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Abstract: Carbon footprint reduction, recompense depletion of natural resources, as well as waste
recycling are nowadays focused research directions to achieve sustainability without compromising
the concrete strength parameters. Therefore, the purpose of the present study is to utilize different
dosages of marble waste aggregates (MWA) and stone dust (SD) as a replacement for coarse and
fine aggregate, respectively. The MWA with 10 to 30% coarse aggregate replacement and SD with
40 to 50% fine aggregate replacement were used to evaluate the physical properties (workability
and absorption), durability (acid attack resistance), and strength properties (compressive, flexural,
and tensile strength) of concrete. Moreover, statistical modeling was also performed using response
surface methodology (RSM) to design the experiment, optimize the MWA and SD dosages, and finally
validate the experimental results. Increasing MWA substitutions resulted in higher workability, lower
absorption, and lower resistance to acid attack as compared with controlled concrete. However,
reduced compressive strength, flexural strength, and tensile strength at 7-day and 28-day cured
specimens were observed as compared to the controlled specimen. On the other hand, increasing
SD content causes a reduction in workability, higher absorption, and lower resistance to acid attack
compared with controlled concrete. Similarly, 7-day and 28-day compressive strength, flexural
strength, and tensile strength of SD-substituted concrete showed improvement up to 50% replacement
and a slight reduction at 60% replacement. However, the strength of SD substituted concrete is
higher than controlled concrete. Quadratic models were suggested based on a higher coefficient of
determination (R2) for all responses. Quadratic RSM models yielded R2 equaling 0.90 and 0.94 for
compressive strength at 7 days and 28 days, respectively. Similarly, 0.94 and 0.96 for 7-day and 28-day
flexural strength and 0.89 for tensile strength. The optimization performed through RSM indicates
that 15% MWA and 50% SD yielded higher strength compared to all other mixtures. The predicted
optimized data was validated experimentally with an error of less than 5%.

Keywords: marble waste aggregates; stone dust; optimized mix; response surface methodology;
environmentally friendly; sustainability; normal strength concrete

1. Introduction

Concrete has been a material of choice for construction purposes for ages [1]. The
main ingredients of concrete, i.e., the binder (cement), fine aggregate (river sand), and
coarse aggregate (crushed rock, gravel, etc.), remain the same with slight adaptation and
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modifications by the users. Owing to their economic availability and predictable behavior,
natural aggregates account for the largest volume of solid minerals mined worldwide.
About 47 to 50 billion tons of aggregate material are extracted annually worldwide, and
the proportion of construction aggregates ranges from 68 to 85 percent [2]. Their alarming
detrimental effects on the ecology and environment of the globe include damage to the
basins of rivers, environmental pollution, and pH level variations in groundwater [3]. As an
alternative to conventional concrete constituents, researchers have explored substitutions of
these fundamental ingredients: cement, fine aggregate (sand), and coarse aggregate, with
supplementary cementitious materials (SCM), as well as industry by-products and recycled
materials. The substitutions chosen by researchers include blast furnace slag, quarry dust
or crushed stone dust [4–7], silica-fume [8–10], rice-husk ash [11], marble slurry or pow-
der [12–18], recycled aggregate from construction demolition waste [19–24], ornamental
stone processing waste [25], coconut husk ash [10], steel fibers [11,26], sugarcane (bagasse)
ash [27], nano or [22,28] carbon-fibers, graphene oxide powder [29], etc. in normal weight,
self-compacting concrete [30] and high strength concrete, accordingly.

Correspondingly, the utilization of non-biological and non-degradable waste, such as
that from the marble and stone crushing industries, the preeminent consumption led to
research on the construction industry waste [31]. The huge quantity of discarded waste
can be utilized in sustainable construction [32–36]. In examining the use of marble waste
in concrete as an aggregate substitution, researchers found that concrete produced with
50% sand only, 75% aggregate only, or 25% both sand and aggregate replacements showed
improved mechanical properties [12]. Researchers utilized various mixes using basalt,
granite or limestone, and marble by replacing the primary aggregate at ratios of 20% to
100%. Marble aggregate showed low adhesion due to increased interface zone pores, a
similar micro-structural matrix as standard reference concrete, and the same depth of
carbonation, likely due to the lower alumina proportion of the coarse marble aggregate
(CMA) mixes and a substantial rise in the migration coefficient of the chloride. The
durability of CMA in environments with chloride contamination exhibited the poorest
performance [17].

