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Abstract: This paper develops a phase-field approach to describe the damage within continuum
mechanics. The body is associated with the standard stresses and body forces of macroscopic character.
As is the case in many contexts, the phase field is a scalar variable whose time rate is governed by
a constitutive equation. The generality of the approach allows the modeling of non-stationary
heat conduction, mechanical hysteretic effects, and the macroscopic damage. The thermodynamic
consistency is investigated through the constraint of the Clausius–Duhem inequality following
the standard procedure of Rational Thermodynamics. The entropy production is considered as a
constitutive function; this view was proved to be essential in the elaboration of hysteretic models.
Here, the scheme is improved by viewing the entropy production as a sum of two terms, one induced
by the other constitutive equations and one given by a constitutive equation of the entropy production
per se.
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1. Introduction

This paper is devoted to a thermodynamically consistent description of damage
evolution in continuum mechanics. Damage in continuum mechanics is of interest in many
respects. It is a way of characterizing the aging of materials, and it is also a measure used
to describe the nucleation of new cracks in the absence of macroscopic initial cracks.

Perhaps motivated by the search of models more akin to the microscopic setting of
damage, some approaches have been developed where micro stresses and micro forces
are framed along with the standard stresses and forces of macroscopic character (see,
e.g., [1–5]). Though this idea leads to a more detailed scheme, it involves additional
unknown fields to be determined in an operative way. To make the approach simpler, micro
kinetic terms are neglected and hence, micro forces are subject to equilibrium conditions.
The purpose of this paper is to set up a phase-field approach to describe the damage
within continuum mechanics. No microscopic fields are considered; the body is associated
with the standard stresses and body forces of macroscopic character. As is the case in
many contexts, the phase field (or order parameter or internal variable) is a scalar variable
whose time rate is governed by a constitutive equation [6]. The generality of the present
approach allows the modeling of non-stationary heat conduction, mechanical hysteretic
effects, and macroscopic damage.

The thermodynamic consistency is investigated through the constraint of the Clausius–
Duhem inequality following the standard procedure of Rational Thermodynamics [7].
Lately, a more general scheme has been applied in that the entropy production is considered
as a constitutive function; this view has proved essential in the elaboration of hysteretic
models [8–10]. Here, the scheme is improved by viewing the entropy production as a sum of
two terms, one induced by the other constitutive equations and one given by a constitutive
equation of the entropy production per se (extended entropy production). We will see
that the occurrence of the extended entropy production is essential in connection with the
damage variable with causes such as, e.g., excesses of temperature, strain, and stress.
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Recent developments in material modeling show a clear distinction between different
causes of damage. For instance, the displacement field is decomposed into translation,
rotation, plastic stretches, elastic stretches, and volumetric and shear stretches [11,12].
The present approach is consistent with such more refined descriptions provided only that
the entropy production, as any constitutive function, allows for the pertinent dependencies.

Notation 1. We consider a solid occupying a time-dependent region Ω ⊂ E 3. Throughout,
v is the velocity, ∇ denotes the gradient operator, ∂t is the partial time derivative at a
point x ∈ Ω, while a superposed dot stands for the total time derivative, ḟ = ∂t f + v · ∇ f .
Cartesian coordinates are used: L is the velocity gradient, Lij = ∂xj vi, and D = symL is
the stretching tensor. We let R be a reference configuration; the motion χ is a function that
maps each point vector X ∈ R into a point x ∈ Ω. The deformation gradient F is defined by
FiK = ∂XK χi and J = det F > 0. The other mathematical characters are defined at the first
stage of usage.

2. Balance Equations and Admissible Processes

Let ϕ be the damage variable. According to the literature, there are several measures
associated with the scalar ϕ. For instance, ϕ may be the fraction of damaged area [13] or
the volumetric fraction of damaged material [5]. Anyway ϕ is a scalar with values in [0, 1];
for definiteness, ϕ = 0 represents an undamaged material, ϕ = 1 a fully damaged material.
There are cases in which the damage is anisotropic as it happens in elastostatics [12].
The scalar character of the damage variable might be maintained by considering a set of
degradation functions, as seen in [14].

