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Abstract: Needs and demands of contemporary engineering stimulate continuous and intensive
development of design methods. Topology optimization is a modern approach which has been
successfully implemented in a daily engineering design practice. Decades of progress resulted in
numerous applications of topology optimization to many research and engineering fields. Since the
design process starts already at the conceptual stage, innovative, efficient, and versatile topology
algorithms play a crucial role. In the present study, the concept of the original heuristic topology
generator is proposed. The main idea that stands behind this proposal is to take advantage of the
colliding bodies phenomenon and to use the governing laws to derive original Cellular Automata
rules which can efficiently perform the process of optimal topologies generation. The derived
algorithm has been successfully combined with ANSYS, a commercial finite element software package,
to illustrate its versatility and to make a step toward engineering applications. Based on the results
of the tests performed, it can be concluded that the proposed concept of the automaton mimicking
colliding bodies may be an alternative algorithm to other existing topology generators oriented
toward engineering applications.

Keywords: topology optimization; cellular automaton; colliding bodies; heuristic update rules

1. Introduction

As it has been observed over the years, topology optimization has been a dynamically
developing research area with numerous applications to many research and engineering
fields. The researchers community continuously works on innovative, efficient, and versa-
tile topology optimization approaches, methods, and algorithms, whereas the spectrum
of numerous solutions of topology optimization problems ranges from classic Michell
structures to sophisticated contemporary engineering ones. The various approaches to the
generation of optimal topologies have been presented along with emerging concepts which
have been implemented in a broadly understood engineering area. The comprehensive
discussion on various aspects of topology optimization has been provided by many survey
papers: e.g., [1–4] recently complemented by Ribeiro et al. [5] and Logo and Ismail [6]. The
long-lasting development of topology optimization confirms that it still remains one of the
most important research fields within the area of structural and material design.

Along with the research issues of topology optimization, the practical aspects of engi-
neering implementation of topology optimization techniques have become more and more
important. As a result, the topology optimization tools are nowadays present in commer-
cial engineering software. However, the black-box topology generators implemented into
commercial software do not guarantee that the final results are the best available. Therefore,
although remarkable achievements have been already made toward topology optimization
application in engineering, there is still room for further investigations. Recently published
papers [7–11] may serve here only as examples.

In the present study, the concept of the original heuristic topology generator is pro-
posed. The main idea that stands behind this proposal is to take advantage of the colliding
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bodies phenomenon, and use the governing laws to derive original Cellular Automata
rules which can efficiently perform optimal topologies generation process. The inspiration
for this proposal was the series of papers by Kaveh and co-workers [12–15] in which the
concept of Colliding Bodies Optimization for a function minimization has been proposed.
This paper proposes an original technique which is also inspired by the collision of bodies
phenomenon but this time it is oriented toward optimization of structure topology. It is
worth underlining that the rules are built so as to cope also with irregular finite element
meshes. The derived algorithm has been combined with ANSYS 14.0, a commercial finite
element software package, to illustrate its versatility.

As mentioned above, the applied approach is based on the concept of Cellular Au-
tomata (CA). Cellular Automata are built so as to mimic the behavior of complicated
systems in a relatively easy way. From a computational point of view, the special local rules
are implemented with a view to control the performance of a system under consideration.
Hence, the local physical quantities are respectively updated, which allows us to describe
the global behavior of the system. The concept of Cellular Automata has been known since
the late 1940s when von Neumann and Ulam proposed this idea. Henceforth, this approach
has been found interesting by researchers representing various fields but probably for the
first time topology optimization has been discussed within the CA approach only in the
paper by Inou et al. [16]. Many papers have been hereafter published on that subject, and
the majority of them have appeared during the last two decades, see e.g., [17–20] or [21].
The efficient CA algorithm has been also proposed and then developed by Bochenek and
Tajs-Zielińska [22,23] and recently [24,25].

