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Abstract: This paper presents an assessment of the possibility of using digital image classifiers
for tomographic images concerning ductile iron castings. The results of this work can help the
development of an efficient system suggestion allowing for decision making regarding the qualitative
assessment of the casting process parameters. Special attention should be focused on the fact that
automatic classification in the case of ductile iron castings is difficult to perform. The biggest problem
in this aspect is the high similarity of the void image, which may be a sign of a defect, and the
nodular graphite image. Depending on the parameters, the tests on different photos may look similar.
Presented in this article are test scenarios of the module analyzing two-dimensional tomographic
images focused on the comprehensive assessment by convolutional neural network models, which
are designed to classify the provided image. For the purposes of the tests, three such models were
created, different from each other in terms of architecture and the number of hyperparameters and
trainable parameters. The described study is a part of the decision-making system, supporting the
process of qualitative analysis of the obtained cast iron castings.

Keywords: cast iron; 3D tomography for cast metal; recommendation system; neural networks;
defect analysis

1. Introduction

The analysis of the image obtained on the basis of an examination carried out with
the use of a computer tomograph (CT) allows to estimate the probability of occurrence
of defects in the tested castings. The CT is a non-destructive method that allows you to
evaluate the product without damaging it (in some cases, because sometimes the sample
needs to be cut out, it depends on the thickness of the casting walls and the studied
material). The interpretation of the picture is performed by experts. The obtained image
is not unambiguous. Its analysis requires a lot of experience, especially in the case of
iron castings. A CT tool to take such images and evaluate the information obtained
from their manual interpretation was used in this study. The “manual” interpretation of
images is performed on a daily basis. In our article we attempted to develop a model
using the methods of artificial intelligence, which allows to assess whether the visible
area on the photo is a void, crack, or some other detail. It should be noted that the
methods of artificial intelligence were used to predict properties as well as evaluate and
classify the results of research on metal products. A significant problem when using
this type of solution is the amount of data. The use of artificial intelligence or machine
learning as well as data analysis to develop predictive models to determine the mechanical
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properties of products is more and more commonly described in the literature [1–6]. For
example, a multi-task learning algorithm with augmentation data preprocessing dealt
with the small imbalanced data and multi-target predictions. For experiments, negative
thermal expansion materials were used. The development of each new model with the
use of artificial intelligence to predict material data and its verification using a physical
experiment provides a great contribution to the development of the field. Additionally,
predicting the mechanical properties of metal products using artificial intelligence methods
is a research trend. Classification of the quality of castings based on images (in the indicated
cases they were images of microstructure) using artificial intelligence methods is currently
an important research trend. Such action is used in negative thermal expansion materials
for example on nanoporous metals, with their complex microstructure, ultra-fine-grained
FeeC alloy, or for classification of the quality of castings based on images. Review of the
literature shows that the use of a tomographic examination and the analysis of tomographic
images allows for the classification of the quality of manufactured metal products. Such an
analysis allows to indicate the risk of discontinuity that may adversely affect the mechanical
properties of the casting. However, no description was found in the literature of an attempt
to build such a model in relation to the results of tomographic examinations of iron
castings. The development of each new model with the use of artificial intelligence to
predict material data and its verification using a physical experiment provides a great
contribution to the development of the field. The articles [7–11] present application of
analytical electron microscopy and tomographic techniques to perform the qualitative and
quantitative characterization of structural elements in the casts which are then analyzed for
classification or/and an evaluation of quality products.

2. Materials and Methods
2.1. Tomograph

The tomographic examination consists of X-rays with X-rays emitted parallel to the
image plane of the examined object. As a result of this action, a three-dimensional image
is created, which is used to assemble a set of their two-dimensional counterparts (called
radiographs), which are recorded at different angles to the adopted coordinate system [12].
Thanks to the high resolution, it is possible to accurately reproduce the complex surfaces of
the tested object. This allows for the presentation of internal discontinuities both in two and
three dimensions, which allows their exact location and determination of the size [13]. The
radiation emitted by the source passes through the object and weakens, and its intensity
is converted into grayscale contrast. The weakening of the X-ray beam was characterized
using Beer’s law [12].