The body is modeled as a material with an internal variable (or phase field), the scalar
ϕ. Hence, the balance equations are those of a simple body [15]. In the local form, the
continuity equation, the balance of linear momentum, and the balance of energy are
written as

ρ̇ + ρ∇ · v = 0, ρv̇ = ∇ · T + ρb, ρε̇ = T ·D + ρr−∇ · q, (1)

where ρ is the mass density, v the velocity, T the symmetric stress tensor, b the body force
(per unit mass), ε the internal energy density, q the heat flux, and r the external energy
supply (per unit mass).

Let η be the entropy density (per unit mass). The balance of entropy is assumed in
the form

ρη̇ +∇ · j− ρr
θ
≥ 0, (2)

where j is the entropy flux; we let j = q/θ + k with k the extra-entropy flux to be deter-
mined. In general, the entropy flux j need not equal q/θ, and is given by a constitutive
equation. This view traces back to I. Müller [16] (see [17] for a detailed exposition).

We define the entropy production σ as

σ = ρη̇ +∇ · j− ρr
θ

and, by the balance of entropy, σ ≥ 0. Furthermore, we let σ be given by a constitutive
equation, per se, as is the case for η and j. We let the set of fields ρ, v, T, b, ε, r, q and
η, j (or k), and σ, subject to (1), be an admissible process. We take as the second law of
thermodynamics the following statement.

Second law of thermodynamics. For every admissible process, the inequality (2)
must hold for all times t ∈ R and points x ∈ Ω.

As is standard, we replace j with q/θ + k and substitute ρr−∇ · q from the balance
of energy (1)3 to rewrite inequality (2) in the form

−ρε̇ + ρθη̇ + T ·D + θ∇ · k− 1
θ

q · ∇θ = θσ ≥ 0.
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Using the Helmholtz free energy ψ = ε− θη, we obtain the inequality in the form

− ρ(ψ̇ + ηθ̇) + T ·D + θ∇ · k− 1
θ

q · ∇θ = θσ ≥ 0. (3)

Additionally, for a connection with the literature, we mention other approaches to the
modeling of damage.

Other Balance Equations in the Literature

Motivated by a microscopic picture of damage, additional power terms are associated
with ϕ via ϕ̇ and ∇ϕ̇. By appealing to the principle of virtual power [18] the damage
variable ϕ is taken to occur in the internal and external virtual powers Pi, Pe. With reference
to [19], we take

Pi(v, ϕ̇) = −
∫

Ω
T ·Ddv−

∫
Ω
(βϕ̇ + h · ∇ϕ̇)dv

and
Pe(v, ϕ̇) =

∫
Ω

ρb · vdv +
∫

∂Ω
n · Tvda +

∫
Ω

αϕ̇dv +
∫

∂Ω
γϕ̇da.

Let ϕ→ ϕ + ϕ̃, v→ v + ṽ. Hence, the requirement

Pi(ṽ, ϕ̃) + Pe(ṽ, ϕ̃) = 0 ∀ṽ, ∀ϕ̃

leads to
α− β +∇ · h = 0, γ− h · n = 0. (4)

The microscopic fields α, β, h, γ are then subject to the local balance Equations (4). This
in turn means that appropriate constitutive equations are needed.

Furthermore, the balance of energy is assumed to comprise the power βϕ̇ + h · ∇ϕ̇ so
that the analogue of (1)3 would be [5]

ρε̇ = T ·D + ρr−∇ · q + βϕ̇ + h · ∇ϕ̇.

The power βϕ̇ + h · ∇ϕ̇ would also occur in the entropy inequality [5].
We now go back to the present approach, which is free from fields of microscopic

character.