The outline of the paper is as follows. In Section 2, the topology optimization problem
is formulated, then the concept of Cellular Automata mimicking colliding bodies is intro-
duced, and finally the algorithm built based on this idea is described. Its implementation
in the topology generation process is illustrated by an introductory example. Original
examples of topology generation of selected 2D structures are discussed in the first part of
Section 3 presenting performance of the topology generator. Next in this section, utilizing
results of the preliminary computations, the Cellular Automaton is combined with ANSYS
as the efficient structural analysis tool and its application to selected, both plane and spatial,
engineering tasks is presented. With a view to cover a broad area of implementations, the
discussed tasks include also irregular cell lattice. Based on the results of performed tests,
the paper ends with concluding remarks in Section 4.

2. Methods and Concepts

In this section, the topology optimization problem is formulated, the concept of
Cellular Automata mimicking colliding bodies is introduced, and the algorithm built based
on this idea is described. The introductory example illustrates the implementation of the
proposed concept into the topology generation process.

2.1. Structural Topology Optimization

The most commonly formulated structural topology optimization problem is to gener-
ate material layout which within a design domain leads to a minimal value of the structure
compliance c, Equation (1). Hence, one can follow the optimization problem formulated
in a widely recognized paper by Sigmund [26]. The available material volume fraction
κ is defined and treated in the optimization process as the constraint imposed on structure
volume V, Equation (2). The finite element approach has been applied:

minimize c(d) = uTku =
N

∑
i=1

dp
i uT

i kiui (1)

subject to V(d) = κV0 (2)

k u = f (3)
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0 < dmin ≤ di ≤ 1. (4)

The quantity ui denotes the displacement vector, ki stands for the stiffness matrix,
and both are defined for N elements. The design variable di, which represents the relative
material density, is assigned to each element. In Equation (3), k represents the global
stiffness matrix, u stands for the global displacement vector, and f is the vector of forces.
Due to the simple bounds imposed in Equation (4) on the design variables with dmin (e.g.,
10−9) as a non-zero minimum value of relative density, singularity is avoided.

The SIMP (solid isotropic material with penalization) approach (e.g., [27]) in the form
of power law is adapted as the material representation, see Equation (5). The modulus of
elasticity Ei for each finite element is a function of the design variable di:

Ei = dp
i E0. (5)

In Equation (5), the quantity E0 stands for modulus of elasticity, defined for a solid
material, whereas p (typically p = 3) is responsible for penalization of intermediate den-
sities. This allows controlling the design process and leads to obtaining black-and-white
resulting structures. During the topology generation process, a material is redistributed
within the design domain, which results in removing parts unnecessary from design
criteria viewpoint.

2.2. Concept of the Cellular Automaton Mimicking Colliding Bodies

The selection of a proper method of topology generation determines the effectiveness
of the topology optimization process. Heuristic optimization techniques become popular
among researchers because they are easy to implement numerically, gradient information
is not required, and one can easily combine this type of algorithm with any finite element
structural analysis code.

In this paper, the original heuristic topology generator built as Cellular Automaton
which mimics Colliding Bodies (CAmCB) is proposed. The idea is that the design domain
of the structure is decomposed into a lattice of cells which are usually equivalent to finite
elements. For each cell, the surrounding cells form a neighborhood. The bodies are
distributed within this lattice (Figure 1).
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Figure 1. The cell lattice. A body is placed in each cell. The neighborhood, which is represented by
the red circle, is identified around each body/cell.