The use of waste from the marble industry and crushed concrete recycled aggregate
(RA) in self-compacting concrete allows up to 100% replacement. The authors observed
increased workability by using marble waste (MW) aggregate. They noted 6% & 5.6%
lower compressive strengths at lower water-binder ratios and 31.5% & 7% at the ratio of
water-binder as 0.4, respectively, but strain capability rises by using RA and MW aggregates
as compared to LS stress-strain curves [23]. Researchers replaced natural aggregate with
marble coarse aggregate in varying percentages from 0 percent as in the control sample to
100% (test specimen) by weight at a 0.6 w/c ratio in concrete mixes. The authors observed
14% more workable concrete in contrast to the control sample. When marble was used
until 80% substitution of natural aggregate, an increase in average compressive strength
of up to 40% at the initial 7-day and up to 18% at 28 days, respectively, was observed.
They concluded that permeability was also increased due to the increased number of pores
in the marble aggregate mix, whereas no significant variation in compressive strength
reduction against acid exposure was observed [18]. Experimental investigation of marble
dust and limestone powder concrete mix with 5, 10, and 15 percent substitutions of sand
(fine aggregate), with cement content of 400 kg/m3 (674 lb/yd3) and at a 0.5 w/c ratio. The
authors concluded that the concrete mix with marble dust maintains greater compressive
strength, higher resistance against sodium sulfate, and abrasion resistance, followed by
limestone dust and least by the control specimen, respectively. They also established that
water permeability was resisted by the specimen, with marble dust replacing 15% of it [37].
Singh, Srivastava, and Agarwal [38] concluded that once stone dust replaces the sand along
with a 0.8% superplasticizer dose, the slump decreased from 84 mm (0% stone dust) to
0 mm (80% or more). Whereas when the dosage changed to maintain the workability,
the slump varied from 60 mm at 0.6% (0% stone dust) to 35 mm at a 2.2% dose (100%
stone dust), respectively. The 7-day compressive strength of concrete cubes was found to
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be at its maximum at 50% replacement as compared to all other percentages. Whereas,
for 28 days, the maximum compressive strength of concrete cubes was established to be
at 60% replacement as compared to all other percentages. Researchers have established
that the compressive strength of mortar cubes at 28 days when combined in a ratio of
(cement:{sand + stone powder}) 1:1 + 2. It would solve the dual purposes of economic
construction as well as waste utilization for achieving sustainability [39].

In this study, marble waste aggregates (MWA) and stone dust (SD) from their respec-
tive productions were substantiated as an alternate approach. The source of MWA exists
in the marble finishing industries. The estimated reserves of marble and onyx in Pakistan
are more than three hundred billion tons. However, due to primitive ways of quarrying
and subsequent processing, the marble processing units in Pakistan cause approximately
70% of the raw material to be transformed into solid and sludge waste [40]. Similarly,
from quarries and stone crusher plants, stone dust, being the lowest size, is discarded
too, piled up either outside processing plants or drained into water channels. This waste
material from marble industries and crushing plants remains a source of air, water, and
land pollution [19,31]. Similarly, as per the reports of the Small and Medium Enterprises
Development Authority (SMEDA), Ministry of Industries & Production, Government of
Pakistan, stone crushing is one of the prospective industries owing to the rising material
demands in the construction and infrastructure sector in the country [41]. The current
novel experimental study is unique from previous research in that it incorporates the WMA
and SD into an optimum percentage without using any admixture in the concrete. The
optimized substitutions of marble waste aggregate and stone dust were modeled with the
help of RSM Model analysis as well as experimental confirmation. The specimens were
subjected to physical, durability, and strength properties. The experimental and predicted
results were compared and validated through analysis of variance (ANOVA) and statistical
terms. The recycling of MWA and SD to replace natural aggregates would compensate
for the unfavorable effects of each substitute material and produce the desired outcome in
fresh and hardened concrete in a sustainable way.

2. Materials and Methods
2.1. Materials

In the current study, marble waste aggregate (MWA) and stone dust (SD) were used
as partial replacements for coarse aggregate and fine aggregate, respectively, for normal
strength concrete. The conventional mix design had a mix ratio of 1:2:4 of cement: fine
aggregate: coarse aggregate, respectively, and a water to cement ratio of 0.5. Ordinary
Portland Cement (OPC) type-I was used and procured from the Cherat cement factory. The
physical properties of OPC are given in Table 1, as determined according to ASTM C191-13,
ASTM C187-11, and ASTM C430-08 standards [42–44].

Table 1. Properties of cement.

Cement Properties Values Obtained

Normal Consistency 32%
Initial Setting Time 47 min
Final Setting Time 287 min

Fineness 4.5%
Specific Gravity 3.15

Fine aggregate (medium coarse size sand) was obtained from the Lawrencepur Attack
quarry and its physical properties are presented in Table 2. The coarse aggregate with a
nominal maximum size of 3/4 inch (20 mm) was the crushed stone of Margalla hill rock,
and its physical properties are also shown in Table 2.
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Table 2. Physical properties of coarse and fine aggregates.

Physical Properties Fine Aggregates Coarse Aggregates

Specific Gravity 2.6 2.83
Water Absorption (%) 1.28 3.4

Fineness Modulus 2.5 -
Bulk Density - 1570 kg/m3 (98 lb/ft3)

Crushing Value (%) - 16.98

The marble waste aggregates (MWA) were obtained from a marble factory and further
crushed and sieved to obtain the desired size of marble aggregates equivalent to the
standard coarse aggregate size used in mix design [45]. The particle size distribution of
MWA and a comparison with the standard coarse aggregate size are presented in Figure 1.
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Figure 1. The particle size of MWA and standard aggregates is within the ASTM limits.