3. Constitutive Equations and Thermodynamic Restrictions

The interest in constitutive dependencies on ϕ, ϕ̇, and∇ϕ̇ indicates that the Lagrangian
description is more convenient than the Eulerian one. Hence, we consider the referential
quantities [15]

ρR = Jρ, kR = JkF−T , qR = JqF−T , TRR = JF−1TF−T ,

where TRR is the second Piola (or Piola–Kirchhoff) stress tensor, while

∇R f (χ(X)) = ∇ f (x)F,

for any function f (x). The multiplication of (3) by J = det F then results in the Lagrangian
version of the second-law inequality,

− ρR(ψ̇ + ηθ̇) + TRR · Ė−
1
θ

qR · ∇R θ + θ∇R · kR = Jθσ, (5)

where E = 1
2 (F

TF− 1) is the Green–St. Venant strain tensor. The use of the referential
quantities TRR, E, and qR is mathematically advantageous whenever we describe the mate-
rial behavior through rate equations, in that ṪRR, Ė, and q̇R are objective, whereas Ṫ and
q̇ are not. Of course (3) and (5) are equivalent. Though we use E, rather than C = FT , F,
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to describe the strain, the present approach applies to finite deformation in that no linear
approximation is considered.

Let
Γ = (θ, E, TRR, qR, ϕ, θ̇, Ė, ṪRR, q̇R, ϕ̇,∇R θ,∇R ϕ)

be the set of independent variables. Compute ψ̇ and substitute in (5) to obtain

−ρR(∂θψ + η)θ̇ + (TRR − ρR∂Eψ) · Ė− ρR∂TRR ψ · ṪRR − ρR∂qR ψ · q̇R − ρR∂ϕψϕ̇

−ρR∂θ̇ψθ̈ − ρR∂Ėψ · Ë− ρR∂ṪRR
ψ · T̈RR − ρR∂q̇R ψ · q̈R − ρR∂ϕ̇ψϕ̈

−ρR∂∇R θψ · ∇R θ̇ − ρR∂∇R ϕψ · ∇R ϕ̇− 1
θ

qR · ∇R θ + θ∇R · kR = Jθσ ≥ 0,

The linearity and arbitrariness of Ë, T̈RR, q̈R, θ̈, ϕ̈,∇R θ̇, and θ̇ imply that

∂Ėψ = 0, ∂ṪRR
ψ = 0, ∂q̇R ψ = 0, ∂θ̇ψ = 0, ∂ϕ̇ψ = 0, ∂∇R θψ = 0,

and
η = −∂θψ. (6)

Hence, the free energy is a function of a reduced number of variables, namely

ψ = ψ̂(θ, E, TRR, qR, ϕ,∇R ϕ),

subject to the standard relation (6) for the entropy. For definiteness, we now examine
further thermodynamic restrictions by specifying the type of continuum we have in mind.

Divide the remaining inequality by θ to get

1
θ
(TRR − ρR∂Eψ) · Ė− ρR

θ
∂TRR ψ · ṪRR −

ρR

θ
∂ϕψϕ̇− ρR

θ
∂∇R ϕψ · ∇R ϕ̇

−ρR

θ
∂qR ψ · q̇R −

1
θ2 qR · ∇R θ +∇R · kR = Jσ ≥ 0. (7)

In light of the identity

ρR

θ
∂∇R ϕψ · ∇R ϕ̇ = ∇R · (

ρR

θ
∂∇R ϕψϕ̇)−∇R · (

ρR

θ
∂∇R ϕψ)ϕ̇,

we can write inequality (7) in the form

1
θ
(TRR − ρR∂Eψ) · Ė− ρR

θ
∂TRR ψ · ṪRR −

ρR

θ
δϕψ ϕ̇− ρR

θ
∂qR ψ · q̇R

− 1
θ2 qR · ∇R θ +∇R · (kR −

ρR

θ
∂∇R ϕψ ϕ̇) = Jσ ≥ 0,

where
δϕψ = ∂ϕψ− θ

ρR
∇R · (

ρR

θ
∂∇R ϕψ)

is the variational derivative of ψ with respect to ϕ. This suggests that we let

kR =
ρR

θ
∂∇R ϕψ ϕ̇,

where ϕ̇ is yet to be determined.
For definiteness, we take ∇R θ and q̇R as independent of Ė, ṪRR, ϕ̇ and let