Let us assume that the bodies have masses and velocities. Masses are proportional to
cell areas whereas velocities are related to cell compliances. Furthermore, let us imagine
that the neighboring bodies collide with the central one, which results in changing its status.
In what follows, the central body can either be forced to remain in its position, or is pushed
away (Figure 2).
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From a topology generation point of view, the interpretation is that the central cell
remains solid, or is driven to become a void one (Figure 3).
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2.3. Local Update Rules

While building Cellular Automaton, it is assumed that the interactions between
bodies/cells take place only within the specified neighborhood, where they are governed
by local rules which are identical for all cells, and are applied simultaneously to each of
them. According to the concept of the paper, the local rules are derived so as to mimic
collisions taking place between bodies/cells within each neighborhood. The governing
equations based on the physics laws of momentum and energy are applied. Let us consider
the central cell and a neighboring one colliding with it (Figures 4 and 5).
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The governing equations are as follows:

mkvk1 − m0v01 = −mkvk2 + m0v02 (6)

1
2

mkv2
k1 +

1
2

m0v2
01 =

1
2

mkv2
k2 +

1
2

m0v2
02. (7)

Based on the above, the velocity of the central cell after collision equals:

v02 =
(mk − m0)v01 + 2mkvk1

m0 + mk
. (8)

As stated earlier, velocities are related to cell compliances and masses are proportional
to cell areas. Equation (8) can be rewritten in the form of Equation (9):

F02 =
(Ak − A0)F01 + 2AkFk1

A0 + Ak
, (9)

where A represents the cell area and F is a function associated with local compliances. It is
proposed to select the quantity F02 as the basis for building the update rule. Before that, the
details regarding how to calculate F values are given.

Based on the results obtained from a structural analysis, the values of local compliances
are calculated for all cells/elements. The compliances are sorted then in the ascending order,
and those having the lowest and the highest values are identified. In the next step, N1, N2
are selected and values of F are assigned to cells (i = 1, 2 . . . n) according to Equation (10):

Fi =


−C if i < N1

fi if N1 ≤ i ≤
C if i > N2

N2. (10)

A monotonically increasing function representing cell compliances is selected for the inter-
mediate interval N1 ≤ i ≤ N2 and then function values are assigned to the cells, respectively.
Here, the linear function is selected to fulfill: fi(N1) = −C and fi(N2) = C, thus:

fi = 2C
i

N2 − N1
− C

N2 + N1

N2 − N1
. (11)

The quantity C in Equation (11) is a user-specified parameter, usually equal to 1. The
above described compliance mapping technique, represented by Equations (10) and (11),
has been discussed also in [25].

Having finished with data preparation, the update rule can be built. Hence, repeating
collisions for all neighboring cells, the average quantity F02 can be calculated based on
Equation (12):

F02 =
1
M

M

∑
k=1

F02(k). (12)

Finally, the design variables can be updated according to Equation (13):

d(i)new = d(i) + mF02, (13)
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where m denotes the move limit (e.g., m = 0.2).

2.4. Algorithm

In order to implement the above-proposed design rule, a numerical algorithm was
built. The sequential approach was adapted for the optimization procedure, meaning that
for each iteration, the structural analysis performed for the optimized element is followed
by a local updating process. Simultaneously, for a specified volume fraction, a global
volume constraint is applied. As a result, during the optimization process, the generated
topologies preserve a specified volume fraction of a solid material.

The issue to discuss regards the form of Equation (9). In the case of a regular lattice of
cells/elements, the first component of the numerator vanishes. In order to preserve the
influence of the central cell compliance on the final result during the iteration process, it is
proposed to modify the cells area representation:

Ai = A[1 + b(2r − 1)], (14)

where

b = b0

(
1 − t − 1

tmax − 1

)
. (15)

In Equations (14) and (15), b0 is a small value, r is a random number taken from
[0, 1] interval, t stands for the current iteration number, whereas tmax is a selected number
of iterations. As a result, Ai = A only for t = tmax.

In order to control the topology generation, the threshold values N1 and N2 can be
modified so as to adjust the width of the interval [N1, N2] during the iteration process. It
is proposed to start with a relatively wide interval, and then to reduce it successively. As
a result, at the beginning of the topology generation process, the large design domain is
searched by the Automaton, and the majority of void cells is eliminated. Then, during the
iterative process while reducing the interval [N1, N2], the so-called gray cells of intermediate
densities are eliminated, which finally results in obtaining distinct solid/void structures.