The volume of the tested object is divided into the so-called voxels, single spatial cells
in which the degree of radiation absorption is constant. Each of these voxels can be assigned
the diameter of the object divided by the number of pixels. Tomographic images are created
in very high resolutions. This is because it is not uncommon for even several thousand
two-dimensional photos to be juxtaposed to create a spatial whole. Of course, there are no
ideal methods and it is no different in the case of computed tomography. This method is not
suitable for testing materials characterized by high density or large wall thicknesses [14,15].
The first of these methods is similar to the system of receptors in the organ of vision, the
eyes. The second one, however, has a significant advantage over it, it is simpler and much
more convenient, the consequence of which is the fact that it is much more widespread
than its hexagonal counterpart. Most of the currently used graphic formats are based on
the latter of the described grids. One of the most important parameters of any image is
its resolution. It is a compromise measure of the ability to recognize image details [15].
The greater the resolution of an image, the greater the level of detail it represents. Note,
however, that a linear increase in resolution results in a square increase in file size. It
is also worth mentioning the available color palettes. The measure of their complexity
is the number of bits used to remember the state of a single pixel (BPP). The family of
algorithms that allow you to perform operations on images is very diverse. It includes,
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among others, various types of element transformations (scaling, translations, and rotation),
pixel brightness transformations (binarization), quality improvement (filtering and artifact
removal) and isolation of certain fragments to facilitate the detection of searched objects. In
some cases, performing the above-mentioned actions achieves the desired goal, but usually
they are part of a larger set of operations and are included in the pre-processing stage.

One of the methods of casting analysis is scanning the examined fragment with X-rays.
This method is classified as non-invasive, i.e., the analyzed fragment is not damaged during
the test. In practice, it often happens that a selected fragment has previously been specially
cut out of the entire casting, which can already be considered an invasive effect on the
casting. Nevertheless, this analysis allows for a much more precise dimension of examining
the casting fragment, which is not available when examining the photos with a microscope.
For this reason, it is an increasingly common form of verification of casting properties. A
classic tomograph X-ray examines an object on a 2D scale. A popular solution for capturing
radiation is a detector located behind the scanned object. Its task is to measure the intensity
of radiation and transmit it as electrical signals. The density of the tested material is of great
importance because the higher its value, the less radiation reaches the data-collecting unit,
in this case a detector. This means that the material absorbed the radiation that penetrated
it. As a result, the material in the photos obtained have a lighter color. Casting defects,
e.g., cracks, hardly absorb radiation. For this reason, they are much more visible in X-rays
than in places without defects. The cracks in the photos are darker because the increased
radiation that they have not absorbed reaches the detector. However, a single X-ray image
is not sufficient as it does not provide information on the exact dimensions of the defects
(e.g., volume and depth). It is impossible to determine whether the observed defect is
located, for example, more to the left or to the right. Additionally, a photo of the casting
taken in only one axis may not detect some imperfections. This problem is solved by X-ray
computed tomography by taking multiple images of the cast from different angles. The
main goal is to create a 3D model of the sample using the photos taken. This approach
is most common in medicine. The radiation source and the detector are located in the
round part of the device on the movable ring. The lamp together with the detectors takes a
photo of the object and then moves a certain distance. In this way, pictures of the object are
obtained from different perspectives, which makes it possible to accurately locate possible
defects. For the purposes of the article, a tomograph from the Łukasiewicz Research
Network-Krakow Institute of Technology, Krakow, Poland (former Foundry Research
Institute in Kraków) was used. It consists of an X-ray tube, a detector, a rotating table, and
a computer with software enabling the visualization. Tomographs may differ depending
on the generation by a different way of realizing the movable lamp-detector system and
the arrangement of detectors, but they work in the same way. X-ray computed tomography
allows obtaining information about the internal structure of the examined object without
interfering with its interior. Unlike a CT scanner used in medicine, in industrial scans
the radiation source and detectors are stationary. The test cast is placed on the rotating
bottom. First, two-dimensional images of the sample are captured. The radiation generated
by the lamp is partially absorbed by the object and then integrated by a detector which
converts it into a digital image. The tomograph takes pictures of the sample, and after
each of them the element is rotated by a set number of degrees. The three-dimensional
image is numerically reproduced from the two-dimensional images. Three-dimensional
images, as opposed to two-dimensional ones, provide additional information about the
examined object, e.g., they enable the visualization of internal discontinuities of the material.
X-ray beam attenuation measurements that fit in each of the voxels are needed to create
the image. The measurements are converted into a grayscale contrast that can be seen
in 2D images. The direct relation between the local gray level and the degree of light
attenuation allows the reconstruction of the mass distribution in the analyzed volume. The
obtained image is characterized by very high resolution, which enables precise research and
analysis of the structure features of heterogeneous microstructures of materials. The tested
object can be displayed in the form of a cross-section, there is also visualization of internal
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discontinuities, cracks, porosity, and the exact location of the defect. Additionally, it is
possible to investigate the distance, volume, and differences in pore density. An example
view of the sample and the microstructure of the tested material are shown in Figure 1.
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Figure 1. Tomogram showing the microstructure with spheroidal graphite and 3D reconstruction of
the sample with the analyzed area.