The physical properties of MWA, which are relatable to the coarse aggregate utilized
in the present study, are also given in Table 3.

Table 3. Physical properties of MWA.

Physical Properties MWA Coarse Aggregate

Specific Gravity 2.72 2.83
Water Absorption (%) 3.15 3.4
Bulk Density (kg/m3) 1520 kg/m3 (95 lb/ft3) 1570 kg/m3 (98 lb/ft3)

Crushing Value 19.98 16.98

Stone dust (SD) was procured from the aggregate crushing plant, which is the residue
left after aggregate production in the crushing plant. The obtained stone dust was used as
a replacement for sand in the mix design. The particle size of SD confirmed the standard
size of sand, as shown in Figure 2. The water absorption and specific gravity of SD were
determined as 1.48 and 2.61, respectively, with a fineness modulus of 3.35.
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Figure 2. Particle size range of sand and SD.

2.2. Mix Design and Preparation of Specimens

For the experimental program, two approaches for mix design of concrete were tested.
The ACI method of concrete mix design as well as conventional 1:2:4 mix design. The ACI
method of mix design [46] recommends the relationship between average compressive
strength (28-day) with water-to-cement ratio, free water content, cement content, as well
as plastic densities, and quantities of aggregates. Since there is very less difference in
bulk densities of coarse aggregates and marble aggregates as well as the fineness modulus
of sand and stone dust. Some minute adjustments were carried out before casting the
samples. The conventional 1:2:4 mix design, which proportions the cement, fine and coarse
aggregates by weight, was used to ascertain the desired attributes of concrete in fresh and
hardened states. From previous literature, it was also found that researchers, while finding
replacement percentages of aggregates, not only employed the ACI mix design technique
but also utilized conventional ratios of concrete 1:2:4, 1:1.5:3, etc., as well. By-weight mix
design is somewhat of an empirical approach, but it is also confirmed with the ACI mix
design method. Calculated values for unit volume are listed in Table 4.

Table 4. Mix design quantities of standard constituents of control specimen.

Input Parameters By-Weight Values
FPS (SI) Units

Required Cylinder Compressive Strength 4500 psi (31 MPa)
Required Slump 2 inch (50 mm)

Nominal maximum aggregate size 3/4 inch (20 mm)
w/c ratio of mix 0.5
Water quantity 270 lb/yd3 (160 kg/m3)

Quantity of Cement 540 lb/yd3 (320 kg/m3)
Plastic Density 4096 lb/yd3 (2430 kg/m3)

Aggregate Contents [Coarse + Fine] 3288 lb/yd3 (1950 kg/m3)
Fineness modulus of sand 2.5

Bulk volume of 0.67
Quantity of Coarse Aggregate 2192 lb/yd3 (1300 kg/m3)

Quantity of Fine Aggregate 1096 lb/yd3 (650 kg/m3)
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Standard practice for making and curing concrete sampling and casting of cylinders
conforming to ASTM C192/C192M-14 [47] was carried out. Each mix design (1:2:4 by
weight) had cylinders of 6′′ (150 mm) diameter × 12′′ length (300 mm), prisms/beams of
4′′ (100mm)× 4′′ (100mm)× 16′′ (400mm),andcubesof6′′ (150 mm)× 6′′ (150 mm)× 6′′ (150 mm).
The water-cement ratio (w/c) of 0.5 was kept consistent for all mixes. A total of 189 samples
were cast as per mix designs. Substitutions were achieved by utilizing 10%, 20%, and
30% marble waste aggregate as a replacement for coarse aggregate and 40%, 50%, and
60% substitution of stone dust in place of sand. The samples were designated as per the
substitution percentages of aggregates. The sample designation was such that 10MWA
means 10% MWA was substituted in place of standard coarse aggregate, 20MWA means
20% MWA was substituted in place of standard coarse aggregate, 30MWA means 30%
MWA was substituted in place of standard coarse aggregate, 40SD means 40% SD was sub-
stituted in place of standard fine aggregate, 50SD means 50% SD was substituted in place
of standard fine aggregate, and 60SD means 60% SD was substituted in place of standard
fine aggregate. For each test and each category of substitution, at least three samples of
cylinders and at least two samples of prisms/cubes were made. A total of 189 samples were
initially cast, with designated categories. Then, to confirm the RSM model optimization
experimentally, 63 samples were further cast. The cast samples remained in their respective
molds for twenty-four hours, then were unmolded the next day and put in a water bath
at ambient temperature. The samples were cured for the respective test requirements of
7 days and 28 days.

2.3. Workability and Absorption Tests

The properties of concrete in fresh form, i.e., workability tests such as the slump test
confirming ASTM C143-78 [48]), the compaction factor test satisfying BS 1881: Part 103 [49],
the density of fresh concrete satisfying ASTM C138/C138M-17a [50], and observation for
bleeding water and segregation was performed. Comparisons of each test for control, mar-
ble waste aggregate substitution, and stone dust substitution in coarse and fine aggregate,
respectively, are listed in succeeding sections.