2.5. Introductory Example

The rectangular structure shown in Figure 6 has been chosen as the introductory
example. The mesh of 3200 (80 × 40) square elements/cells has been generated to per-
form structural analysis and topology optimization for the data: E0 = 10 GPa, ν = 0.3,
P = 100 N, a = 40 mm, κ = 0.5, b0 = 0.05. As for the topology generation, the Moore type
neighborhood, i.e., cells having common vertices with the central one, has been applied.
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The CAmCB algorithm found the final topology, which is shown in Figure 7, whereas
the iteration history is given in Figure 8. The strategy of Fi, see Equation (10), implementa-
tion was as follows: one started with N1 = N·0.02, and then from iteration 25 N1 = N·0.5,
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where N is the number of cells. Simultaneously, N2 = N·0.6 has remained fixed for the
entire iteration process.
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The compliance value found for this structure is equal to 13.62 Nmm. This outperforms
the solution reported in [25] where compliance of 14.02 Nmm has been obtained for the
final topology.

3. Results and Discussion

The original examples of topology generation are discussed in this section, presenting
the performance of the algorithm. With a view to cover a broad area of implementations,
the discussed tasks regard plane and spatial structures. The case of irregular cell lattice is
also considered.

In what follows, to illustrate more thoroughly how the proposed CAmCB algorithm
works, some numerical examples have been selected. The algorithm performance is pre-
sented first for plane test structures, and then for plane and spatial engineering structures.
For the test structures, a Matlab-based algorithm has been applied, whereas for engineering
structures, the topology generator has been combined with the ANSYS system, which was
responsible for performing the structural analysis.

3.1. Topology Generation for the Test Structures

The results of topology generation performed for four plane test structures are pre-
sented below.
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3.1.1. Test Structure 1

To perform the first test, the structure shown in Figure 9 has been selected. The mesh
of 60,000 (400 × 150) square elements/cells has been implemented, and structural analysis
and topology optimization have been performed for the data: E0 = 10 GPa, ν = 0.3,
P = 100 N, a = 50 mm, κ = 0.25, b0 = 0.05. The Moore type neighborhood has
been applied.
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Figure 9. The test structure 1 with applied loads and support.

The algorithm found the final topology, which is shown in Figure 10, whereas the
iteration history is given in Figure 11. The strategy of Fi implementation was as follows:
one started with N1 = N·0.02, and then from iteration 25 N1 = N·0.75, and from it-
eration 75 N1 = N·0.9. The quantity N2 = N·0.98 has remained fixed for the whole
iteration process.
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3.1.2. Test Structure 2

For the structure shown in Figure 12, the mesh of 80,000 (400 × 200) square ele-
ments/cells has been generated. The structural analysis and topology optimization have
been performed for the data: E0 = 10 GPa, ν = 0.3, P = 100 N, a = 100 mm, κ = 0.3,
b0 = 0.05. The Moore type neighborhood has been applied.

Materials 2022, 15, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 11. The compliance history for the test structure 1. Minimal value: 151.84 Nmm. Black dots 
on the red line represent the compliance values for subsequent iterations. 

3.1.2. Test Structure 2 

For the structure shown in Figure 12, the mesh of 80,000 (400 × 200) square ele-
ments/cells has been generated. The structural analysis and topology optimization have 
been performed for the data: 𝐸଴ = 10 GPa, 𝜈 = 0.3, 𝑃 = 100 N, 𝑎 = 100 mm, 𝜅 = 0.3, 𝑏଴ =0.05. The Moore type neighborhood has been applied. 

 
Figure 12. The test structure 2 with applied load and support. 

