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Abstract: The findings of an extensive experimental research study on the usage of nano-sized cement
powder and other additives combined to form cement–fine-aggregate matrices are discussed in this
work. In the laboratory, dry and wet methods were used to create nano-sized cements. The influence
of these nano-sized cements, nano-silica fumes, and nano-fly ash in different proportions was
studied to the evaluate the engineering properties of the cement–fine-aggregate matrices concerning
normal-sized, commercially available cement. The composites produced with modified cement–fine-
aggregate matrices were subjected to microscopic-scale analyses using a petrographic microscope, a
Scanning Electron Microscope (SEM), and a Transmission Electron Microscope (TEM). These studies
unravelled the placement and behaviour of additives in controlling the engineering properties of the
mix. The test results indicated that nano-cement and nano-sized particles improved the engineering
properties of the hardened cement matrix. The wet-ground nano-cement showed the best result,
40 MPa 28th-day compressive strength, without mixing any additive compared with ordinary and
dry-ground cements. The mix containing 50:50 normal and wet-ground cement exhibited 37.20 MPa
28th-day compressive strength. All other mixes with nano-sized dry cement, silica fume, and fly
ash with different permutations and combinations gave better results than the normal-cement–
fine-aggregate mix. The petrographic studies and the Scanning Electron Microscope (SEM) and
Transmission Electron Microscope (TEM) analyses further validated the above findings. Statistical
analyses and techniques such as correlation and stepwise multiple regression analysis were conducted
to compose a predictive equation to calculate the 28th-day compressive strength. In addition to these
methods, a repeated measures Analysis of Variance (ANOVA) was also implemented to analyse the
statistically significant differences among three differently timed strength readings.
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1. Introduction

In the past decade, construction technology has undergone some profound changes.
On the one hand, the emphasis has been on the construction techniques, and on the other,
on using a variety of construction materials, specifically alternate materials. Many research
studies from the viewpoint of both the short- and long-term mechanical characteristics of
cementitious composites have been undertaken. This has resulted in the establishment
of different additives to improve the physicochemical and mechanical properties of con-
ventional concrete. The neo-improved concrete now shows a much better crack arrest
mechanism, better creep–shrinkage performance, high durability, etc. [1–4]. There are few
critical studies on the application of nanotechnology in concrete production. Nano-sized
particles, having greater surface area than volume, have a high potential for tremendous
chemical activity [5–7]. Nano-engineering and nano-modification of cement represent an
important arena, though in the embryonic stage as far as mass production and utilization
are concerned [7–10]. A limited number of investigations are available, dealing with the
modification of cement in nano-sized particles and their noteworthy effect as nano-binders
for concrete [10].

Nanotechnology is another promising field of study (e.g., see Feynman [6]) that is
bound to revolutionize material and construction technology when applied to the con-
struction industry [9–12]. Furthermore, with the increasing demand for optimal material
resource realization and sustainable development approaches, research on nanotechnology
and its application for improving the performance of cementitious composites are very
much warranted [1]. A number of recent studies have demonstrated that the use of cement
hydration products on the nano-scale enhances the strength of cementitious composites,
and nano-fly ash has been combined with cement matrix in varied quantities in order
to collate and compare conventional cement matrix’s engineering features with those of
nano-additives [13–15]. A significant improvement in the properties of the cementitious
matrix was discerned in this study, showing agreement with other studies [16–18].

Combining the nano-scale of different materials offers avenues for developing new ad-
ditives for cement, such as superplasticizers, nano-particles, or nano-reinforcements [16–18].
Much of the work to date with nano-particles has been performed with nano-silica (nano-
SiO2 and nano-titanium oxide (nano-TiO2). There are a few studies on incorporating
nano-iron (nano-Fe2O3), nano-alumina (nano-Al2O3), and nano-clay particles [12,19–22].

Nano-SiO2 is more efficient in enhancing strength and other engineering properties
than silica fume. The addition of 10% nano-SiO2 with dispersing agents increases the
compressive strength of cement mortars by 26% in 28 days compared with only a 10%
increase with the addition of 15% silica fume [11,23–25]. In this research, nano-cement
and nano-silica fumes were developed in the laboratory, and their combined effects were
focused on to determine the strength parameters. To the best of our knowledge, this type
of work has not been performed previously [24–26].

Nano-Al2O3 shows a significant increase in the modulus of elasticity, i.e., up to 143%
at a dosage of 5%. However, it has a limited effect on the compressive strength, and no
other significant changes have been reported [21,26,27].