Slump for the control concrete specimen was selected at 2 inches (50 mm) and verified
in the other two types of specimen (MWA and SD samples) as well. To ascertain the worka-
bility of fresh concrete, another method is the compaction factor test. The option slump
test is suitable for more workable concrete, whereas the compaction factor test is suitable
for less workable concrete. The compaction factor workability test, comprising of three
steps, dropping the concrete from 8 inches (200 mm) in two hoppers, then collecting it in a
cylinder, and yielding the potential energy as the internal work done on the concrete. This
free-dropped concrete weight is known as the weight of concrete with partial compaction
due to potential energy (height). Then the cylinder is again filled with fresh concrete and
either vibrated externally or compacted in three layers utilizing a tamping rod, hence
getting standard compaction. This compacted concrete cylinder weight is the weight of
fully compacted concrete. The relationship in terms of compaction factor is:

Compacting factor =
Partially compacted cylinder weight

Fully compacted cylinder weight

For the absorption test, the cast samples were first submerged for a period of 24 h
at room temperature (25 to 30 ◦C) in clean water, then weighed in surface dry condition.
After that, the samples in wet condition were put in the oven for 24 h and weighed once
again, in compliance with ASTM C642-21 [51]. The percentage absorption is calculated as
the following formula:

Absorption =
100× (Wet Sample weight− Dry Sample weight)

Dry Sample weight
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2.4. Concrete Strength Tests: Compressive Strength, Flexural Strength, and Split Tensile Strength Test

The compressive strength test was performed in accordance with ASTM C39/C39M-
21 [52], for measuring the capacity of any material that it can sustain before fracturing
by applying the maximum amount of compressive load. The concrete test samples were
cylinders, beams or prisms, and cubes. After curing for 7 days and 28 days, the specimens
were tested as per ASTM standards. The specimens were tested in a compression testing
machine by applying gradual loads as per the strain rate in Table 5. The average strength
of the tested sample was selected.

Table 5. Loading and Strain rates for Compression testing of the specimen.

Sample Min Load Max Load Min Strain Rate Max Strain Rate

For 6′′ (150 mm) × 6′′ (150 mm) cube
63 Kips

(280 KN) 108 Kips (480 KN) 8.1 Kips/min (36 KN/min) 13.5 Kips/min (60 KN/min)

For 6′′ (150 mm) × 12′′ (300 mm) Cylinder
50 Kips

(220 KN) 83 Kips (370 KN) 6.8 Kips/min (30 KN/min) 14.6 Kips/min (65 KN/min)

An ASTM C78/C78M-22 [53] third point loading test was performed to measure the
flexural strength of concrete specimens. This test measures the resistance of unreinforced
beams or slabs to failure due to bending moments caused by the applied load. It is
conducted by loading a 4′′ × 4′′ (100 mm × 100 mm) concrete prism that has a length
of more than three times its depth. The modulus of rupture (MR) is also the measure of
flexural strength. Usually, it is 10 to 20% of the compressive strength, depending on the
aspect ratio of the specimen’s shape and the volume of coarse aggregate in the mix.

ASTM C496-96 [54] was performed to ascertain the splitting tensile strength of cylin-
drical concrete specimens by placing the cylinder specimen horizontally in the compression
testing machine. The depth of the cylinder was 6′′ (150 mm) and the length of the cylinder
was 12′′ (300 mm).

2.5. Durability Test: Acid Attack Resistance

ASTM C1898-20 [55] was performed to ascertain the chemical resistance of the concrete
specimens under the anticipated service environment. The specimens were cast in a
4′′ (100 mm) × 4′′ (100 mm) cube and cured for 7 days. Then, these specimens were left
in dry condition for 3 days to attain a constant weight. Then, specimens were weighed
and put in a 5% solution of sulphuric acid (H2SO4) for 24 h, and after being removed from
the solution and washed, the change in various parameters of a specimen, such as weight
and appearance of the specimen, the test medium’s appearance, as well as the specimen’s
compressive strength, were evaluated.

2.6. Application of RSM

For experimental design, modeling, prediction, and optimization, and establishing
a relationship between experimental and predicted data, a user-friendly statistical tool is
response surface methodology (RSM) [8,26,56–59]. Statistical and mathematical features are
combined in RSM to effectively design the experiment and establish a relationship between
variables and responses [60–62]. In the current study, Design Expert® software was used,
which is commercially available. Among other methods, central composite design (CCD)
is the most commonly used RSM design method in the construction industry [63] and
therefore also adopted in this study.

In this study, MWA and SD were considered as input factors (independent variables),
and the responses (dependent variables) were selected as strength properties such as the
compressive strength (CS), flexural strength (FS), and split tensile strength (TS) of concrete
specimens. The aim was to see the effect of MWA and SD on the prediction of CS, FS,
and TS.
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3. Results and Discussion
3.1. Effect of MWA and SD Substitution on Physical and Durability Properties
3.1.1. Workability

The slump test measures the workability of concrete. The desired slump value for the
control specimen was 50 mm. All results were within the range of 50 ± 5 mm (Figure 3).
With the addition of MWA, slump increases are attributed to the smooth surface and less
absorption of MWA than normally used coarse aggregate. These results were validated
by past researchers as well [17]. On the other hand, substation of SD causes decreases in
slump value, which indicates that SD has finer particles in contrast to sand.
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Figure 3. Slump values for MWA and SD based concrete.