The final structure topology found by the algorithm and the illustration of the com-
pliance history are given in Figures 13 and 14, respectively. As for the strategy of im-
plementation of 𝐹௜, one started with 𝑁ଵ = 𝑁 ∙ 0.35, and then from iteration 25 𝑁ଵ = 𝑁 ∙0.5, from iteration 50 𝑁ଵ = 𝑁 ∙ 0.75, and finally from iteration 75 𝑁ଵ = 𝑁 ∙ 0.9. 𝑁ଶ = 𝑁 ∙0.98 has remained fixed for all iterations. 

Figure 12. The test structure 2 with applied load and support.

The final structure topology found by the algorithm and the illustration of the com-
pliance history are given in Figures 13 and 14, respectively. As for the strategy of imple-
mentation of Fi, one started with N1 = N·0.35, and then from iteration 25 N1 = N·0.5,
from iteration 50 N1 = N·0.75, and finally from iteration 75 N1 = N·0.9. N2 = N·0.98 has
remained fixed for all iterations.
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3.1.3. Test Structure 3

To perform the third test, the structure shown in Figure 15 has been proposed. The
mesh of 80,000 (400 × 200) square elements/cells has been implemented and structural
analysis and topology optimization have been performed for the data: E0 = 10 GPa,
ν = 0.3, P = 100 N, a = 10 mm, κ = 0.3, b0 = 0.05. The Moore type neighborhood has
been applied.
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Figure 15. The test structure 3 with applied load and support.

The algorithm found the final topology, which is shown in Figure 16, whereas the
iteration history is given in Figure 17. The strategy of Fi implementation was as follows:
one started with N1 = N·0.02, and then from iteration 25 N1 = N·0.75, from iteration
50 N1 = N·0.75, and finally from iteration 75 N1 = N·0.9. The quantity N2 = N·0.98
remained fixed for the whole iteration process.
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3.1.4. Test Structure 4

For the structure shown in Figure 18, the mesh of 137,500 (250 × 550) square ele-
ments/cells has been applied. The structural analysis and topology optimization have been
performed for the data: E0 = 10 GPa, ν = 0.3, P = 100 N, a = 50 mm, κ = 0.25, b0 = 0.05.
The Moore type neighborhood has been applied.
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Figure 18. The test structure 4 with applied load and support.

The final structure topology found by the algorithm and the illustration of the com-
pliance history are given in Figures 19 and 20, respectively. As for the strategy of Fi
implementation: one started for N1 = N·0.02, and then from iteration 25 N1 = N·0.5,
from iteration 50 N1 = N·0.75, and finally from iteration 75 N1 = N·0.9. N2 = N·0.98 has
remained fixed for all iterations.
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As can be seen from the above, the original CAmCB algorithm can effectively generate
minimal compliance topologies. It is also worth comparing the obtained results with the
ones which can be found for the considered structures when using other existing and
popular approaches. The top88 algorithm [28] based on the optimality criterion and the
PTOc one [29], utilizing the concept of proportional topology optimization have been
selected for this purpose. The above papers provide Matlab codes of topology generators
and these have been used to perform computations for the test structures defined earlier in
this section. Table 1 gathers the results of these computations.

Table 1. Comparison of minimum compliance values [Nmm] found for the three algorithms.

Algorithm Test Structure 1 Test Structure 2 Test Structure 3 Test Structure 4

CAmCB 151.84 125.07 342.96 22.71
top88 [28] 164.26 139.91 360.90 23.84
PTOc [29] 164.90 127.49 347.93 23.93

One can observe that the CAmCB algorithm proposed in this paper allows us to find
results which can be better in terms of objective function values than the ones obtained
with the use of other approaches selected for this comparison.

3.2. Engineering Applications

A series of illustrative engineering examples has been selected to examine the effec-
tiveness of the introduced concept of the CAmCB topology generator. Both regular and
irregular cell lattices are considered to show the algorithm performance and the versatility
of the approach. As mentioned earlier, the proposed topology generator can be easily
combined with any solver built on finite element methods. Hence, the optimization module
has been linked to the professional system ANSYS to perform structural analyses. It is
worth noting that the proposed algorithm does not require additional density filtering, the
so-called gray elements are eliminated, and the checkerboard effect has not been observed
for generated topologies.