σmech = σ|q̇R=0,∇R θ=0,

σq = σ|Ė=0,ṪRR=0,ϕ̇=0,
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where σ|· denotes the appropriate restriction of the function σ. Hence, we can split the
inequality to get

(TRR − ρR∂Eψ) · Ė− ρR∂TRR ψ · ṪRR − ρRδϕψ ϕ̇ = Jθσmech ≥ 0, (8)

− ρR∂qR ψ · q̇R −
1
θ

qR · ∇R θ = Jθσq ≥ 0. (9)

3.1. Further Thermodynamic Restrictions

The damaged material has properties affected by the level of damage, formally charac-
terized by ϕ. We then look for a modeling with the free energy in the form

ψ = ψel(θ, ϕ, E, TRR) + ψdam(θ, ϕ,∇R ϕ) + ψq(θ, ϕ, qR).

We begin with Equation (9), which governs heat conduction.

3.1.1. Heat Conduction

The function ψq is a scalar function of qR. We then let ψq depend on qR through
ξ = |qR|2. Hence, Equation (9) can be written in the form

− (2ρR∂ξ ψ q̇R +
1
θ
∇R θ) · qR = Jθσq ≥ 0, (10)

where σq is independent of Ė, ṪRR, ϕ̇.
The requirement (10) implies that qR, q̇R, and ∇R θ cannot be independent. Among the

relations consistent with (10), we select

2ρR∂ξψq q̇R +
1
θ
∇R θ = − 1

κθ
qR, 2ρR∂ξ ψq q̇R +

1
θ
∇R θ = − 1

κθ
CqR (11)

so that in stationary conditions, we have Fourier-like laws

qR = −κ∇R θ, qR = −κC−1∇R θ.

We then obtain, respectively,

σq =
1

κ Jθ2 |qR|2, σq =
1

κ Jθ2 qR · CqR,

where κ is allowed to depend on θ and ϕ. The non-negative character of σq implies that
κ > 0.

To obtain the corresponding Eulerian version, we observe that

∇R θ = FT∇θ, qR = JF−1q, q̇R = JF−1 q,

where q is the Truesdell derivative [20,21]

q= q̇−Wq−Dq + (∇ · v)q.

Hence, it follows from (11)1 that

2θρRκ∂ξ ψq q +q = −(κ/J)B∇θ. (12)

As to (11)2 we have

CF−1q + 2θρRκ∂ξ ψqF−1 q= −(κ/J)FT∇θ. (13)
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Left multiplication of (13) by FC−1 results in

q + 2θρRκ∂ξ ψqB−1 q= −(κ/J)∇θ. (14)

In both cases, we can view
τ = 2θρRκ∂ξ ψq

as the relaxation time. Both Equations (11) can be viewed as nonlinear generalizations of
the Maxwell–Cattaneo equation [22,23]. The occurrence of the left Cauchy–Green tensor
B in (12) and (14) shows possible effects of deformation on the heat conduction. In both
cases, in stationary conditions (q= 0), we have the classical Fourier law, q = −κ̃∇θ, or the
modification due to deformation, q = −κ̃B∇θ, where κ̃ = κ/J.

There are infinitely many free energies ψq consistent with this scheme. If, for simplicity,
we let

ψq = 1
2 ν(θ)|qR|2

then
τ = θρRκν.