Workability can also be assessed by the compaction factor test, as shown in Figure 4.
The desired value for the control specimen was 0.92. All workability test results were within
the range of 0.90 ± 0.05, which confirms comparison consistency between the examined
properties of the concrete samples. With the addition of marble waste aggregate (MWA), the
compaction factor decreases as the ratio rises. This can be attributed to the smooth surface
and less absorption of MWA than normally used coarse aggregate. While the inclusion of
stone dust (SD), the compaction factor increases as the percentage of SD increases. This
can be attributed to finer particles of SD as compared to sand. The results are in close
agreement with previous research findings [37].
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3.1.2. Absorption Test

The average absorption percentages (Figure 5) of samples indicated that the absorption
of samples containing MWA was less (3.25% to 5.55%) than the control sample, which may
be attributed to the more polished surfaces of MWA than the normal aggregate, whereas
the absorption of samples containing SD was more (4.6% to 9.77%) than the control sample,
which may be attributed to finer particles (exhibiting more surface area) present in SD than
the normal sand [64,65].
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3.1.3. Acid Attack Resistance

ASTM C1898-20 was performed to ascertain the chemical resistance of the concrete
specimens under the anticipated service environment. The solutions became ashy after one
day of submersion of the samples. There was some grainy appearance after the removal of
samples from the acid, and this appearance was rougher in specimens containing MWA
as compared to the control sample, whereas the appearance was unchanged in the case
of SD samples (Figure 6). These findings may be ascribed to the more reactive nature of
MWA with H2SO4 than the normal aggregate and finer particles of SD in the respective
samples [64].
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3.2. Effect of MWA and SD on Strength Properties and Statistical Modeling

Statistical analysis in RSM was performed and validated via ANOVA, fit statistics, and
proposed models. Based on higher R2, quadratic models were suggested for compressive
strength, flexural strength, and tensile strength as shown in Tables 6–8, respectively. The
generalized quadratic polynomial Equation (1) is used to predict the response value (i.e.,
compressive strength, flexural strength, and tensile strength).

Y = C + A1(X1) + A2(X2) + A3(X1 ∗ X2) + A4(X1
2) + A5(X2

2). (1)

where Y = predicted response, X1 and X2 = independent variables (MWA and SD),
C = interception constant, A1 and A2 = linear coefficients, A3 = interaction coefficient,
and A4 and A5 = quadratic coefficients.

Table 6. ANOVA and fit statistics of compressive strength.

Responses 7-Day CS
MPa (psi)

28-Day CS
MPa (psi)

Standard Deviation 1.41 (204.90) 1.21 (175.92)
Mean 21.98 (3187.43) 30.32 (4397.60)

R2 0.90 0.94
Adjusted R2 0.88 0.93
Predicted R2 0.85 0.92

Adequate Precision 16.39 23.66
Model F-value 42.37 77.58
Model p-value <0.0001 <0.0001

Model Remarks Significant Significant
Proposed Model Quadratic Quadratic

Table 7. ANOVA and fit statistics of flexural strength.

Responses 7-Day FS
MPa (psi)

28-Day FS
MPa (psi)

Standard Deviation 0.17 (24.72) 0.18 (26.78)
Mean 3.39 (492.37) 4.87 (705.80)

R2 0.94 0.96
Adjusted R2 0.93 0.96
Predicted R2 0.92 0.95

Adequate Precision 23.01 29.12
Model F-value 79.20 132.23
Model p-value <0.0001 <0.0001

Model Remarks Significant Significant
Proposed Model Quadratic Quadratic

Table 8. ANOVA and fit statistics of tensile strength.

Responses 7-Day TS
MPa (psi)

28-Day TS
MPa (psi)

Standard Deviation 0.20 (29.21) 0.28 (41.29)
Mean 2.67 (387.40) 3.47 (503.90)

R2 0.89 0.89
Adjusted R2 0.87 0.87
Predicted R2 0.85 0.85

Adequate Precision 17.57 16.95
Model F-value 41.22 41.29
Model p-value <0.0001 <0.0001

Model Remarks Significant Significant
Proposed Model Quadratic Quadratic
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3.2.1. Effect on Compressive Strength and Statistical Analysis

Table 6 shows the ANOVA and fit statistics of 7-day and 28-day compressive strength.
ANOVA was used to evaluate the significance of independent factors and their effects on re-
sponses. The validation and suitability of regression models for compressive strength were
performed by using the coefficient of determination (R2), adjusted R2, and predicted R2,
as shown in Table 6. Based on the fit summary and ANOVA, RSM suggested quadratic
models for compressive strength at 7 days and 28 days. The higher values of coefficient
of determination (R2 ≥ 0.90) and higher model F-value (>40) indicate that the proposed
models are significant and there is a substantial relationship between factors and corre-
sponding responses. The p-value of less than 0.05 also shows that the proposed model
terms are significant with more than a 95% confidence level. Similarly, the numerical
difference between adjusted R2 and predicted R2 of less than 0.2 (Table 6) also indicates
close agreement between predicted and experimental results.