3.2.1. Mechanical Part

The model of a control arm structure presented in Figure 21 has been chosen for
this purpose. The mesh of 16,304 elements/cells has been generated to perform struc-
tural analysis and topology optimization for the data: E0 = 210 GPa, ν = 0.28, κ = 0.4,
b0 = 0.01. The structure consists of a non-optimized region presented in Figure 22 as a
gray area whereas the design domain is presented as a red area. The structure is loaded
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by two concentrated forces: a horizontal force equal to 7000 N and a vertical one equal to
2700 N. The horizontal displacement of nodes in the inner bound of the round hole A are
equal to zero, while all nodes in area B are fixed.
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Figure 22. The design domain, loads, and supports of the control arm.

As for the strategy of Fi implementation: one starts with N1 = N·0.02, and then
from iteration 25 N1 = N·0.5, and from iteration 50 N1 = N·0.75, whereas N2 = N·0.98
remains fixed for all iterations. This strategy has been applied for all presented engineering
examples. It is worth pointing out that in order to complete the optimization process about
50 iterations are needed.

The algorithm found the final topology, which is shown in Figure 23. The resulting
compliance equals 11,949 Nmm. Referring to the prior comparison of the results, the value
of 12,372 Nmm was obtained when the algorithm [28] was utilized.
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Figure 23. The final topology found for the control arm.

The CAmCB algorithm codes for the example considered in this section are provided
in the Supplementary Files.

3.2.2. The Frame Structure-Generation of Topology for Irregular Cell Lattices

The aim of this example is to extend the presentation of the proposed algorithm
toward an irregular grid of cells related to a non-regular mesh of finite elements. Resizing
a traditional uniform grid of cells allows us to obtain flexible solutions, for e.g., extremely
irregular design domains where it is difficult or impossible to cover them with uniform
cells. Additionally, regions with stress concentrations, such as around holes or sharp edges,
should be covered with a fine mesh, which is not necessary for the structure as a whole.
The procedure of refining a mesh in selected regions can be used in order to achieve an
accurate solution without an excessive increase of the number of elements caused by using
a fine mesh implemented for the whole structure.

The example illustrating this case is the portal frame presented in Figure 24. The data
is as follows: E0 = 200 GPa, ν = 0.25, κ = 0.5, b0 = 0.01. The irregular lattice of cells is
distributed according to Figure 25. For the irregular lattice of 14,024 cells (two-dimensional
6-node triangular elements—Plane82) ANSYS software was utilized for static analysis in
the optimization process. The optimization has been performed and the obtained final
topology is presented in Figure 26. Loads of 100 N each have been applied. The resulting
compliance is equal to 5.03 × 10−3 Nmm.

The algorithm found the final topology, which is shown in Figure 26.

3.2.3. The Box Tube-Generation of Topology for Spatial Structure

The box tube shown in Figure 27 has been selected as the final example. The box tube
cross section with 3 mm wall thickness is a square (100 mm × 100 mm), the tube is 250 mm
long. Loads of 1000 N each have been applied as shown in Figure 28. The data is as follows:
E0 = 200 GPa, ν = 0.3, κ = 0.4, b0 = 0.01. A regular mesh of 11,088 three-dimensional
8-node elements (Solid45) has been applied for a static analysis made by ANSYS software
(the length of the element edge is 3 mm). For the example of this section, the algorithm
utilizes the von Neumann type of neighborhood. The resulting topology is presented in
Figure 29, for which the final compliance equals 278.8 Nmm.

