per year globally,
reaching USD 5 billion when considering crop productivity loss [2]. Therefore, the main
challenge is to overcome the high resistance against chemical pesticides since this moth
is one of the most resistant and destructive pests worldwide. Due to the high rate of
reproduction, the intense and fast infestation caused by this plague increases the need
to overcome these obstacles [4]. Nanotechnology is providing significant benefits to the
agrifood sector, including the delivery of nutraceuticals and nanopesticides, increasing
productivity, and favoring plant management and development, to ultimately increase
food safety [5]. Among available alternatives, silver nanoparticles emerge as a potential
product for use in insect pest control, since they are easy to synthesize and handle, and also
present insecticidal/antimicrobial actions [6–9]. However, the main concern involving the
production of nanomaterials is the generation of toxic waste. Thus, the development of these
products requires more sustainable, green ways to reach higher profits and safer synthesis.
The synthesis of silver nanoparticles by biological process is attracting increasingly interest
because it represents a simple, sustainable, and low-cost method [6,7].

Silver nanoparticles synthesized by a biological process have toxicity against insects,
being the application mainly directed against mosquitoes [10]. The use of algae extracts
to produce silver nanoparticles was already reported to control the insect P. xylostella [11],
however, there is no evidence for the effectiveness of silver nanoparticle synthesis mediated
by entomopathogenic fungi for the same purpose.

Therefore, this work aims to synthesize silver nanoparticles with an aqueous extract of
entomopathogenic fungi and to evaluate their insecticidal action against Plutella xylostella.
We report the synthesis of silver nanoparticles using different species of entomopathogenic
fungi. The influence of the silver nitrate concentration on nanoparticle formation is also
presented. The nanoparticles were characterized by UV-Vis spectroscopy, Dynamic Light
Scattering (DLS), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron
Microscopy (SEM). Finally, from the bioassays using the nanomaterial selected, we showed
the sublethal concentrations and the effect of the LC50 in the life-cycle stages of P. xylostella.

2. Materials and Methods

The experimental procedure followed the sequence described in Figure 1.

2.1. Entomopathogenic Fungal Isolates

The four fungal isolates used to produce silver nanoparticles belong to the species
Beauveria bassiana (Bals.—Criv.) Vuill. (Hypocreales: Cordycipitaceae) strains SE109 and
1260, Metarhizium anisopliae (Metschn.) Sorokı̄n (Hypocreales: Clavicipitaceae) SE202, and
Isaria fumosorosea Wize (Hypocreales: Cordycipitaceae) SE301 (Table 1). The fungi are kept
in colonized potato dextrose agar (PDA) disks (5-mm-diameter), and stored in cryogenic
tubes containing 10% of a glycerol solution, at −20 ◦C.
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Figure 1. Experimental procedure flowchart.

Table 1. Entomopathogenic fungi isolates used in this study.

Isolate Specie Origin Collection Site/Host

1260
Beauveria bassiana

Laboratory of Pathology of Insects (USP), Piracicaba,
(SP-Brazil)

Insect
Leptopharsa larvae

SE109 Laboratory of Biotechnological Pest Control
(Sergipetec), São Cristovão (SE-Brazil) Soil

SE202 Metarhizium anisopliae Laboratory of Biotechnological Pest Control
(Sergipetec), São Cristovão (SE-Brazil) Soil

SE301 Isaria fumosorosea Laboratory of Biotechnological Pest Control
(Sergipetec), São Cristovão (SE-Brazil) Soil

2.2. Extracellular Synthesis of Silver Nanoparticles

The isolates were grown on a PDA medium at a temperature of 25 ± 2 ◦C, for 7 days.
For their use, colonized PDA disks (5-mm-diameter) were inoculated into potato dextrose
broth (PDB) and incubated for 7 days at 25 ± 2 ◦C on an orbital shaker (100 rpm). Next, the
fungal biomass was filtered through filter paper (Whatman No. 1, London) and washed
three times with ultrapure water. Then 10 g of the washed biomass was added to an
Erlenmeyer flask containing 100 mL of ultrapure water, maintained for 72 h at 25 ± 2 ◦C
on an orbital shaker (100 rpm). Then, 90 mL of the liquid extracted (aqueous extract) from
a new filtering was mixed with 10 mL of 1, 3, and 5 mM of AgNO3 solution. This mixture
was incubated in the dark for 96 h at 25 ± 2 ◦C on an orbital shaker (100 rpm) [6,12].