2.2. Tested Material

Tables 1 and 2 show the characteristics of the tested material. Figures 2 and 3 show
an example of the microstructure of the tested material. Figure 4 shows the concept of the
3 layouts of the castings in the mold.

Table 1. Charging materials.

Pig iron 4 wt.% C; 0.7 wt.% Si;

Home scrap ductile iron;

Carbourizer;

FeMn80, FeSi75;

99.9 pure Cu and Ni;

Inoculant-Foundrysil (2–7 mm) (FeSi + Ca, Ba)–0.4% mass (Elkem, Oslo, Norway);

Spheroidizing agent-FeSiMg masteralloy Elmag 5800–1.5% mass (Elkem, Oslo, Norway).

Table 2. Melting.

Medium frequency induction furnace 50 kg capacity;

Neutral lining;

Overheating temperature—1500 ◦C;

Tapping temperature (FLOTRET process)—1490 ◦C;

Pouring temperature—1420 ◦C.
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Muld design: Castings dimensions: 185 × 50 mm2 (+50 mm feeder) 5 mm thickness;
plates were placed vertically with the feeder on top, and were cast in green sand-dried
molds.

The Table 3 shows chemical composition of the tested material. Table 4 shows CT
scanning parameters the tested material. Table 5 shows summary of the results obtained by
the CT method for tested material.

Table 3. Chemical composition.

Chemical Composition, wt.%

C Si Mn P S Mg Cu Ni Cr

3.30 2.60 0.2 0.055 0.006 0.04 0.8 1.5 0.05

Table 4. CT scanning parameters..

Voltage = 130 kV;

Current = 35 mA;

Timing = 500 ms;

Voxelsize = 1.25 µm;

NumberImages = 2200.

Table 5. Summary of the results obtained by the CT method.

No Difference Vv [%] Ductile Iron Graphite Volume Fraction Vv [%]

1 1, 3 50%VI4 + 50%V5 11, 3

2 1, 1 80%VI5 + 20%V6 11, 0

The tests were performed using a GE X-ray computed tomograph, Nanotom type. The
following parameters were used:

The views of the presented solution are shown in the Figures 5–7.



Materials 2022, 15, 8254 7 of 16
Materials 2022, 15, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 5. The VGStudio Max software dialog box showing: selected 2D cross-sections (in the xy, yz, 

and xz plane); 3D spatial section with marked location of section planes. The image shows spheroi-

dal graphite, additionally dimensioning the selected internal discontinuity. 
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and xz plane); 3D spatial section with marked location of section planes. The image shows spheroidal
graphite, additionally dimensioning the selected internal discontinuity.
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2.3. Work Scenario

Test scenarios of the module analyzing two-dimensional tomographic images should
focus on the comprehensive assessment by convolutional neural network models, which
are designed to classify the provided image. For the purposes of the tests, three such
models were created, differing from each other in terms of architecture and the number of
hyperparameters and trainable parameters.

In order to effectively train the prepared model, it is necessary to have a significant
amount of test data, especially when the network is to correctly classify the images in
relation to many classes. Too little training data have a negative impact on the learning
process. In addition, the training data must not be too similar to each other, as this also
results in a significant deterioration of the training quality of the model. Unfortunately, the
technique is ineffective when the programmer has a small number of original elements
in the collection. The authors of this study did not manage to gain access to the appro-
priate number of two-dimensional tomographic images that would present the results of
tomographic examination of ductile iron castings. It should be borne in mind that this type
of data are not common. The authors were able to verify the correctness of the obtained
results on only single copy. In order to effectively train the prepared model, it is necessary
to have a significant amount of test data, especially when the network is to correctly classify
images in relation to many classes. In addition, the training data must not be too similar
to each other, as this also results in a significant deterioration of the training quality of
the model. It is true that many libraries have implemented the functionality of generating
images based on an existing set based on geometric transformations (translations, rotations,
etc.). Unfortunately, the technique is ineffective when the programmer has a small number
of original elements in the collection. With all this in mind, the authors decided to conduct
the training process of the models proposed by him based on data that are in some way
similar to those present in the problem under consideration. Originally, the images were in
the DICOM format, which is the format characteristic of computed tomography results. In
order to facilitate the work with the data from this set, the authors converted them into JPG
images (lossless format). The collection contains 1000 unique photos, of which 338 are of
defect 1, 187 of defect 2, 260 of defect 3, and 215 of without defect.