The ability to insert a variety of organic molecules, preferably nano-sized, into the basic
C-S-H structure can provide the potential for creative manipulation. This is in addition
to the layered structure and the tendency to have structural defects in the silicate chains,
such as the missing bridging tetrahedron of C-S-H [28–30]. Three schemes for hybridizing,
or incorporating, “guest molecules” into C–S–H were proposed by Minet et al. [18] who
demonstrated that it could accommodate small-sized organic groups directly linked to the
silicate chains in the interlayer space of C–S–H [11,26,31,32].
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A recent study by Reza found that “nano-MgO” influences the “microstructure” and
“strength” of “cement composites” [31]. By comparing the “treated composites” with the
“plain composite”, the findings indicate that, in 7 and 28 days, 1% of “nano-MgO binder” by
weight increases the “compressive strength” by 103 and 80%, respectively, while 95 and 70%
of the “flexural strength” are the increases for the plain composites. The “microstructure” of
the “cementitious composites” with “nano-MgO” is more “compact” and “homogeneous”
than that of “plain composites” due to the “expansive properties” of “nano-MgO” [31].

From the existing studies, it is possible to develop novel “multifunctional”, efficient,
performance-enhancing “cementitious composites” that can be suited for a wide range of
applications by manipulating the “material’s structure” on the “nanoscale”, such as with
“nanoparticles” and “nanoscale fibers” [23]. “Conventional concrete” has been shown to
be improved in its “pore structure” to form a “C–S–H gel” faster and to be stronger, more
“flexible”, and more “durable” when reinforced with “nanoparticles”. The reinforcement
characteristics of “nano-additives” and “nano-sized cement” have been demonstrated
to enhance the “strength”, “fracture characteristics”, and “durability” of “cementitious
composites” [23].

Hence, nanotechnology researchers have begun to develop novel materials in recent
years due to the need to use them for increasing the characteristics of various materials
in general and materials utilized in the construction sector in particular [33–35]. Previous
studies have investigated normal cement composites with nano-additives [36,37], whereas
this research study focused on converting cement into nano-cement, followed by converting
other additives into nano-additives; then, their individual and combined effects were
studied.

Hence, nano-sized cement as well as nano-additives have nano-sized characteristics
that change “cement hydration”, the “compaction degree”, and the “thixotropy behavior”,
contributing to the “modification of cement hydration”. It is possible to explore all of these
effects to make “concrete” that is “stronger”, “greener”, and “workable”. In addition to
raising the “mechanical properties” of “cement-based composite materials”, the “chemical
reactivity” of “nanomaterials” can be used to modify the “morphology”, thus optimizing
the “C–S–H gel structure” and improving the “nanomechanical properties”, which have
been proved to have high “durability enhancement capabilities”.

According to literary sources, “nano-additives” and “nanosized cement” increase
the “packing density” both in the “cementitious matrix” as well as in the “interfacial
transition zone”. In the “interfacial transition zone” between the “nano-reinforcements” or
“nano-additives” and the “cementitious matrix,” the “friction at the interface” is dependent
on “packing density” and “stiffness” [38]. Therefore, a “cementitious composite” that is
frictionally bound has superior “mechanical characteristics.” Several studies have found
that “nano-additives” and “nanosized cement” accelerate “hydration,” thereby contributing
to the development of “flexural strength” in the early stages. It is also worth noting that
lower “CH content” and higher “C–S–H content,” along with the “seeding effect” of
“nano-sized particles,” extensively contribute to strengthening the “interfacial-frictional
bond.”

It was found through a literature search that the utilisation of nanotechnology in
cement paste, mortar, and concrete is on the rise. This growth can be attributed to the avail-
ability of freshly discovered nanomaterials, as well as the rising popularity of nanomaterial-
modified cement composites. Nanotechnology in cements focuses on two key areas: the
creation of novel nano-scale-engineered products for the concrete industry and the charac-
terization and understanding of materials on the nano- and micro-scales using cutting-edge
characterization techniques. Hitherto, limited studies can be found where comparisons
are made between the dry- and wet-grinding of the constituents. Moreover, the literature
survey reported a lack of investigations into the mechanical influence of different permu-
tations and combinations of nano-sized dry cement, silica fume, and fly ash. Thus, the
influence of these nano-sized cements, nano-silica fumes, and nano-fly ash in different



Materials 2022, 15, 8066 4 of 22

proportions was studied to evaluate the engineering properties of cement–fine-aggregate
matrices using normal-sized, commercially available cement.

2. Materials and Experimental Programme

To assess the effect of nano-modification on cement matrices, nano-sized dry- and
wet-ground cements were produced and were used as additives in cement matrices to test
their strength. Other construction materials used in different proportions in the mix were
cement, fine aggregates, coarse aggregates, silica fumes, fly ash, and acetone.

Cement, fine aggregates, silica fume, and fly ash were studied using a standard
petrographic microscope and a Scanning Electron Microscope (SEM). Nano-cement was
also studied under a Transmission Electron Microscope (TEM), as well as a SEM. Finally,
cement concrete blocks were cast, and their compressive strength was measured as per
the recommendation of the relevant Indian Standard Code of Practices. It is necessary to
evaluate the compressive strength of cement mortar cubes in order to determine whether
or not cement satisfies the requirements of the Indian standard specifications and whether
or not it is capable of producing concrete with the necessary compressive strength.