2.3. Silver Nanoparticles Characterization

The formation of silver nanoparticles was monitored by UV-Visible spectroscopy
(DR 5000 spectrophotometer, Hexis Científica, Jundiaí, São Paulo, Brazil,) in the spectral
region between 300 and 800 nm. The absorbance values were plotted in graphs using the
Origin Pro 2019b software (OriginLab Coorporation, Northampton, MA, USA, 2019). The
nanoparticle diameter and Polydispersity Index (PDI) were determined by Dynamic Light
Scattering (DLS) analysis using the Zetasizer Nano Instrument (Malvern, Australia, model
Nano-S). The selected nanoparticles were characterized by Scanning Electron Microscopy
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(SEM) (JEOL microscope, model JSM-IT200, Tokyo, Japan). The functional groups present
in the silver nanoparticles were analyzed by Attenuated Total Reflection-Fourier Transform
Infrared (ATR-FTIR) spectroscopy (Agilent Technologies, Agilent Cary 630, Santa Clara,
CA, USA), equipped with a ZnSe-diamond composite crystal accessory. The spectra were
collected over a wavenumber range from 4000–600 cm−1 with a spectral resolution of
<2 cm−1. Agilent MicroLab PC and Origin Pro 2019b software were used for data gathering
and transmittance graph plotting, respectively (OriginLab, 2019).

2.4. Sublethal Concentrations of Biogenic Silver Nanoparticles against P. xylostella

Cabbage leaf discs (Brassica oleracea L.) (8-cm-diameter) were submerged in the sus-
pension of silver nanoparticles (previously dispersed in an ultrasonic bath for 10 min) at
concentrations of 0.1; 0.3; 0.7; 0.9 and 1.2 mg mL−1 and maintained at room temperature
(26 ± 2 ◦C) till complete drying. Then, one cabbage leaf disk was transferred to a Petri
dish (90 × 10 mm), which received 25 second-instar larvae of P. xylostella (emerged at
72 h). The Petri dishes were sealed and maintained in an acclimatized room (T = 26 ± 2 ◦C,
RH = 60 ± 10%, and photophase = 12 h) for a 72-h period to assess the mortality rate. The
commercial pesticide Deltamethrin (Decis 25 EC) was also evaluated at concentrations of
0.0075, 0.0225, 0.0525, 0.5, and 0.75 mg mL−1, applying the same method as mentioned
above. Five replicates were tested for the silver nanoparticles and Deltamethrin treatments.
Since Tween® 80 0.05% was used to homogenize nanoparticle suspension used in the
bioassay prior to the application of silver nanoparticles in the insect, the same solution of
Tween® 80 0.05% was used as a negative control.

2.5. Survival, Viability, and Longevity Analysis of P. xylostella Larvae Exposed to LC50 of
Silver Nanoparticles

Cabbage leaf discs (8-cm-diameter) were submerged into a suspension of silver
nanoparticles corresponding to the CL50, following the same method/conditions of the
sublethal concentrations test above described. Each Petri dish (90 × 10 mm) received
one cabbage leaf disk and 25 second-instar larvae of P. xylostella (emerged at 72 h), also
maintained in an acclimatized room (T = 26 ± 2 ◦C, RH = 60 ± 10% and photophase = 12 h).
The larvae were transferred to a new Petri dish containing one untreated cabbage leaf disc
every 72 h, during the entire evaluation. The caterpillar mortality was evaluated daily until
it reaches 100% or enter the pupal stage. The percentage of viable insects and the time
taken in each phase of the biological cycle were also determined, until the pupal stage. In
total, 10 replicates were tested for this bioassay and a solution of Tween 80® 0.05% was
used as a negative control.