In addition to model validation and fit statistics, the adequacy and normal distribution
of data can also be verified graphically by diagnostic plots. The diagnostic plots, such as
normal plots of residual, predicted vs. actual plots, and residual vs. run plots, can be used
in evaluating the accuracy of regression analysis [66]. The normal plots of residual for
both 7-day and 28-day compressive strength are shown in Figure 7a,b. It can be observed
from the plots that the relationship between the normal percentage of probability and
the extremely studentized residual is satisfactory because almost all the points are closely
located along the straight line for both responses. It indicates that the residual values,
which are the difference between experimental and predicted responses, exhibit a normal
distribution [67]. The relationship between predicted and actual data points for 7-day and
28-day compressive strength is shown in Figure 7c,d. The distribution of data points is
spread relatively close to the equality line, which indicates satisfactory fitting precision of
the models and adequate agreement between experimental and predicted results. Similarly,
Figure 7e,f represent the plot of residuals with respect to predicted responses. The data
scattering within the top and bottom red boundaries and the sinusoidal distribution of data
points corresponding to run number indicate acceptable accuracy of model predictabil-
ity. These diagnostic plots validate that the developed compressive strength models are
applicable to predict the 7-day and 28-day compressive models corresponding to MWA
and SD content [60–62]. Moreover, 3D graphs (Figure 7g,h) can also be used to establish a
relationship between factors (SD and MWA) and responses (CS). Compressive strength at
7 days and 28 days of curing showed a decline with increasing MWA substitution. However,
the substitution of SD showed an increase in compressive strength.

3.2.2. Effect on Flexural Strength and Statistical Analysis

Table 7 shows the ANOVA and fit statistics of 7-day and 28-day flexural strength.
ANOVA was used to evaluate the significance of independent factors and their effects on
responses. The validation and suitability of regression models for flexural strength were
performed by using the coefficient of determination (R2), adjusted R2, and predicted R2, as
shown in Table 7. Based on the fit summary and ANOVA, RSM suggested quadratic models
for flexural strength at 7 days and 28 days. The higher values of coefficient of determination
(R2 ≥ 0.90) and higher model F-value (>40) indicate that the proposed models are significant
and there is a substantial relationship between factors and corresponding responses. The
p-value of less than 0.05 also shows that the proposed model terms are significant with
more than a 95% confidence level. Similarly, the numerical difference between adjusted R2

and predicted R2 of less than 0.2 (Table 7) also indicates close agreement between predicted
and experimental results for 7-day and 28-day flexural strength.

In addition to model validation and fit statistics, the adequacy and normal distribution
of data can also be verified graphically by diagnostic plots. The diagnostic plots, such as
normal plots of residual, predicted vs. actual plots, and residual vs. run plots, can be used
in evaluating the accuracy of regression analysis [66]. The normal plots of residual for both
7-day and 28-day flexural strength are shown in Figure 8a,b. It can be observed from the
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plots that the relationship between the normal percentage of probability and the extremely
studentized residual is satisfactory because almost all the points are closely located along
the straight line for both responses. It indicates that the residual values, which are the
difference between experimental and predicted responses, exhibit a normal distribution [67].
The relationship between predicted and actual data points of 7-day and 28-day flexural
strength is shown in Figure 8c,d. The distribution of data points is spread relatively close to
the equality line, which indicates satisfactory fitting precision of the models and adequate
agreement between experimental and predicted results. Similarly, Figure 8e,f represent the
plot of residuals with respect to predicted responses. The data scattering within the top
and bottom red boundaries and the sinusoidal distribution of data points corresponding to
run number indicate acceptable accuracy of model predictability. These diagnostic plots
validate that the developed flexural strength models are applicable to predict the 7-day
and 28-day flexural models corresponding to MWA and SD content [60–62]. Moreover,
3D graphs (Figure 8g,h) can also be used to establish a relationship between factors (SD
and MWA) and responses (FS). Flexural strength at 7 days and 28 days of curing showed
a decline with increasing MWA substation. However, the substitution of SD showed an
increase in flexural strength.
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3.2.3. Effect on Tensile Strength and Statistical Analysis

Table 8 shows the ANOVA and fit statistics of 7-day and 28-day tensile strength.
ANOVA was used to evaluate the significance of independent factors and their effects on
responses. The validation and suitability of regression models for flexural strength were
performed by using the coefficient of determination (R2), adjusted R2, and predicted R2, as
shown in Table 8. Based on the fit summary and ANOVA, RSM suggested quadratic models
for tensile strength at 7 days and 28 days. The higher values of coefficient of determination
(R2 = 0.89) and higher model F-value (>40) indicate that the proposed models are significant
and there is a substantial relationship between factors and corresponding responses. The
p-value of less than 0.05 also shows that the proposed model terms are significant with
more than a 95% confidence level. Similarly, the numerical difference between adjusted R2

and predicted R2 of less than 0.2 (Table 8) also indicates close agreement between predicted
and experimental results for 7-day and 28-day tensile strength.