Concrete is utilised in construction because of its ability to withstand compressive
stresses. However, in situations where the tensile strength or shear strength is of major
concern, the compressive strength is estimated to be the most important property of a
cement mortar cube.

2.1. Materials Used for Experimentation

Shree Ultra 43 grade ordinary Portland cements were utilized for the research work. In
the laboratory, the physical properties of cement were determined, as indicated in Table 1.

Table 1. Properties of cements.

S. No. Type of Cement Consistency Initial Setting Time (min) Final Setting Time (min)

1. Normal cement 28.50% 61 294
2. Dry-ground nano-cement 30.00% 58 291
3. Wet-ground nano-cement 32.00% 54 290

Badarpur sand was selected since it was readily accessible. The sand was separated
and screened to remove lumps of clay and other foreign and detrimental materials, after
which it was washed with water and air-dried. Table 2 shows the grading and fineness
modulus of sand.

Fineness Modulus =
250.35

100
= 2.5035

Table 2. Sieve analysis results of fine aggregates (sand).

S. No. IS: Sieve Designation Weight Retained
(g)

Cumulative Weight Retained
(g)

% Cumulative Weight
Retained

1. 4.75 mm Nil 0 0
2. 2.36 mm 20 20 1
3. 1.18 mm 235 255 12.75
4. 600 micron 560 815 40.75
5 300 micron 1102 1917 95.85
6. 150 micron 83 2000 100.00

Fly ash was collected from the Panipat (Haryana) thermal power plant. The physical
properties of fly ash are given in Table 3.
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Table 3. Physical properties of fly ash.

S. No. Constituent/Property Value

1. Colour Grey

2. Percent passing 45-micron sieve 90%

3. Size of the particle 4.70 × 10−7 m

4. Maximum dry density (MDD) 9.30 kN/m3

5. Optimum moisture content (OMC) 27.5%

6. Specific gravity 2.02 at 27 ◦C

7. Surface area 3060 cm2/g

Coarse aggregates of locally available quartzite were used in the mix. The properties
of the coarse aggregates were determined via sampling and testing in accordance with
the requirements of BS 812: Part 103:1985. The specific gravity of the aggregates was 2.76,
and the water absorption was 0.40 percent. The particle size distribution of the coarse
aggregates used was as presented in Table 4 and illustrated in Figure 1.

Table 4. Gradation and properties of locally available quartzite coarse aggregates.

Sieve No. Mass Retained (g) Percentage Retained (%) Cumulative Percentage
Retained (%)

Cumulative Percentage
Passing (%)

40.00 mm 0 0 0 100

20.00 mm 330 7.2 7.2 92.8

12.50 mm 3060 66.8 74.0 26.0

10.00 mm 1100 24.0 98.0 2

4.75 mm 92 2.0 100.0 0
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For the experiments, we obtained silica fume from Elkem Company. The properties of
silica fume are given in Table 5.
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Table 5. Physical properties of silica fume.

S. No. Description Result

1. Particle size 6.09 × 10−8 m

2. Surface area 14 m2/gm

3. Density 2.2 g/cm3

2.2. Conversion of the Constituent Material to Nano-Size

The conversion of the constituent particles to the nano-scale was carried out with the
help of Ball Mill Machine (FRITSCH, Germany) in two ways, i.e., via dry-grinding (Figure 2)
and wet-grinding (Figure 3). Dry-grinding was carried out for all the constituents, while
wet-grinding was only carried out for cement. Dry-grinding reduces the size via particle-
on-particle impacts, while wet-grinding smashes particles against solid grinding media
in a liquid, dispersing the raw material in a slurry and then circulating it. In areas with
ample water supply, contractors are naturally inclined to use concrete wet-grinding and
-polishing, since they were developed long before dry-grinding. Throughout this process,
water is primarily used to prevent the diamond tool from overheating and to provide
lubrication to reduce friction. It is generally more efficient to grind wetly. This is because
thorough mixing takes place when the material is mixed, enabling more balanced feed to
be sent directly to the grinding mill. This hazard is eliminated, since dust is not prevalent.
This results in a cleaner plant. It is possible to perform a more efficient classification for
kiln feed, although thickeners are required due to high dilutions. It is less expensive to
resort to less efficient dry-grinding methods where low-cost fuel is available, because the
extra heat needed during calcining drives off the water.

Due to the development of better air separators and dust collectors, some of these
problems have been minimized to the point where present-day costs are virtually identical.