2.6. Statistical Analysis

The cumulative mortality of the insects after the third day of exposure to the treatment
was submitted to the Probit analysis to estimate the lethal concentration (LC). The daily
mortality values were used to estimate the lethal time (LT) and to construct a survival
curve by the Kaplan–Meier method (Log-rank—Mantel-Cox). The number of insects that
passed to the pupal phase as well as the duration time of each biological cycle phase was
quantified. The parameters of larval viability, larval duration, pupal viability, and pupal
duration after exposure to LC50 of silver nanoparticles were analyzed. The results were
submitted to the t-test. The statistical analyzes were performed using SPSS software version
23 (IBM Corp., Armonk, NY, USA, 2015). The graphs of LC were made by the GraphPad
Prism 8.0.1. software (GraphPad 8.0.1. Software, 2018).

3. Results and Discussion
3.1. Synthesis of Silver Nanoparticles

The synthesis reaction caused a color change from light to dark yellow in the suspen-
sions, according to the silver nitrate content used for nanoparticle production (Figure 2). The
UV-Visible spectroscopy exhibited peaks between 400–500 nm, confirming the reduction of



Materials 2022, 15, 7596 5 of 16

the silver salt and the effective formation of nanoparticles (Figures 3–6). The absorption
peaks increased in concomitance with the higher concentrations of AgNO3, observed in
1260, SE109, and SE301 aqueous extract (Figures 3, 4 and 6), being this relationship not
observed in SE202 (Figure 4). Previously, it has been reported that the silver ions content
affects the reaction time of the nanoparticle synthesis. A previous study used the Aspergillus
oryzae extract in the synthesis of the silver nanoparticles and reported that although the
speed of the reaction increases at higher concentrations of AgNO3, the size of particles
can also increase (9 and 10 mM) [13]. The optimization of the synthesis rate was achieved
when the silver nitrate content was increased from 1 mM to 1.5 mM, using Aspergillus
fumigatus extract in the nanoparticle synthesis reaction [14]. Therefore, it is suggested that
the higher availability of silver ions affords the improvement of the nanoparticle formation
in different aspects, such as the reaction time and synthesis rate. On the other hand, the
excess of silver ions induces a delay in nanoparticle formation and affects the particle size.
The silver nitrate above 8 mM was reported to cause a reduction in nanoparticle formation,
using the fungus Talaromyces purpurogenus (Eurotiales: Trichocomaceae) extract [15].
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The reduction in the nanoparticle synthesis was also observed at 96 h in the presence of
5 mM silver nitrate using isolate 1260 (Figure 3). The broad peak in the absorption spectrum
and the decrease in absorbance indicate the formation of agglomerates, aggregates, or even
nanoparticle dissolution. The imbalance between the concentration of the reducing agent
and silver ions suggests the denaturation of biomolecules or the inefficiency of the reducing
agents to form new nanoparticles [16].

The maximum absorbance evaluation (UV-Visible absorption spectrum) allowed us
to estimate the nanoparticle synthesis rate according to the incubation time (Figures 3–6).
The nanoparticle formation stabilized at 96 h in the presence of AgNO3 3 mM and 1260,
SE109, and SE301 extracts, allowing sufficient time for the silver ions depletion. The most
suitable incubation time was observed at 72 h in the presence of AgNO3 5 mM and 1260
aqueous extract for the nanoparticle synthesis. The nanoparticle synthesis rate depends
mainly on the characteristics of the metabolite responsible for the reduction of silver. A
study reported the absorbance stabilization peak at 8 min of incubation using AgNO3 1 mM
in the presence of Ocimum sanctum extract in the nanoparticle synthesis [17]. Another study
showed an increase in nanoparticle formation at 48 h using the extract of cyanobacteria
Oscillatoria limnetica [18]. Differences in the incubation time are expected for the biological
synthesis of silver nanoparticles once extracts from different organisms present quantitative
and qualitative differences in their compounds.