In addition to model validation and fit statistics, the adequacy and normal distribution
of data can also be verified graphically by diagnostic plots. The diagnostic plots, such as
normal plots of residual, predicted vs actual plots, and residual vs run plots, can be used in
evaluating the accuracy of regression analysis [66]. The normal plots of residual for both
7-day and 28-day tensile strength are shown in Figure 9a,b. It can be observed from the
plots that the relationship between the normal percentage of probability and the extremely
studentized residual is satisfactory because almost all the points are closely located along
the straight line for both responses. It indicates that the residual values, which are the
difference between experimental and predicted responses, exhibit a normal distribution [67].
The relationship between predicted and actual data points for 7-day and 28-day tensile
strength is shown in Figure 9c,d. The distribution of data points is spread relatively close to
the equality line, which indicates a satisfactory fitting precision of the models and adequate
agreement between experimental and predicted results. Similarly, Figure 9e,f represent the
plot of residuals with respect to predicted responses. The data scattering within the top
and bottom red boundaries and the sinusoidal distribution of data points corresponding to
run number indicate acceptable accuracy of model predictability. These diagnostic plots
validate that the developed tensile strength models are applicable to predict the 7-day and
28-day flexural models corresponding to MWA and SD content [60–62]. Moreover, 3D
graphs (Figure 9g,h) can also be used to establish a relationship between factors (SD and
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MWA) and responses (TS). Tensile strength at 7-day and 28-day curing showed a decline
with increasing MWA substitution. However, the substitution of SD showed an increase in
tensile strength.
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3.3. Prediction of Strength Properties

Interestingly, RSM also gives the coefficient of modeled terms for predicting the re-
sponse properties, in this case, compressive strength, flexural strength, and tensile strength
of concrete containing MWA and SD as substitutes. The generalized quadratic polynomial
Equation (1) can be modified by inserting the constant and coefficient of model terms (as
shown in Table 9). These equations can be used to predict the corresponding strength
properties of concrete containing MWA and SD as substitutes.
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Table 9. Coefficients of the equation to predict responses.

Coefficients of Equation

Responses

Compressive
Strength at

7-Day
MPa (psi)

Compressive
Strength at 28-Day

Flexural
Strength at

7-Day

Flexural
Strength at

28-Day

Tensile
Strength at

7-Day

Tensile
Strength at

28-Day

Constant C 18.61 (+2699.1) 29.04 (+4212.6) 2.91 (+421.9) 4.21 (+610.4) 2.4 (+348.1) 3.28 (+475.8)
MWA A1 −0.08 (−12.3) −0.36 (−52.9) −0.02 (−3.3) −0.027 (−3.9) −0.026 (−3.8) −0.06 (−8.2)

SD A2 0.15 (+21.7) 0.14 (+20.5) 0.02 (+3.4) 0.05 (+6.6) 0.015 (+2.3) 0.015 (+2.3)
MWA × SD A3 +0.0346 −0.6585 +0.0041 −0.0055 −0.0541 −0.1117

MWA2 A4 +0.0700 +1.2150 +0.0402 +0.0187 +0.0555 +0.1811
SD2 A5 −0.0297 +0.0170 −0.0032 −0.0412 +0.0091 +0.0233

Based on the above coefficients of equations (Table 9), the following prediction equa-
tions were generated using generalized Equation (1). The predicted values of the responses
in Equations (2)–(7) are in MPa.

CS7d = 18.61− 0.08(MWA) + 0.15(SD) + 0.0346(MWA× SD) + 0.070(MWA2)− 0.0297(SD2) (2)

CS28d = 29.04− 0.36(MWA) + 0.14(SD)− 0.6585(MWA× SD) + 1.215(MWA2) + 0.017(SD2) (3)

FS7d = 2.91− 0.02(MWA) + 0.02(SD) + 0.0041(MWA× SD) + 0.0402(MWA2)− 0.0032(SD2) (4)

FS25d = 4.21− 0.027(MWA) + 0.05(SD)− 0.0055(MWA× SD) + 0.0187(MWA2)− 0.0412(SD2) (5)

TS7d = 2.4− 0.026(MWA) + 0.015(SD)− 0.0541(MWA× SD) + 0.0555(MWA2) + 0.0091(SD2) (6)

TS28d = 3.28− 0.06(MWA) + 0.015(SD)− 0.1117(MWA× SD) + 0.1811(MWA2) + 0.0233(SD2) (7)

3.4. Optimization and Validation of Results

The multi-objective optimization technique was performed while considering all
factors (MWA and SD dosages) and responses (compressive, flexural, and tensile strengths
at 7 days and 28 days). The results (Table 10) indicated that 15% replacement of MWA
and 50% SD gives maximum strength properties compared with the control and all other
combinations. The predicted results from the optimum combination were also validated
through additional experiments. The error of less than 5% indicates that the precited results
are in good agreement with experimental data [61,62].