The algorithm found the final topology which is shown in Figure 29.
The algorithm performance was additionally tested based on the same example,

repeating computations for low volume fraction κ = 0.25. The resulting topology for which
the final compliance reaches the value equal to 586.3 Nmm is presented in Figure 30.
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4. Concluding Remarks

The discussion regarding the proposed algorithm and its performance is summed
up in this section. In the presented study, the original concept of Cellular Automaton
mimicking Colliding Bodies (CAmCB) has been applied for topology optimization using
the minimum compliance as the objective function. The CAmCB algorithm combines
Cellular Automata heuristic with Colliding Bodies phenomenon to create a fast conver-
gent technique which provides black-and-white topologies, without gray regions and the
checkerboard effect. Moreover, additional density filtering is not necessary and there is
no need to calculate gradients. In order to illustrate the effectiveness of the proposed
CAmCB algorithm, selected numerical examples have been investigated. The algorithm
performance is presented for plane test structures and for plane and spatial engineering
structures. In the latter case, the proposed optimizer was combined with professional FEM
analysis codes. The advantage of the developed algorithm is that it is a versatile technique
which allows implementation of rectangular or triangular lattices, adaptation to highly
non-uniform finite element lattices, as well as consideration of the total volume constraint
with large and small volume fraction which is important especially for lightweight topology
optimization. Preliminary studies reveal the possibility of applying CAmCB algorithm into
uncommon but interesting issues such as the consideration of design-dependent loading
(self-weight) or topology optimization of multi-material structures. The results of the tests
performed so far are encouraging, which allows us to consider the proposed concept of the
automaton mimicking colliding bodies phenomenon as an alternative algorithm to other
existing topology generators suited for engineering applications.
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https://www.mdpi.com/article/10.3390/ma15228057/s1.
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25. Tajs-Zielińska, K.; Bochenek, B. Topology algorithm built as automaton with flexible rules. Bull. Pol. Acad. Sci. Tech. Sci.

2021, 69, e138813.
26. Sigmund, O. A 99 line topology optimization code written in MATLAB. Struct. Multidiscip. Optim. 2001, 21, 120–127. [CrossRef]
27. Bendsoe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2003.
28. Andreassen, E.; Clausen, A.; Schvenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in Matlab using 88 lines of

code. Struct. Multidiscip. Optim. 2011, 43, 1–16. [CrossRef]
29. Biyikli, E.; To, A.C. Proportional topology optimization: A new non-sensitivity method for solving stress constrained and

minimum compliance problems and its implementation in Matlab. PLoS ONE 2015, 10, e0145041. [CrossRef]

http://doi.org/10.1007/s00158-013-0956-z
http://doi.org/10.5772/intechopen.80173
http://doi.org/10.3390/app11052112
http://doi.org/10.1007/s00158-022-03184-2
http://doi.org/10.3390/ma15144972
http://doi.org/10.1007/s00158-022-03197-x
http://doi.org/10.3390/ma15134483
http://doi.org/10.1080/0305215X.2022.2137877
http://doi.org/10.1016/j.compstruc.2014.04.005
http://doi.org/10.1016/j.advengsoft.2014.08.003
http://doi.org/10.1115/1.2336251
http://doi.org/10.1007/s00158-019-02254-2
http://doi.org/10.1007/s00158-020-02533-3
http://doi.org/10.1007/s00158-014-1202-z
http://doi.org/10.1007/s00158-016-1614-z
http://doi.org/10.3390/su13063435
http://doi.org/10.1007/s001580050176
http://doi.org/10.1007/s00158-010-0594-7
http://doi.org/10.1371/journal.pone.0145041

	Introduction 
	Methods and Concepts 
	Structural Topology Optimization 
	Concept of the Cellular Automaton Mimicking Colliding Bodies 
	Local Update Rules 
	Algorithm 
	Introductory Example 

	Results and Discussion 
	Topology Generation for the Test Structures 
	Test Structure 1 
	Test Structure 2 
	Test Structure 3 
	Test Structure 4 

	Engineering Applications 
	Mechanical Part 
	The Frame Structure-Generation of Topology for Irregular Cell Lattices 
	The Box Tube-Generation of Topology for Spatial Structure 


	Concluding Remarks 
	References