We now go back to Equation (8) and assume ϕ̇ is independent of Ė and ṪRR so that we
can write the independent equations

ρδϕψ ϕ̇ = −θσdam ≤ 0, (15)

(TRR − ρR∂Eψel) · Ė− ρR∂TRR ψel · ṪRR = Jθσvisco ≥ 0. (16)

3.1.2. Hysteretic Mechanical Effects

Some classes of materials models described by (16) are now investigated. First, we
consider the particular case σvisco = 0 and ∂TRR ψel = 0. The resulting equation is

(TRR − ρR∂Eψel) · Ė = 0.

The arbitrariness of Ė implies that

TRR = ρR∂Eψel(θ, ϕ, E).

This relation models an elastic solid parameterized by the temperature θ and the
damage variable ϕ.

If instead σvisco = 0, but ∂TRR ψel 6= 0, then we have

(TRR − ρR∂Eψel) · Ė− ρR∂TRR ψel · ṪRR = 0.

Consequently, ṪRR can be given a linear representation in Ė. Indeed, we use a repre-
sentation formula of tensors [10]; for any tensor Z with a known value of the inner product
Z ·N, and N · n = 1, we have

Z = (Z ·N)N + (I−N⊗N)G, (17)

where I is the fourth-order identity and G is an arbitrary second-order tensor. Here, we let
Z = ṪRR and N = ρR∂TRR ψel/|ρR∂TRR ψel| to obtain

ṪRR = (
1
ρR

TRR − ∂Eψel) · Ė
∂TRR ψel

|∂TRR ψel|2
+ (I−

∂TRR ψel ⊗ ∂TRR ψel

|∂TRR ψel|2
)G.

Observe that by letting G = GRR(θ, ϕ, E, TRR)Ė, we can write

ṪRR = CRRĖ, (18)
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where
CRR = GRR +

1
ρR|∂TRR ψ|2 ∂TRR ψ⊗ (TRR − ρR∂Eψ− ρRG

T
RR∂TRR ψ).

The representation (18) describes the constitutive properties of hypoelastic solids.
Elastic–plastic models are characterized by an entropy production—here, σvisco—

which depends linearly on |Ė| or |ṪRR|. Back to (16); let Jθσvisco = γE|Ė| to obtain

(TRR − ρR∂Eψel) · Ė− ρR∂TRR ψel · ṪRR = γE|Ė|.

Assume ∂TRR ψel 6= 0. Hence, we can write

ṪRR ·
∂TRR ψel

ρR|∂TRR ψel|
=

1
ρR|∂TRR ψel|

(TRR − ρR∂Eψel) · Ė−
γE

ρR|∂TRR ψel|
|Ė|.

Letting

PRR =
∂TRR ψ

ρR|∂TRR ψ|2

and applying the representation formula (17), we obtain

ṪRR = CRRĖ− γEPRR|Ė|. (19)

The analogue holds if we let σvisco = γT|ṪRR|.
As is shown in refs [8–10], in one-dimensional settings, the simultaneous occurrence

of Ė and |Ė| allows the modeling of hysteretic processes. Here, we have proved that the
structure (19) follows directly from the entropy inequality by simply letting the positive
quantity σ equal γE|Ė| or γT|ṪRR|. Moreover, this value of σ is not identically equal to
the left-hand side of the entropy inequality, as instead it happens for the model of heat
conduction, where σq is determined by the left-hand side of (11). This conceptual aspect
will be more refined, in the next section, in connection with the modeling of damage.

3.1.3. Damage and Degradation

We now investigate (15), which is the main equation describing the evolution of the
damage. Let

ψ = Ψ := G(ϕ)ψ̃(θ, E, TRR, qR) + ψdam(θ, ϕ,∇R ϕ).