2.4. Learning Process

Before starting the learning process, the data were pre-processed, which included the
following operations:

• Three subsets were separated from the main set: teaching, validation, and testing in
the proportion of 70%–10%–20%;

• The image size was standardized to 350 by 350 pixels;
• Converting images to grayscale. Given that CT images are grayscale images, the use

of RGB is ineffective. Reducing the dimensions of the color scale representation from
three to one significantly improves the efficiency of the training process as the network
has less data to process.

Additionally, the so-called confusion matrix was used, which allows you to visualize
the quality of predictions made with a specific model.

The architecture of the first of the proposed models is presented in Figure 8. In first
model the input image is 350 × 350 pixels. The model contains three pairs of layers
consisting of a convolution layer and a connection layer. A 3 × 3 mask was used in each of
the convolution layers, and a standard 2 × 2 mask was used in the joining layers. For both
types of layers, the step size was 1. In this model, the number of neurons in the convolution
layers was doubled in each dimension, the first layer has a size of 32 × 32, the next one
is 64 × 64, and the last one is 128 × 128. The last pair is followed by the flattening of the
matrix into a one-dimensional vector, this is performed by the Flatten layer. Then two
layers are placed fully connected, containing 512 and 128 neurons, respectively. These
numbers are justified because the convolutional layers generate a huge number of neurons
which, after flattening, should be connected to the dense layers. The sudden shift in the
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size of the dense layers allows the problem to be gradually reduced in size. In order to
protect the model from overfitting, a dense Dropout layer was applied before each layer,
the task of which is to exclude a certain number of neurons from the training process, in
this case it applies to 10% of all neurons fed to the Dropout layer. The last element of the
model is the dense layer which “selects” one value with the highest score classifying a
given photo in the context of specific classes. The Adam algorithm (one of the stochastic
simple gradient methods) is responsible for the optimization, and the cost function is the
Categorical cross-entropy function.
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Figure 8. Architecture of the first convolutional neural network model.

The architecture of the second of the proposed models is shown in Figure 9. In the
second model, the input image is 350 × 350 pixels. It is processed by four pairs of layers
each of them consists of a convolution layer and a bond layer. The sizes of the masks
remained unchanged compared with the first model. The pair in which the convolution
layer was 128 × 128 was removed from the model. Each of the other convolution layers was
duplicated along with the following join layer. The rest of the model remained unchanged
compared with its predecessor.
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Figure 9. Architecture of the second convolutional neural network model.

The size in last model and the input image is 350 × 350 pixels. Six pairs of layers are
responsible for its processing. Compared with the previous model, two new pairs were
added, formed by the convolution layer and the fusion layer. The convolution layers of the
added pairs have a dimension of 128 × 128 neurons. Due to the increasing complexity of the
model, the percentage value in the Dropout layer was increased from 10% to 25%. The rest
of the model remained unchanged from its predecessors. The learning process was carried
out over 300 epochs. The last model was created using the so-called Hyperparameter
Tuning. This process took place in the test range of 50 epochs, and the selection was made
of the number of pairs (formed by the convolution layer and the fusion layer) and the
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number of neurons in a given layer. The determinant for which the selection was made was
the measure of accuracy. The architecture of the last of the proposed models is presented in
Figure 10.
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Figure 10. Architecture of the third convolutional neural network model.

The data prepared in this way was processed during the learning process by three
models of convolutional neural networks, which were proposed by the authors of this paper.
However, it should be noted that the dataset selected by the authors may be considered
demanding in terms of classification due to the small amount of data available.