3.2. Silver Nanoparticle Characterization

The silver nanoparticles formed in the aqueous extracts of 1260 (B. bassiana) and SE202
(M. anisopliae) showed larger diameters, according to the increase of AgNO3. The opposite
was observed in the SE109 (B. bassiana), presenting a smaller diameter of nanoparticles
in a higher concentration of AgNO3. The AgNO3 3 mM in the presence of the SE301
(I. fumosorosea) aqueous extract formed the smallest size nanoparticles of 86.26 nm diameter
(Table 2).

Table 2. Effect of silver nitrate (AgNO3) concentration on the average diameter and polydispersity of
silver nanoparticles synthesized with aqueous extracts of entomopathogenic fungi.

Isolate AgNO3 Diameter (nm) * PI *•

1260
1 mM 202.60 ± 20.25 0.54 ± 0.08
3 mM 224.83 ± 61.87 0.52 ± 0.04
5 mM 257.07 ± 17.86 0.55 ± 0.06

SE109
1 mM 172.77 ± 59.73 0.54 ± 0.07
3 mM 121.37 ± 20.68 0.50 ± 0.05
5 mM 119.48 ± 6.11 0.47 ± 0.04

SE202
1 mM 103.97 ± 6.30 0.27 ± 0.05
3 mM 122.44 ± 4.34 0.41 ± 0.03
5 mM 135.32 ± 23.39 0.54 ± 0.07

SE301
1 mM 129.03 ± 30.51 0.55 ± 0.09
3 mM 86.26 ± 8.19 0.37 ± 0.05
5 mM 119.39 ± 26.69 0.54 ± 0.06

* Mean values with standard error. •PI = Polydispersity index.

The polydispersity index was not affected by the different concentrations of AgNO3.
The silver nanoparticles synthesized with 1 mM + SE202 and 3 mM + SE301 showed the
lowest polydispersity index, with values of 0.27 and 0.37, respectively. (Table 2). Therefore,
these combinations (1 mM + SE202 and 3 mM + SE301) produced the most homogeneous
particles size. The other reactions produced nanoparticles with a polydispersity index
ranging from 0.41 to 054, presenting medium values of polydispersity [19].

The production and stabilization of silver nanoparticles occur through the interac-
tion between metabolites present in the biological extract and silver ions. The extract
concentration and the type of molecule involved in the nanoparticle synthesis (protein,
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pigment, toxin, among others) affect the number of functional groups available to promote
the metal ions reduction [13,20]. However, there is no consensus on which biomolecule
is responsible for the synthesis process, and there may be different enzymes involved in
the biosynthesis of metallic nanoparticles depending on the species or fungal isolate used.
Studies on the mechanism of formation of silver nanoparticles by fungal metabolites report
the influence of functional groups of proteins and amino acid residues in the synthesis
of silver nanoparticles by B. bassiana and I. fumosorosea [21,22], oxidoreductases enzymes
during the synthesis of these materials by Metarhizium robertsii [23] and the action of ni-
trate reductase enzyme and NADPH-dependent enzymes and quinones in the mediated
synthesis by Fusarium oxysporum [24]. Thus, the imbalance between the functional groups
and metal ions reduces the reaction efficiency, forming larger particles, as observed in
the 1260 and SE202 extracts. The SE109 extract showed particle size reduction even in
the higher concentrations of AgNO3, indicating the presence of more efficient metabolites
for nanoparticle formation. The presence of 3 mM AgNO3 in the SE301 extract promoted
the smallest nanoparticles formation and also more homogeneous particle size, it may be
related to the better distribution between the reducing agent and silver ions in the reaction,
once these aspects were not observed in other concentrations of AgNO3. Therefore, the
nanoparticles synthesized in the presence of AgNO3 3 mM + entomopathogenic fungi
I. fumosorosea (SE301) aqueous extract were used in the next stages of the work, for their
characterization (FTIR and SEM) and toxicity evaluation against P. xylostella.