Hence, Equation (15) results in

ρ(G′(ϕ)ψ̃ + δϕψdam)ϕ̇ = −θσdam ≤ 0. (20)

The function G(ϕ) models the degradation induced by damage. Since ϕ = 0 charac-
terizes the undamaged state, the function G is subject to G(0) = 1, G(1) = 0. In addition,
observe that

G′(ϕ)ψ̃ ϕ̇ = Ġ(ϕ)ψ̃.

We expect that the thermoelastic properties decay with the increase in the damage
variable ϕ, and hence

Ġ ≤ 0, ϕ̇ ≥ 0 =⇒ G′ ≤ 0.

This qualitative conclusion is consistent with the observation that, by (20),
sgn{G′ ϕ̇} = sgn{−σdam}, not necessarily but consistently. With this in mind, we can
view G as a known function subject to the monotone character G′ ≤ 0. Our attention is then
restricted to ψdam, a function of the values ϕ and ∇R ϕ; the dependence on ∇R ϕ represents
the possible effects of spatial inhomogeneities.

We now consider Equation (15) in the form

δϕΨϕ̇ = − θ

ρ
σdam ≤ 0. (21)
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The left-hand side is non-negative if

ϕ̇ = −λ(θ, ϕ)δϕΨ, λ ≥ 0. (22)

Equation (21) allows for a further contribution to ϕ̇ so that

ϕ̇ = −λδϕΨ− θ

ρδϕΨ
σ̂dam. (23)

This is so that
ρδϕΨϕ̇ = −λρ(δϕΨ)2 − θσ̂dam,

which shows that the rate Equation (23) yields an entropy production

σdam = σ̂dam + λ
ρ

θ
(δϕΨ)2.

Look at the two effects separately. First, let σ̂dam = 0. Additionally, with reference to
the literature (see e.g., [4,5] and refs therein) we may take λ as a constant, possibly related
to parameters of the material (here, θ, E, TRR, qR), and

ψdam = ψ1(ϕ) + ψ2(|∇R ϕ|2).

Hence, the evolution Equation (22) reads

ϕ̇ = −λ{ψ′1(ϕ)− 2
θ

ρ
∇R · [

ρ

θ
ψ′2(|∇R ϕ|2)∇R ϕ]} − λG′ψ̃.

If, in particular, ψ2(|∇R ϕ|2) = 1
2 c|∇R ϕ|2 and ρ, θ are space independent, then we have

ϕ̇ = −λ{ψ′1(ϕ)− c∆R ϕ} − λG′ψ̃.

Incidentally, in these cases,

θσdam = −δϕψdam ϕ̇ = λ(δϕψdam)2

and hence the requirement σdam ≥ 0 holds for every function ψdam.
We now look for specific forms of σ̂dam. Suppose that an increase of ϕ is due to high

temperatures, θ > θh, freeze–thaw transitions at θ = θ0, and large strains |E| > κ. Large
cycles are also of interest. Letting E = Ee⊗ e, we have damage effects if E > E+ > 0 or
E < E− < 0 for suitable values E−, E+. Effects of large values are modeled through terms
proportional to

H(θ − θh), H(|E| − κ), H(E− E+), H(E− − E),

H being the Heaviside step function. The whole effect on σ̂dam can then be written via
appropriate coefficients in the form

σ̂dam = ch H(θ − θh) + cEH(|E| − κ) + c+H(E− E+) + c−H(E− − E). (24)

4. History Effects on Damage

Damage may be the effect of phase transformations, as, e.g., in the solid–liquid case, or
cyclic processes, as e.g., in periodic or hysteretic evolutions. This indicates that the present
value of ϕ depends on the history of appropriate fields. The idea is not new (see, e.g., [5]).
The subject deserves a detailed treatment both for conceptual questions associated with the
thermodynamic consistency and for the development of definite models.
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We follow a Lagrangian description and suppose the constitutive properties are ex-
pressed by the set of variables

Γ = (θ, ϕ, θt,∇R θ, qR, E, TRR, Et),

where θt, Et denote the histories of θ, E up to time t,

θt(s) = θ(t− s), Et(s) = E(t− s), s ∈ [0, ∞).