Table 10. Optimization of factor and experimental validation.

MWA
(%)

SD
(%)

7-Day CS
MPa (psi)

28-Day
CS

MPa (psi)
7-Day FS
MPa (psi)

28-Day FS
MPa (psi)

7-Day TS
MPa (psi)

28-Day TS
MPa (psi)

RSM results 15 50 24.62
(3571.01)

29.41
(4265.65)

3.78
(547.65)

5.37
(779.07)

2.75
(398.13)

3.32
(480.92)

Additional
Experimental

data
15 50 25.37

(3679.2)
30.58

(4435.42)
3.91

(567.36)
5.14

(745.14)
2.67

(387.98)
3.26

(473.24)

Error (%) – – 3 4 4 4 3 2

3.5. Cost Effect of Utilizing the MWA and SD

The marble waste aggregate and stone dust were both obtained from the dump sites of
the respective factories free of charge. This saved an overall 15–18% cost for the optimized
proportion in the production of concrete compared to the standard aggregates.
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4. Conclusions

The partial substitution of marble waste aggregate (MWA) and stone dust (SD) was
used to replace natural coarse and fine aggregates, respectively, in developing normal
strength concrete. The concrete specimens were subjected to physical, durability, and
strength tests. The following conclusion is drawn from this study.

1. With the addition of MWA, workability increases (up to slump +12% and compaction
factor −2%) attributed to the smooth surface and less absorption of MWA than
normally used coarse aggregate. On the other hand, substation of SD causes decreases
in workability (up to slump −4% and compaction factor +2%), which is attributed to
the finer particles of SD as compared to sand. Similarly, up to 8.4% less absorption in
the MWA specimen and 9.8% more absorption than the control specimen were noted.

2. Resistance to chemicals (acid attack) was less prominent in MWA (22% loss of material)
and SD (8.5% loss of material) as compared to the standard control specimen.

3. With a lower crushing value of MWA of 19.98%, as opposed to 16.98% of standard
coarse aggregate, a relatively smoother surface of MWA than standard coarse aggre-
gate, and less water absorption (paste adhesion), the bond of MWA was weaker than
standard coarse aggregate, as obviously visible in the fractured samples.

4. Due to better packing of a wide range of particle sizes of SD, i.e., a wider range of
particle gradation, and relatively higher specific gravity improved the density of
concrete to some extent. In general, the density relates to the durability of concrete
in later stages of service life. However, due to the likely increase of more uniform-
sized particles beyond optimum content, there was no clear increase observed in
strength parameters.

5. Compressive strength was observed to be slightly lower (14% at 7 days and 12%
at 28 days) with 30% MWA substitution but significantly enhanced with 50% SD
substitutions (39% at 7 days and 31% at 28 days) individually, as compared to the
control sample. However, the strength enhancement declines again with additional
SD content.

6. Flexural strength was observed to be slightly lower (15% at 7 days and 17% at 28 days)
up to 30% MWA substitution but significantly enhanced (42% at 7 days and 39% at
28 days) up to 50% SD substitutions individually, as compared to the control sample.

7. Split tensile strength was observed to be slightly lower (18% at 7 days and 18% at
28 days) up to 30% MWA substitution but significantly enhanced (46% at 7 days
and 47% at 28 days) up to 50% SD substitutions individually, as compared to the
control sample.

8. For establishing the combined effect of MWA and SD, RSM was applied, and based on
contour plots, three sets of MWA and SD substitutions were obtained for comparing
compressive strength with the target compressive strength of 3400 psi and 4200 psi
at 7 days and 28 days, respectively. The ensuing compressive strength was 3440 psi
(7-day) and 4129 psi (28-day) with the 10MWA-45SD combination, 3832 psi (7-day)
and 4421 psi (28-day) with the 15MWA-50SD combination, and 3350 psi (7-day) and
4071 psi (28-day) with the 20MWA-50SD combination.

9. A significant relationship between RSM predicted data and experimental results
was achieved for compressive strength, flexural strength, and tensile strength. The
proposed quadratic models are well fitted due to a higher R2 (>0.80) and a lower
p-value (<0.05), and hence the derived equations can be used to predict compressive
strength, flexural strength, and tensile strength.

10. MWA of 15% and SD of 50% replacements were obtained as optimized dosages to
replace coarse aggregates and fine aggregates, respectively. The predicted optimized
data was validated by additional experiments with an error of less than 5%.

11. An encouraging aspect of the research showed that at an early age, the strength
development of the optimized mix is significant. It may be attributed to the rougher
texture of SD particles and less absorption of MWA, thus leaving water available for
hydration as the combined effect of both substitutes created the opportunity for a
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stronger bond at the initial phases of hydration. It was observed that approximately
70% of the ultimate strength was achieved in the initial 7 days when cured at a curing
temperature of 27 ◦C ± 5 ◦C.

12. Re-utilization of waste materials and byproducts (such as marble waste aggregate
and stone dust), while reducing the consumption of natural aggregates, will lead to
achieving sustainability and producing green concrete.
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