The FTIR analysis of the silver nanoparticles (formed in the combined presence of
I. fumosorosea aqueous extract + AgNO3 3mM) showed characteristic bands in the spectral
regions of 3400–2400, 2260–2100, 1680–1630, 1450–1375, 1350–1000 and 805 cm−1 (Figure 7),
indicating the presence of N-H, C-N, C=O, C-H, and C≡C functional groups, which
may be related to the presence of proteins or amino acid residues present in the fungal
extract—being these molecules possibly responsible for the reduction of silver ions and the
formation of nanoparticles [22,25,26].
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Figure 7. Fourier Transform Infrared Vibrational Spectroscopy (FTIR) spectrum showing band
patterns of the aqueous extract of the fungus I. fumosorosea (red) and of AgNPs synthesized with the
fungal extract (black).
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The band shift of the fungal extract spectrum at 3443 and 1633 cm−1 regions compared
to the silver nanoparticles spectrum can be attributed to the bond breaking of amine and
amide groups, which are associated with the interaction in the silver nanoparticle formation.
The interaction between amine/amide groups and silver nanoparticles in the biological
route was previously reported, using plants and fungal extracts [10,27–29]. In this context,
we suggest that the amine and amide groups present in the I. fumosorosea extract may be the
precursors of the silver ions reduction, supporting the synthesis of the silver nanoparticles.

The SEM analysis of the silver nanoparticles allowed the visualization of circular
morphology predominance, showing varied particle sizes adhered to the matrix of the
lyophilized fungal extract (Figure 8). The morphology and diameter variation of the silver
nanoparticle is influenced by the extract concentration of the microorganism used in the
reaction (i.e., reducing agent), as well as the proportion of silver ions available in the
reaction [29,30].
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Figure 8. Scanning electron microscopy of silver nanoparticles synthesized with I. fumosorosea extract
and 3 mM silver nitrate.

3.3. The Lethal Concentration of Biogenic Silver Nanoparticles against P. xylostella

Silver nanoparticles at different concentrations were toxic against P. xylostella, show-
ing a significant variation in the results (F4.20 = 53.967; p = 0.000). Thus, it was possi-
ble to estimate the sublethal concentrations using a probit procedure. (Figure 9). The
LCs estimated values used for the silver nanoparticles action against P. xylostella were
LC30 = 0.144 mg mL−1, LC50 = 0.691 mg mL−1, and LC90 = 2.011 mg mL−1, considering an
angular coefficient (line slope) of 2.762 (Table 3).

Table 3. Estimation of lethal concentration (LC) of silver nanoparticles synthesized with the fungus
Isaria fumosorosea on Plutella xylostella (AgNPs) and Deltamethrin.

Treatment N LC30 LC50 LC90 Slope χ2 P

AgNPs 741 0.144
(0.104–0.182)

0.691
(0.627–0.762)

2.011
(1.684–2.550)

2.762
(±0.231) 7.634 0.054

Deltamethrin 750 0.009
(0.005–0,013)

0.301
(0.238–0.391)

3.427
(2.211–6.033)