We then let ψ, η, k, σ, and the rate ϕ̇ be functionals of Γ. Upon computing ψ̇ we replace
in the Clausius–Duhem inequality (5) to obtain

−ρR(∂θψ + η)θ̇ + (TRR − ρR∂Eψ) · Ė− ρR∂TRR ψ · ṪRR − ρR∂qR ψ · q̇R − ρR∂ϕψϕ̇

−ρR∂∇R θψ · ∇R θ̇ − ρdψ(θt|θ̇t)− ρdψ(Et|Ėt)− 1
θ

qR · ∇R θ + θ∇R · kR = Jθσ ≥ 0,

where dψ(θt|θ̇t) and dψ(Et|Ėt) denote the Fréchet derivatives of ψ at θt and Et in the
direction θ̇t and Ėt.

The reduced inequality is

(TRR − ρR∂Eψ) · Ė− ρR∂TRR ψ · ṪRR − ρR∂qR ψ · q̇R −
1
θ

qR · ∇R θ − ρR∂ϕψϕ̇

−ρdψ(θt|θ̇t)− ρdψ(Et|Ėt) + θ∇R · kR = Jθσ ≥ 0. (25)

Observe that
(TRR − ρR∂Eψ) · Ė− ρR∂TRR ψ · ṪRR

allows us to describe hysteretic effects,

−ρR∂qR ψ · q̇R −
1
θ

qR · ∇R θ

models heat conduction, and
−ρR∂ϕψϕ̇

indicates the evolution of damage. A sufficient condition to satisfy (25) is to let

kR = 0, ψ independent of θt, Et

and
σ = σhys(Ė, ṪRR) + σcond(qR) + σdam(θt, Et)

σhys, σcond, σdam being non-negative in that they are particular cases of σ. Hence, in addi-
tion to the equations for σhys, σcond, we have

ρR∂ϕψϕ̇ = Jθσdam(θt, Et).

For definiteness, we look for specific forms of σdam. As observed above, large values
effects are modeled through terms proportional to

H(θ − θh), H(|E|) > κ, H(E− E+), H(E− − E).

A model for the effect of a freeze–thaw transition is made formal by letting δ > 0 and
taking a contribution, at time t, of the form

H[(θ(t− δ)− θ0)(θ0 − θ(t))]
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which works for freeze–thaw and for thaw–freeze. The whole change in ϕ as t ∈ [t1, t2] is
then expressed by

ϕ(t2)− ϕ(t1) =
∫ t2

t1

θ

ρ∂ϕψ
[chH(θ − θh) + cEH(|E| − κ)

+c f t
1
δ

H[(θ(t− δ)− θ0)(θ0 − θ(t))] + c+H(E− E+) + c−H(E− − E)]dt. (26)

A model for the effect of a freeze–thaw transition is made formal by letting δ > 0 and
taking a contribution, at time t, of the form

H[(θ(t− δ)− θ0)(θ0 − θ(t))]

which works for freeze–thaw and for thaw–freeze.
For the sake of simplicity, sometimes the damage variable is evaluated by a cumulative

assessment (Miner’s rule [24,25]). So, if the damage is produced by a number of stress
cycles, at a given stress level, and N is the number of cycles producing failure, then ϕ
associated with n ≤ N cycles is determined by

ϕ =
n
N

.

Incidentally, for each freeze–thaw transition at time t̃, we have

1
δ

∫ t̃+δ

t̃
H[(θ(t− δ)− θ0)(θ0 − θ(t))]dt = 1

and then
1
δ

∫ t2

t1

H[(θ(t− δ)− θ0)(θ0 − θ(t))]dt = n,

the number of freeze–thaw transitions as t ∈ [t1, t2].
Once we fix the derivative ∂ϕψ and the coefficients ch, cE, c f t, c+, c−, we obtain the

variation of the damage variable ϕ in [t1, t2].