Acetone was utilized for the wet-grinding of cement. All the converted materials
were studied under a Scanning Electron Microscope (SEM) before and after conversion to
ascertain the morphological properties of the particles of cement, fly ash, and silica fumes,
and the results are presented in Figure 4, respectively. Transmitted electron microscopy
was also used for ordinary cement, dry-ground cement, and wet-ground cement, and the
results are shown in Figure 5, respectively. Numerous analytical attachments, including
multiple EDS, EBSD (co-planar with EDS), WDS, CL, STEM, heating/cooling sub-stages,
etc., may be easily mounted onto the SEM (Jeol 700SM) large specimen chamber through
ports carefully located on the instrument. Similarly to the SEM, the TEM is an instrument
used for electronic spectroscopic imaging. The TEM has the capacity to perform analytical
measurements and has a higher spatial resolution than the SEM.
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2.3. Compressive Strength Test of Cement Matrix

To study the materials’ performance and mix, 70.06 mm size cubes were cast in the
laboratory (Figure 6). In total, 176 cement cube samples were cast, and specific designations
were assigned to them. The details of the work plan are given in Table 6. The constituent
materials of the cubes were cement, fine aggregates, and potable water. The ratio of cement
to fine aggregates was taken as 1:3 by weight. The water–cement ratio was kept as 0.45. The
proportions of the material matrices included a fixed sand proportion, i.e., 3, and variations
in the cement content, i.e., from 0.45 to 1, in the five materials (i.e., nano-cement, silica fume,
nano-silica fume, nano-fly ash, and fly ash), forming binary, tertiary, and quaternary blends
of the cementitious mixture. The fractional variations of cement and nano-cement were
0.1, 0.45, 0.5, and 1, respectively, whereas the shares of silica fume, nano-silica fume, fly
ash, and nano-fly ash were kept fixed, i.e., 0.1 only. After casting the specimens, the cubes
were cured for the specified durations of 7, 14, and 28 days. To determine their crushing
strength, the cubes were put through compression testing equipment until they failed.

The compressive strength of the cement-paste cubes is given in Table 7. The cement
matrix cubes including the nano-particles demonstrated outstanding strength after 7, 14,
and 28 days, as can be observed. As a result, the material system could be trusted for its
intended use.
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Figure 6. Concrete specimen in the mould on vibrating table.

Table 6. Work plan for compressive strength test on cement matrix.

S. No. Type Composition Abbreviation Ratio

1. I Cement:sand C:S 1:3

2. II Nano-cement:sand NC:S 1:3

3. II Nano-cement (wet):sand NC:S 1:3

4. III Cement:nano-cement:sand C:NC:S 0.5:0.5:3

5. IV Cement:silica fume:sand C:SF:S 0.9:0.1:3

6. V Nano-cement:silica fume:sand NC:SF:S 0.9:0.1:3

7. VI Cement:nano-cement:silica fume:sand C:NC:SF:S 0.45:0.45:0.1:3

8. VII Cement:nano-silica fume:sand C:NSF:S 0.9:0.1:3

9. VIII Nano-cement:nano-silica fume:sand NC:NSF:S 0.9:0.1:3

10. IX Cement:nano-cement:nano-silica fume:sand C:NC:NSF:S 0.45:0.45:0.1:3

11. X Cement:fly ash:sand C:FA:S 0.9:0.1:3

12. XI Nano-cement:fly ash:sand NC:FA:S 0.9:0.1:3

13. XII Cement:nano-cement:fly ash:sand C:NC:FA:S 0.45:0.45:0.1:3

14. XIII Cement:nano-fly ash:sand C:NFA:S 0.9:0.1:3

15. XIV Nano-cement:nano-fly ash:sand NC:NFA:S 0.9:0.1:3

16. XV Cement:nano-cement:nano-fly ash:sand C:NC:NFA:S 0.45:0.45:0.1:3

Table 7. Comparison of test results of cubes with cement (C) and nano-cement (NC) with test results
of cubes with cement, nano-cement, and silica fume (SF); test results of cubes with cement, nano-
cement, and nano-silica fume (NSF); test results of cubes with cement, nano-cement, and fly ash (FA);
test results of cubes with cement, nano-cement, and nano-fly ash (NFA); and test results of cubes with
cement.

Type Composition Ratio W/C Ratio Grinding
Type (Cement)

Compressive
Strength,

7 Days (MPa)

Compressive
Strength,

14 Days (MPa)

Compressive
Strength,

28 Days (MPa)

I C:S 1:3 0.45 — 15.33 17.33 20.88

II NC:S 1:3 0.45 Dry 24.33 26.73 34.33

II NC:S 1:3 0.45 Wet 27.00 30.33 40.00

III C:NC:S 0.5:0.5:3 0.45 Wet 24.45 27.30 37.20
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Table 7. Cont.