3. Results

The evaluation of the models was carried out in a comprehensive manner and concerns
both the learning process and subsequent predictions. Two graphs were used to illustrate
the learning process, which show the change in accuracy and loss in specific epochs in the
context of validation data. The following metrics were used to assess the quality of the
model based on the test data: Precision: prediction accuracy within a specific class; recall:
the number of recognized items from a specific class; F1: harmonic mean representing the
averaging of precision and recall measures. In addition, the so-called confusion matrix was
used, which allows you to visualize the quality of predictions made with a specific model.

3.1. Results for Model Number 1

In the first model the learning process was carried out on the number of 300 epochs.
Graphs showing its course are presented in Figure 11.
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The conclusion from these graphs is that there was a slight overfitting during the
learning process. The accuracy curves are fine, but the situation is slightly worse for the
loss graph. Already in the early epochs, we can observe tendencies that the values of losses
on validation data are higher than the values of losses on training data, this is a classic
symptom of overfitting. Unfortunately, the reason for the occurrence of this phenomenon
lies in the number of paintings that the authors has at his disposal. It contains 1000 items,
which is far from the ideal number, there should be several times more of these items.
It is hard to choose the so-called the golden age, i.e., the era in which the quality of the
model is the highest. There are slight oscillations on both curves (with a few exceptions),
which makes choosing the mentioned golden age a difficult task. However, taking into
account all the described dependencies, this model cannot be classified as bad, it has a great
potential that will be fully released when the training set contains an appropriate number
of elements.

Figure 12 shows the so-called classification report that shows precision, recall and F1.
The “support” column carries information about the number of samples from the test set
that participated in the model evaluation.
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Figure 12. Classification report for the first model.

Despite the occurrence of the overfitting phenomenon, the model has an accuracy of
about 74%, which is a positively surprising result (especially considering the occurrence of
overfitting). The highest values of measures for classifier evaluation occur in the context of
class 2, which means correct castings.

The first model almost flawlessly classifies images of damaged castings and correct
castings. The great advantage is that the model almost always classifies damaged castings
as damaged castings (there were only three errors, which accounted for 1% of all predictions
for damaged parts). The authors assume that it is much better to qualify a good cast as
damaged (which is verified anyway) than the other way around. If the defect is defined,
the type of defect should also be confirmed, additional measurements should be made and
an appropriate description created along with the justification for the decision to disqualify
the alloy.

3.2. Results for Model Number 2

Figure 13 shows the charts of accuracy and losses in the context of the learning process.
They do not differ much from those relating to the first model. As in the previous case, the
phenomenon of overfitting occurs here. The reason for this is the same, too little test data.
A slight difference can be seen in the context of the curves representing the accuracy, the
one representing the accuracy in the context of the test data is slightly more flattened and
over a long period of time it coincides with its validation counterpart.
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The learning process was again carried out on the number of 300 epochs. In Figure 14,
the classification report is presented, which is a visualization of all measures used to
evaluate the classifier.
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Figure 14. Classification report for the second model.

Based on the classification report, it can be concluded that the latter model is slightly
better than its predecessor. The value of each measure is higher than its counterpart from
the first model. Precision for images relating to healthy people reached the highest possible
value. The accuracy of the entire model is rated at 81%, which is a better result than its
predecessor, which had an accuracy of 74%. Again, the model very accurately assesses
photos showing castings without defects (two mistakes were made, 4% of all predictions).
Importantly, no damaged casting was classified incorrectly.

3.3. Results for Model Number 3

The last model quality of this process is visualized in Figure 15.
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In this case the model is overfitted almost from the very beginning. It is also highly
problematic to identify one golden age. Although the oscillation in the case of the curve
representing the losses in the context of validation data may seem larger, in reality it is not
true, the scale changed and the validation error is much lower than in the previous models.
The highest accuracy value was reached around epoch 290. The harm that represents the
accuracy of the learning process with respect to validation values is located very close to its
training counterpart, especially in the first half of the learning process.

For the model in question, a classification report was generated, which is presented
below in Figure 16.
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Figure 16. Classification report for the third model.

The values of the measures are by far the highest among all the models presented in
this paper. None of these measures has a value lower than 0.8, which is satisfactory in the
context of research, the results of which can be applied to industry. Again, the precision
measure value hit “1” for an image grade of undamaged castings. The overall accuracy of
this model was estimated at 89%, which is much better than its predecessors, which had an
accuracy of 74% and 81% respectively.

4. Discussion

The characteristics of each model are summarized in tabular form and are presented
in Table 6 below.

Table 6. Summary of model characteristics.