1.214
(±0.088) 4.222 0.238

Lethal concentration values in mg/mL, followed by lower and upper limit (p < 0.05); Slope value, followed by
standard error; N: Total insects used in the analysis; χ2: Chi-square test; P: Significance of χ2.
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Some studies reported the lethal concentration of the silver nanoparticles for P. xylostella.
The silver nanoparticles synthesized using a marine macro red algae Hypnea muciformis
showed high toxicity on P. xylostella in the larval and pupal stages, presenting
LC50 = 26.47 mg L−1 for second instar larvae at 96 h of exposure [11]. The silver nanoparti-
cles produced from ethanolic extracts of ginger (Zingiber officinale), Indian neem (Azadirachta
indica), fig tree (Datura stramonium), bitter melon (Momordica charantia), clove (Syzygium
aromaticum), cinnamon (Melia azedarach), eucalyptus (Eucalyptus camaldulensis) and gar-
lic (Allium sativum) also presented toxic effects on P. xylostella third instar larvae, show-
ing LC50 ranging from 0.337 mg mL−1 (fig tree) to 0.729 mg mL−1 (garlic) at 72 h of
exposure [31]. The LCs values of silver nanoparticles synthesized using I. fumosorosea
extract have not yet been reported on for the different life cycle stages of P. xylostella.
The silver nanoparticle LCs variation previously reported may occur due to the differ-
ent nanoparticle physicochemical characteristics and also because of the molecules in-
volved in the nanoparticle synthesis and capping. The molecules from extracts or even
adhered to the biogenic nanoparticle can directly influence the biological action, affect-
ing the toxicity [32,33]. The LC50 value (0.691 mg mL−1) of the silver nanoparticles was
higher compared to Roni et al. (2015) (26.47 mg L−1) [11], and within the range compared
to Ali et al., (2019) [31] (0.337–0.729 mg mL−1).

The P. xylostella populations have high genetic variability and toxicity resistance to sev-
eral chemical compounds [34]. The toxic effect of the commercial insecticide Deltamethrin
(Decis 25 EC) on P. xylostella was estimated in order to compare the LCs results of the
silver nanoparticles toxicity tests. The different concentrations of the Deltamethrin showed
significant difference in the mortality of P. xylostella (F4.20 = 56.864; p = 0.000), presenting
LC30 = 0.009 mg mL−1; LC50 = 0.301 mg mL−1, and LC90 = 3.427 mg mL−1, considering an
angular coefficient (line slope) of 1.214 (Figure 9; Table 3). Deltamethrin is an insecticide
belonging to the pyrethroid family, indicated in the control of P. xylostella at a concentration
of 0.0075 mg mL−1. The CL30 value (0.009 mg mL−1) estimated in our study is approximate
to the concentration indicated for Deltamethrin application. Other study presented the
values of LC50 = 0.332 mg mL−1 (0.321–0.345) and LC90 = 0.436 mg mL−1 (0.411–0.473) to
control P. xylostella using Deltamethrin [35], that is, approximate value of LC50 presented in
our study, but different comparing to the CL90. The present study presented a slower action
of Deltamethrin LC90 on P. xylostella, possibly due to adaptation and better resistance to this
chemical. The difference in the toxicity results from the application of silver nanoparticles
(from AgNO3 3 mM + entomopathogenic fungi I. fumosorosea) and Deltamethrin may occur
because of their different modes of action. Deltamethrin acts against insects via ingestion
and direct contact, promoting neurotoxicity through the interaction with sodium channels,
present in the neurological cells. The frequent use of Deltamethrin promotes mutations
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in insect structures, contributing to its resistance [36,37]. Silver nanoparticles can also
act against insects via ingestion and direct contact, presenting toxicity through different
routes, promoting cuticle damage, and oxidative stress and reducing enzymatic activity
(acetylcholinesterase and Cu-dependent enzymes). These different routes of toxicity can
act simultaneously, favoring the action of the silver nanoparticles against the insect and
reducing the possibility of insect resistance. Therefore, the use of silver nanoparticles is an
advantageous alternative in the control of insect pests, such as P. xylostella, which is resistant
to several chemical pesticides [38–43]. In addition, Deltamethrin is highly toxic to humans
and other animals and may cause the development of cellular anomalies. In contrast,
silver nanoparticles can be synthesized by environmentally sustainable techniques, such as
synthesis using fungal extracts, which improve their biocompatibility [44,45]. However,
the interaction of AgNPs with plant tissues, their post-harvest preservation, and also their
interaction with the human gastrointestinal tract, must be considered to ensure the safe use
of such materials [46,47].