Type Composition Ratio W/C Ratio Grinding
Type (Cement)

Compressive
Strength,

7 Days (MPa)

Compressive
Strength,

14 Days (MPa)

Compressive
Strength,

28 Days (MPa)

IV C:SF:S 0.9:0.1:3 0.45 — 20.50 22.60 26.75

V NC:SF:S 0.9:0.1:3 0.45 Dry 22.30 24.40 27.00

VI C:NC:SF:S 0.45:0.45:0.1:3 0.45 Dry 21.70 23. 05 26.80

VII C:NSF:S 0.9:0.1:3 0.45 — 21.00 23.10 26.90

VIII NC:NSF:S 0.9:0.1:3 0.45 Dry 23.46 25.50 29.20

IX C:NC:NSF:S 0.45:0.45:0.1:3 0.45 Dry 22.24 24.63 28.86

X C:FA:S 0.9:0.1:3 0.45 — 22.70 24.35 27.03

XI NC:FA:S 0.9:0.1:3 0.45 Dry 26.26 27.45 31.00

XII C:NC:FA:S 0.45:0.45:0.1:3 0.45 Dry 23.30 24.50 29.00

XIII C:NFA:S 0.9:0.1:3 0.45 — 24.13 26.75 29.03

XIV NC:NFA:S 0.9:0.1:3 0.45 Dry 29.20 31.60 35.20

XV C:NC:NFA:S 0.45:0.45:0.1:3 0.45 Dry 26.33 28.33 31.33

2.4. Compressive Strength Test on Concrete

To study the performance of concrete, cubes of the size of 150 mm × 150 mm × 150 mm
× 150 mm were cast in the laboratory. A total of six concrete cube samples were cast with
the specific designation assigned to these. The detailed work plan is given in Table 8. The
constituent materials used for the concrete cubes were cement, fine aggregates, coarse
aggregates, and water. M20 grade nominal mix was used. In this case, the water-to-cement
ratio was maintained as 0.50. These cubes were demoulded after 24 h and were allowed to
cure in the curing tank for a total of seven days. The cubes were subjected to compressive
testing in the laboratory under compression testing equipment until they failed in order
to determine their crushing strength. According to the results in Table 9, the compressive
strength of concrete cubes was good after seven days, indicating that the concrete cubes
including the nanomaterials had excellent strength after seven days (Figure 6).

Table 8. Work plan of compressive strength test on concrete.

S. No. Type Mix Design Composition Ratio

1. XVI M20 Cement: sand: coarse aggregates 1:1.5:3

2. XVII M20 Cement: nano-cement: sand:
coarse aggregates 0.75:0.25:1.5:3

Table 9. Test results of concrete cubes with cement and 25% nano-cement.

Type Composition Ratio Grinding Type
(Cement)

Compressive Strength,
7 Days (MPa)

VI Cement:sand:coarse
aggregates 1:1.5:3 — 23.33

XVII
Cement:nano-

cement:sand:coarse
aggregates

0.75:0.25:
1.5:3 Wet 26.57

2.5. Microscopic Examination of Cement Matrix

The cement cubes, cast and tested using a universal testing machine, were subjected
to petrographic studies under a microscope [22–25]. The pieces of the cube after testing
were converted into thin sections for studying under a petrological microscope [26–29].
The slides of different types of cement cubes were prepared and studied under normal and
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polarized light. The petrographic studies of cements began with transferring a small amount
with a needle to refractive index oil on a clean glass slide for the inspection of individual
grains (oil immersion mounts). After that, grains were sprayed on an epoxy-coated frosted
glass slide for petrographic thin-section investigation. The representative sample was then
encased with epoxy in a castable mould for thin sectioning and petrographic analyses.
Then, polished sections were obtained for scanning electron microscopy, and a small bulk
sample (10 grammes) was quartered for X-ray diffraction or chemical analyses. It was
found that concrete chips were denser when they included nano-sized cement [33–35]. The
effect of dry- and wet-ground cements on the matrices could not be found out on this scale
of magnification. The following were analysed:

i. Normal cement cubes (Figures 7 and 8);
ii. Dry-ground cement cubes (Figures 9 and 10);
iii. Wet-ground cement cubes (Figures 11 and 12).
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polarized light).
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Figure 12. Photomicrograph of mix nano-sized wet-ground cement and fine aggregates showing
dense cement phase and good contact between cement paste and aggregate grains (magnification of
60× under polarized light).

2.6. Statistical Analysis

Several statistical techniques were applied on the compressive strength values of
different material compositions to statistically justify our study findings and create a
predictive model using the variables [36–38].

A repeated measures ANOVA was implemented to test the difference between the
compressive strength readings collected after 7, 14, and 28 days. A p-value below 0.05
defined significance among the groups [39–41]. Pearson correlation and stepwise multiple
regression analyses were also executed to develop a predictive equation, with strength
on the 28th day as the dependent variable and strengths on the 7th and 14th days as two
categorical variables, while the type of grinding and a grouping variable were taken as
the independent variables. Grouping was defined as the type of mixing, and the grinding
variable was categorized as dry, wet, or standard [42–44]. Group 1 denotes the composition
of cement and sand. Group 2 is the mixture of cement, sand, and silica fume. Lastly, Group
3 is the composition of cement, sand, and fly ash.