No Criterion Model I Model II Model III

1 Overall accuracy 74% 81% 98%

2 Good castings considered incorrect 2 z 54% (4%) 2 z 54% (4%) 2 z 54% (4%)

3 Bad castings considered good 3 z 261 (1%) 0 z 261 0 z 261

All the properties and statistics listed in Table 6 come from the classification report and
the error matrix. The models were assessed on the set of test data. They were unlabeled and
did not take part in the learning process. The first criterion considered was overall accuracy.
Each of the obtained results was at least satisfactory in this respect. All models classified
the images of the correct quota at the same level of 96% of correct predictions. The most
important criterion, images of ductile iron samples with defects, were were found to be free
of defects. This mistake can be very fatal. Fortunately, the number of such mistakes was
small, they were all made by Model I, where they accounted for 1% of all image predictions.
The other models were flawless in this matter.

With all these criteria in mind, it cannot be clearly stated whether Model II is better
than Model I and vice versa. Model III improves upon its predecessors in almost every
field and is considered by the authors to be the most successful.
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5. Conclusions

The module described in this paper is a part of the decision support system. The
potential user can use it to carry out a comprehensive evaluation of the tested element made
of ductile iron, which is the subject of the analysis. This analysis consists of several stages:

• Validation of input data using the so-called “main validators”;
• Validation of the temperatures used during the manufacturing process in the context

of the expected alloy grade;
• Assessment of the percentage of the most important elements in relation to the chemi-

cal composition of ductile iron;
• Assessment of the length of the austenitization process in relation to the thickness of

the sample walls;
• Evaluation of the length of the isothermal transformation process in relation to the

wall thickness of the sample;
• Analysis of the image from the computer tomograph for the presence of defects in the

sample;
• In this article only the last module is described in detail.

The multifaceted nature of this process guarantees the versatility of the performed
analysis process. It is also one of the arguments for the high quality of this study.

The performance tests of the module responsible for the analysis of the sample’s
characteristics provided satisfactory results. The entire evaluation process took an average
of about 10.5 s, which is a satisfactory result, taking into account the amount of information
to be processed by the system and the degree of its complexity. The input data were
described along with a brief justification of their choice by the author, and comprehensive
tests of the three proposed models, which differed from each other in terms of architecture,
were carried out. These tests included the analysis and comparison of several measures,
which provided a fair picture of the situation: measures of accuracy, losses, precision, recall,
and F1. Additionally, error matrices were made. Based on the tests, it can be concluded that
the best model is Model III, which is justified in the study, although each of the proposed
network architectures can be considered at least correct. However, taking into account all
the results of research and analyses that were carried out using real data and test cases
(consulted with employees from the Foundry Research Institute, currently the Łukasiewicz
Research Network-Kraków Institute of Technology), the authors of this study consider the
operation of both application modules to be satisfactory. The possibility of applying the
practical test result requires elaboration. More and more units use a tomography to test
the quality of the castings made. The problem is the interpretation of the obtained results;
therefore every tool supporting this process is helpful. The use of artificial intelligence in
model development is a very dynamically developing field. Each research on real data
allows researchers to gain new information and develop this field.
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z żeliwa sferoidalnego. Arch. Foundry Eng. 2014, 14, 71–76.

14. Krzak, I.; Tchórz, A. Zastosowanie rentgenowskiej tomografii komputerowej do wspomagania badań materiałowych odlewów.
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Kraków, Poland, 1997.

http://doi.org/10.1016/j.mtcomm.2021.102314
http://doi.org/10.3390/ma14081822
http://www.ncbi.nlm.nih.gov/pubmed/33917132
http://doi.org/10.3390/ma15082884
http://www.ncbi.nlm.nih.gov/pubmed/35454576
http://doi.org/10.1016/j.commatsci.2020.109599
http://doi.org/10.1016/j.commatsci.2021.110930
http://doi.org/10.1007/s11661-020-05839-5
http://doi.org/10.1016/j.msea.2019.138781
http://doi.org/10.1016/j.matchar.2016.08.007
http://doi.org/10.1016/j.msea.2021.142427

	Introduction 
	Materials and Methods 
	Tomograph 
	Tested Material 
	Work Scenario 
	Learning Process 

	Results 
	Results for Model Number 1 
	Results for Model Number 2 
	Results for Model Number 3 

	Discussion 
	Conclusions 
	References