3.4. Survival, Viability, and Longevity Analysis of P. xylostella Larvae Exposed to LC50 of
Silver Nanoparticles

The survival of P. xylostella caterpillars treated with silver nanoparticles (from AgNO3
3 mM + entomopathogenic fungi I. fumosorosea) at LC50 (0.691 mg mL−1) showed different
results compared to the control group (Log-rank Mantel-Cox: X2 = 129.814; p = 0.000). The
insects treated with silver nanoparticles presented a median lethal time (LT50) of 4.624 days
(3.821–5.427) and 78.25 ± 11.04% (F1.8 = 192.627; p = 0.000) of cumulative mortality over
the entire larval period (Figure 10).
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The silver nanoparticles (from AgNO3 3 mM + entomopathogenic fungi I. fumosorosea)
showed effective toxicity against P. xylostella caterpillars. Significant insecticidal action
was previously reported by the exposure of biogenic silver nanoparticles on P. xylostella
(96 h) [11]. The time required for the establishment of toxicity is variable, as it depends on
the nanomaterial characteristics and insect physiology [40].

The viability of P. xylostella caterpillars treated with silver nanoparticles showed a
significative difference (T = 13.879; p = 0.000), However, significative differences were not
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observed in the duration of larval and pupal stages (days) and in the pupal viability (%),
compared to the control (Table 4).

Table 4. Analysis of the impact of silver nanoparticles synthesized with the fungus Isaria fumosorosea
(LC50) on the development of Plutella xylostella.

AgNPs Concentration (mg/mL)

Life Cycle Phase

Larvae Pupae

Duration (Days) Viability (%) Duration (Days) Viability (%)

0.0 10.8 ± 1.44 91.14 ± 1.76 8.6 ± 1.34 79.56 ± 7.06
0.7 10.8 ± 1.04 21.74 ± 11.04 7.2 ± 1.09 77.95 ± 14.90
T 0.000 13.879 1.807 0.219
p 1 0.000 0.108 0.832

Average values of duration and viability, followed by standard error; Analysis of variance (ANOVA) for comparing
values in the column (p < 0.05); T = Student test; p = Calculated significance.

The studies reporting the insect life cycle in the toxicity analyses provide knowledge
about the total effect of a particular substance [48]. The larval viability is a parameter
directly proportional to caterpillar mortality, thus these results can be correlated (Figure 9).

Several factors can affect insect survival and development, such as temperature,
humidity, photoperiod, food, and exposure to toxic agents. These factors can promote
sublethal effects, including the non-hatching of eggs, morphological structural anoma-
lies, non-emergence of adults, and fecundity reduction. Silver nanoparticles can affect
insect physiology, reducing fertility and survival, according to previously observed in the
Drosophila sp. (Diptera: Drosophilidae) [1,49,50]. The results presented a modification of
both the life cycle and larval survival of P. xylostella submitted to silver nanoparticles. The
chronic effect was not observed after the change from the larval to the pupal phase.

4. Conclusions

In this study, a sustainable green synthesis approach of silver nanoparticles medi-
ated by entomopathogenic fungi was described to be applicable to insect control. This
work highlighted the potential action of entomopathogenic fungi extracts in the reduction
and stabilization of silver nanoparticles. The insecticidal efficacy of silver nanoparticles
synthesized in the presence of I. fumosorosea against P. xylostella was also demonstrated.
Silver nanoparticles presented toxicity against P. xylostella caterpillars, showing close values
compared to a commercial chemical pesticide; it may thus be considered an advantageous
alternative in the control of P. xylostella populations.
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