3. Results and Discussion

This paper presents a discussion of the test findings in order to derive both qualitative
and quantitative inferences. Nanotechnology has begun to develop novel materials in recent
years due to the need to use them for increasing the characteristics of various materials
in general and materials utilized in the construction sector in particular [45–48]. The
results obtained from compressive tests on cement samples are given in Table 6. Previous
studies have investigated normal cement composites with nano-additives, whereas this
research study focused on converting cement into nano-cement, followed by converting
other additives into nano-additives; then, their individual and combined effects were
studied [48–50]. Previous literature works did not study the nano-cement effects on the
composites [51–53].

3.1. Compressive Strength of Cement Matrix

The results of 176 cement cube specimens of size 70.7 mm are given in Table 6. The
graphs show variations mainly where the nano-cement and nano-construction materials
with aggregates were used. The variations are discussed in detail below.

3.1.1. Test Results of Cubes with Cement and Nano-Cement

As shown in Figure 13, the compressive strength of nano-cement (converted cement)
after 7, 14, and 28 days was greater than the compressive strength of normal cement. Nano-
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cement (wet-ground) showed greater strength than nano-cement (dry-ground) and normal
cement [54–56]. The percentage increases in the strength of wet-ground cement compared
with normal cement after 7, 14, and 28 days were 76, 75, and 90%, respectively.
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Figure 13. Comparison of test results of cubes with cement and fine cement.

In addition, the percentage increases in the strength of dry-ground cement compared
with normal cement after 7, 14, and 28 days were 59, 55, and 65%, respectively. The strength
of cubes made of cement and fine aggregate lies in the strength of cubes made of nano-
cement matrix and normal cement matrix. The fineness of cement, which causes a greater
surface area of cement to come into contact with water at successive phases, is responsible
for the increase in strength in each step [57,58]. Furthermore, because there are fewer voids,
the strength of the structure increases because cracks require space or gaps to propagate
through [58,59].

3.1.2. Comparison of Test Results of Cubes with Cement, Nano-Cement, and Silica Fume
with Those of Cubes with Cement, Nano-Cement, and Nano-Silica Fume

Figure 14 shows the compressive strength comparison of samples with the addition
of 10% nano-silica fume and 10% normal silica fume. The graph shows that nano-cement
having 10% nano-silica fume showed greater compressive strength than nano-cement
having 10% normal silica fume. In addition, nano-cement with 10% nano-silica fume had
greater compressive strength than normal cement with 10% normal silica fumes, and the
findings depict it to be superior to the results of existing studies [60–62].
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3.1.3. Comparison of Test Results of Cubes with Cement and Nano-Cement with Test
Results of Cubes with Cement, Nano-Cement, and Silica Fume and of Cubes with Cement,
Nano-Cement, and Nano-Silica Fume

In Figure 15, it can be seen that the maximum strength was shown by the nano-cement
matrix and the cement matrix that had nano-cement and nanomaterials, and the findings
are superior to those of existing studies [63–65].
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Figure 15. Comparison of test results of cubes with cement and fine cement with test results of cubes
with cement, fine cement, and silica fume and with test results of cubes with cement, fine cement,
and nano-silica fume.

3.1.4. Comparison of Test Results of Cubes with Cement, Nano-Cement, and Fly Ash with
Those of Cubes with Cement, Nano-Cement, and Nano-Fly Ash

Table 7 and Figure 16 compare the compressive strength obtained by adding 10% nano-
fly ash and 10% normal fly ash. This showed that nano-cement containing 10% nano-fly
ash had greater compressive strength than nano-cement containing 10% regular fly ash. In
addition, nano-cement with 10% nano-fly ash showed greater compressive strength than
normal cement with 10% fly ash, and the related findings have been proved in numerous
literature studies [66–68].
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Figure 16. Comparison of test results of cubes with cement, fine cement, and fly ash with test results
of cubes with cement, fine cement, and nano-fly ash.
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3.1.5. Comparison of Test Results of Cubes with Cement and Nano-Cement with Those of
Cubes with Cement, Nano-Cement, and Fly Ash and of Cubes with Cement,
Nano-Cement, and Nano-Fly Ash

The maximum strength was shown by the nano-cement matrix and the cement matrix
with nano-cement and nanomaterials, as shown in Figure 17. Wet-ground cement attained
the maximum value, and the normal cement matrix attained the minimum, which is
somewhat related to the results of existing studies [69–72].
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Figure 17. Comparison of test results of cubes with cement and fine cement with test results of cubes
with cement, fine cement, and fly ash and with test results of cubes with cement, fine cement, and
nano-fly ash.