5. Remarks on the Phase-Field Models

The evolution Equation (24) generalizes known model equations appeared in the
literature. The rate ϕ̇ consists of two parts,

−λδϕΨ, − θ

ρδϕΨ
σ̂dam.

The first term involves the present value of ϕ, possibly through the Laplacian ∆R ϕ.
With reference to the review paper [26], as particular cases we mention the models by
Karma et al., Henry and Levine, Ambati et al., and Miehe et al., where ϕ̇ is affected by
ϕ, ∆ϕ, and is governed by the strain.

The second term allows specific causes of damage. Equation (24), and the analogue (26)
for modeling through histories, indicates how the model equation of ϕ̇ may account
for high temperatures, freeze–thaw transitions, large strains, and cycles. The possible
dependence of the coefficients ch, cE, c+, c− on ϕ itself and the temperature θ allows an
effective modeling of damage effects. Experimental evidence might give insights into the
constitutive dependencies of the coefficients.
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Relation to Other Approaches

A number of papers involve the use of microforces in the balance equations. Never-
theless, some similarities appear. In [3], the free energy is assumed in the form

ψ(E, ϕ,∇ϕ) = 1
2 G(ϕ)E ·CE + G(w(ϕ)

4ε
+ ε|∇ϕ|2),

which shows the correspondence

ψ̃ = 1
2 E ·CE, ψdam = G(w(ϕ)

4ε
+ ε|∇ϕ|2),

G and ε as parameters. The function

w(ϕ) = 16ϕ2(1− ϕ)2

describes the double well potential. This potential is widely used in the modeling of phase
transitions. To our mind, in the modeling of damage, a monotone dependence would be
more appropriate; the monotone character is advocated, e.g., in [27].

As in [5], the free energy is sometimes taken to depend on the history of Et and,
moreover, the free energy potential is considered in terms of a fractional derivative. The
thermodynamic consistency requires that the derivative dψ(Et|Ėt) is among the contri-
butions to the non-negative entropy production. Now, while a free energy potential can
be written for the stress tensor, problems arise when we investigate the thermodynamic
consistency, mainly because the kernel of fractional derivatives is singular at the origin [28].

6. Conclusions

A model for the characterization of damage in continuum mechanics is developed for
a dissipative and heat-conducting solid. The damage is described by a scalar variable ϕ
(phase field) whose evolution is governed by a rate equation consistent with thermody-
namics. The consistency is investigated within a differential equation of the form (23),

ϕ̇ = −λδϕΨ− θ

ρδϕΨ
σ̂, λ > 0,

where Ψ is the free energy density. The term λδϕΨ is similar to models in the literature.
The second term allows an account of effects such as those arising from large temperatures,
large strains, and freeze–thaw transitions.

Conceptually, the two terms have a different origin. From

δϕΨϕ̇ ≤ 0,

we conclude that ϕ̇ may be given by −λδϕΨ, λ > 0. This in turn implies that the corre-
sponding entropy production is ρ/θ times λ(δϕΨ)2. This value of entropy production is
induced by the constitutive function Ψ. The second term contains σ̂, which has a constitu-
tive equation per se, subject to the positive valuedness and the dependence of variables
chosen for all of the constitutive equations.

This scheme is likely to allow some improvements of the modeling of damage. In this
sense, appropriate generalizations can account for more involved effects through the
entropy production σ̂dam. Indeed, the use of σ̂dam looks more flexible than the recourse
to the dissipation potential. For instance, in [29] the damage rate, here, ϕ̇, is related to a
dissipation potential F by ϕ̇ = −∂Y F, where Y is an appropriate density release rate. Hence,
terms such as those in (24) and (26) account for the rate as (nine) of [29] for the accumulated
plastic strain.

Future developments might investigate the use of degradation functions induced by
the damage variable so as to describe, e.g., possible anisotropic effects.
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