3.1.6. Overall Comparison of Test Results of Cubes with Cement, Nano-Cement, Silica
Fume, Nano-Silica Fume, Fly Ash, and Nano-Fly Ash

Figure 18 shows the summary of all the tables. We can easily conclude that the matrix
gained the maximum strength with nano-cement, nano-silica fume, and nano-fly ash. In
this research work, the focus was on the comparison of the strength parameters of normal
cement composites with those of nano-cement composites. This work can be extended in
the future to study the effect of nano-additives, including particle shape, impurity, defects,
etc., within cement matrices.
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Figure 18. Comparison of test results of cubes with cement (C:S) and fine cement (FC:S) with the
following: test results of cubes with cement (C:FC:S), fine cement, and silica fume; test results of
cubes with cement, fine cement, and nano-silica fume; test results of cubes with cement, fine cement,
and fly ash; test results of cubes with cement, fine cement, and nano-fly ash; and test results of cubes
with cement.
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3.2. Compressive Strength of Concrete Matrix

From Figure 19, it is clearly visible that the concrete cubes that contained only 25%
wet-ground cement had greater compressive strength than the concrete cubes with normal
cement for the M20 mix design.

Materials 2022, 15, x FOR PEER REVIEW 25 of 30 
 

 

 

  
Figure 19. Comparison of test results of concrete cubes with cement and 25% fine cement. 

Since the nano-particles fill the gaps among cement grains and consume a portion of 
the calcium hydroxide present, the production of extra calcium silicate hydrate (C-S-H) 
results in an improvement in the interface structure over and beyond what has been 
previously achieved. The increase in strength can be attributed to the fineness of cement, 
which allows a higher surface area of cement to come into contact with water and denser 
micro-fabric to be formed, limiting the number and size of voids, thus improving strength 
[72–74]. The properties of nano-sized wet-ground cement and fine aggregates were 
comparable to those of nano-sized dry-ground cement. As a result, no distinction could 
be detected at the petrographic microscope magnification level. Though transmission 
electron microscopy, we could distinguish the two in terms of the growth of interfingering 
crystal mesh [75–77]. 

The matrix with nano-cement, nano-silica fume, and nano-fly ash gained the most 
strength and was shown to have substantial improvement in terms of the compressive 
strength of cementitious composites after 7–28 days of curing. 

3.3. Microscopic Examination of Cement Matrix 
From the general photomicrographic studies, it seemed that micro-pores were 

evident within the cement paste in the case of normal cement. The contacts with the 
aggregate grains were also not very dense (Figures 7 and 8). 

In nano-sized dry-ground cement, the mix showed a dense cement phase and good 
cement–grain contact (Figures 9 and 10). Nano-sized dry-ground cement, in some places, 
showed that rounded pores had formed due to air tramping in the mix. 

The mix made of nano-sized wet-ground cement and aggregates showed 
characteristics similar to those of nano-sized dry-ground cement [76–78]. As such, no 
differentiation could be made at the magnification level of petrographic microscopy 
(Figures 11 and 12). Detailed scanning electron microscopy may help to unravel the 
difference between the two. However, the TEM studies on cement showed the 
development of nanorods with increasing length and slenderness in dry- and wet-ground 
nano-cement compared with normal cement, which may have played an essential role in 
the hydration and solidification process involved in the hardening of cement [77,78]. The 
densifying properties of nano-composites resulted in the reduction in pores in the cement 
matrix, which enhanced the overall strength. This was evident in the photomicrographic 
studies. These findings explain the relationship between the strength and the microscopic 
structure of the cementitious composites. 

Figure 19. Comparison of test results of concrete cubes with cement and 25% fine cement.

Since the nano-particles fill the gaps among cement grains and consume a portion
of the calcium hydroxide present, the production of extra calcium silicate hydrate (C-
S-H) results in an improvement in the interface structure over and beyond what has
been previously achieved. The increase in strength can be attributed to the fineness of
cement, which allows a higher surface area of cement to come into contact with water and
denser micro-fabric to be formed, limiting the number and size of voids, thus improving
strength [72–74]. The properties of nano-sized wet-ground cement and fine aggregates
were comparable to those of nano-sized dry-ground cement. As a result, no distinction
could be detected at the petrographic microscope magnification level. Though transmission
electron microscopy, we could distinguish the two in terms of the growth of interfingering
crystal mesh [75–77].

The matrix with nano-cement, nano-silica fume, and nano-fly ash gained the most
strength and was shown to have substantial improvement in terms of the compressive
strength of cementitious composites after 7–28 days of curing.

3.3. Microscopic Examination of Cement Matrix

From the general photomicrographic studies, it seemed that micro-pores were evident
within the cement paste in the case of normal cement. The contacts with the aggregate
grains were also not very dense (Figures 7 and 8).

In nano-sized dry-ground cement, the mix showed a dense cement phase and good
cement–grain contact (Figures 9 and 10). Nano-sized dry-ground cement, in some places,
showed that rounded pores had formed due to air tramping in the mix.

The mix made of nano-sized wet-ground cement and aggregates showed characteris-
tics similar to those of nano-sized dry-ground cement [76–78]. As such, no differentiation
could be made at the magnification level of petrographic microscopy (Figures 11 and 12).
Detailed scanning electron microscopy may help to unravel the difference between the
two. However, the TEM studies on cement showed the development of nanorods with
increasing length and slenderness in dry- and wet-ground nano-cement compared with
normal cement, which may have played an essential role in the hydration and solidification
process involved in the hardening of cement [77,78]. The densifying properties of nano-
composites resulted in the reduction in pores in the cement matrix, which enhanced the
overall strength. This was evident in the photomicrographic studies. These findings explain
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the relationship between the strength and the microscopic structure of the cementitious
composites.

However, Y.F. Ling et al., Y.R. Jeng et al., and L. Wei et al. have provided comprehensive
reviews on the effect of grain size and orientation on the mechanical strength of crystalline
nanomaterials [76–79].

3.4. Statistical Findings

Since the compressive strength readings were measured repeatedly in three different
periods, the three readings were dependent on each other; hence, there was a strong
correlation among them [78,79]. The correlation coefficient between the 7th- and 14th-day
strength was 0.986 (p-value < 0.05); that between the 7th- and 28th-day strength was 0.828
(p-value < 0.05); that between the 14th- and 28th-day strength was 0.882 (p-value < 0.05).

The final model consisted of two independent variables, the 14th-day compressive
strength and the grouping variable, for the implementation of stepwise multiple regression
analyses. These two factors were the only significant variables that the 28th-day strength
depended on (p-value <0.05). The 7th-day strength and grinding factors were not significant.
The regression equation is given below, and this is justified by a very strong, adjusted
R-squared value of 93.8%.

28th day compressive strength = 1.391 ∗ 14th day compressive strength—2.483 ∗ Group—0.158

With the help of the above equation, it is possible to calculate the 28th-day compressive
strength, and only the 14th-day strength and the type of composition are required.

3.5. Repeated Measures ANOVA

The assumptions of equal variance and equal covariance for applying the repeated
measures ANOVA test were satisfied. Box’s test of equality of covariance matrices, Levene’s
test of equality of variance, and Mauchly’s test of sphericity were all non-significant (p-
value > 0.05) [77–79]. The repeated measures ANOVA method resulted in a significant
difference between the three compressive strength readings (p-value <0.05) for the group
and the grinding categories. The exact difference was identified using Scheffe’s multiple
comparison post hoc test. There was a significant difference among all three types of
methods in the case of the grinding factor: standard, wet, and dry (p-value < 0.05). However,
the difference was only found between Group 1 and Group 2 (p-value < 0.05) for the group
variable. Within-group differences were also tested, and a significant difference was found
among the three groups and in the grinding process.

4. Conclusions

The following findings were reached as a result of experimental research: The use
of nano-additions improved the characteristics of cement matrix and concrete. Because
nano-particles filled the gaps between cement grains and consumed a portion of the calcium
hydroxide present, the production of extra calcium silicate hydrate (C-S-H) resulted in an
improvement in the interface structure over and beyond what has been achieved previously.
The increase in strength can be attributed to the fineness of cement, which allows a higher
surface area of the cement to come into contact with water and denser micro-fabric to be
formed, limiting the number and size of voids, thus improving strength. The properties
of nano-sized wet-ground cement and fine aggregates were comparable to those of nano-
sized dry-ground cement. As a result, no distinction could be detected at the petrographic
microscope magnification level. Though transmission electron microscopy, the two could
be distinguished in terms of the growth of interfingering crystal mesh.

The matrix with nano-cement, nano-silica fume, and nano-fly ash gained the greatest
strength and was shown to have substantial improvement in terms of the compressive
strength of cementitious composites after 7–28 days of curing.

All of the varied mixes using nano-sized dry cement, silica fume, and fly ash in various
permutations and combinations provided strength values ranging from 26.75 to 35.20 MPa,
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which were greater than that of the typical cement–fine-aggregate mix (20.88 MPa). The
50:50 combination of normal and wet-ground cement produced a compressive strength
of 37.20 MPa after 28 days. When comparing cube specimens utilizing wet-ground nano-
cement (40 MPa) with cube specimens using conventional cement, an increase of up to
92 percent was found (20.88 MPa).

A strong correlation was found among the three compressive strength readings, and a
linear equation was composed to calculate the 28th-day compressive strength. A significant
difference was identified among the three strength values for the group and the grinding
categories.
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