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Abstract: Traditional optics usually studies the uniform polarization state of light. Compared with
uniform vector beams, non-uniform vector beams have more polarization information. Most of the
research on generating cylindrical vector beams using metasurfaces focuses on generating transmitted
beams using the geometric phase. However, the geometric phase requires the incident light to be
circularly polarized, which limits the design freedom. Here, an all-dielectric reflective metasurface
is designed to generate different output light according to the different polarization states of the
incident light. By combining the two encoding arrangements of the dynamic phase and the geometric
phase, the output light is a radial vector beam when the linearly polarized light is incident along the
x-direction. Under the incidence of linearly polarized light along the y-direction, the generated output
light is an azimuthal vector beam. Under the incidence of left-handed circularly polarized light, the
generated output light is a vortex beam with a topological charge of −1. Under the incidence of
right-handed circularly polarized light, the generated output light is a vortex beam with a topological
charge of +1. The proposed reflective metasurface has potential applications in generating vector
beams with high integration.

Keywords: metasurface; reflective; vector light

1. Introduction

Among the basic properties of light such as intensity, wavelength, phase, and polariza-
tion, the research on polarization state with vector properties is the latest development [1–10].
Traditional optics usually studies the uniform polarization state of light, such as linearly
polarized light, circularly polarized light, and elliptically polarized light [11–20]. In recent
years, researchers have paid increasing attention to non-uniformly polarized light [21–30],
such as radially/azimuthally polarized cylindrical vector beams [31–41]. Compared with
uniform vector beams, non-uniform vector beams have more polarization information, so
their interactions with matter are also more diverse, giving them more potential applica-
tions. For example, because the focusing part [42,43] has a larger longitudinal polarization
component, tight focusing based on radially-polarized vector light has better characteristics
than the traditional focusing system, making it suitable for high-resolution imaging [44],
lithography [45], optical trapping [46], and sensing [47].

The traditional methods of generating cylindrical vector beams include birefringence
mode selection [48], optical dichroism mode selection [49], photonic crystal mirrors [50],
multilayer polarization gratings [51], space-shift phase retarder [52] etc. However, these
systems contain various optical devices, so the systems are complex and bulky, and the
integration level is low, which hinders the development of vector beams with high inte-
gration. With the rise of metasurfaces [53], a new direction has been provided to solve the
problem of low integration. Metasurfaces have been widely used in the fields of anomalous
refraction [54], lens imaging [55], holographic imaging [56], polarization conversion [57],
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and the sorting of beams carrying OAM [58–60], depending on the content and method of
light regulation. On-chip waveguides in integrated photonic devices [61] can also manipu-
late the polarization state of light through precise deformation control of the waveguide
cross-sections, and can be fabricated into on-chip optical vortex detectors [62]. Most of the
research on generating cylindrical vector beams using metasurfaces focuses on generating
transmission beams by the geometric phase, but the geometric phase requires the incident
light to be circularly polarized, which limits the freedom of design.

The terahertz wave is between the visible wave and the microwave. Because the
rotational vibration of many biological macromolecules falls in this band, the application of
terahertz in biomedicine has great prospects. At the same time, polarized optics have the
advantages of carrying a large amount of information without the need for exogenous labels,
and are increasingly widely used in biomedicine. The application of cylindrical vector
beams in the terahertz band is essential for both biomedicine and terahertz communications.

This paper proposes a method for generating vector beams using a reflective all-
dielectric metasurface in the terahertz band through the dynamic phase and the geometric
phase. As shown in Figure 1, the different types of beams are generated when the beams
with different polarization states are incident on the designed metasurface. Under the
incidence of linearly polarized light along the x-direction, the generated light is a radial
vector beam. Under the incidence of linearly polarized light along the y-direction, the
generated light is an angular vector beam. When a left-handed circularly polarized light is
incident, the generated light is a vortex beam with a topological charge of −1. Under the
incidence of right-handed circularly polarized light, the generated light is a vortex beam
with a topological charge of +1. The proposed method can provide a new approach to
designing reflective terahertz micro-nano devices.
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2. Theory of Multi-Function Metasurface

Considering that the optical characteristics of the metasurface are the same as that of
the phase retarder, when the long axis and the short axis of the designed structure coincide
with the x-axis and y-axis of the coordinate system, respectively, the transmission matrix

can be conveniently simplified and expressed as: T =

[
Ayeiϕy 0

0 Axeiϕx

]
, where Ax and ϕx

are the amplitude and phase of polarized incidence along the x-axis, and Ay and ϕy are
the amplitude and phase of polarized incidence along the y-axis. When the structural unit
rotates by θ, the long and short axes of the structure do not coincide with the x and y axes,
and the transfer matrix is expressed as:

Txy = R(θ)TR(−θ) =

[
cosθ −sinθ
sinθ cosθ

][
A2eiϕ2 0

0 A1eiϕ1

][
cosθ sinθ
−sinθ cosθ

]
, (1)
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Among them, since the long and short axes do not coincide with the x and y axes,
A1 and ϕ1 are the amplitude and phase of the polarized incidence along the x-axis when
the structure is not rotated, and A2 and ϕ2 are the amplitude and phase of the polarized
incidence along the y-axis when the structure is not rotated. To improve the polarization
conversion efficiency, we can consider the special cases of A1 ≈ A2 ≈ A and ϕ1 − ϕ2 ≈ π.
According to Euler’s formula, it can be known that eiϕ1 = −eiϕ2 , and at this time, Equa-
tion (1) is simplified to:

Txy = Aeiϕ2

[
cosθ −sinθ
sinθ cosθ

][
1 0
0 −1

][
cosθ sinθ
−sinθ cosθ

]
=

Aeiϕ2

[
cos2θ sin2θ
sin2θ −cos2θ

]
,

(2)

From Equation (2), it can be concluded that the transmission matrix can be changed
by changing the long axis or short axis of the structure and the angle of the rotating unit
structure, thereby affecting the output light.

A linearly polarized plane wave can be decomposed into two circularly polarized

lights. Considering the two circularly polarized lights as: EL
in =

√
2

2 ELeiδL

[
1
i

]
and ER

in =

√
2

2 EReiδR

[
1
−i

]
, respectively, at this time, the reflected output light of the structure is:

ELL
out =

√
2

2
AELeiδL eiϕ2 e−2θ

[
1
i

]
=

√
2

2
AELeiδL ei(ϕ2−2θ)

[
1
i

]
, (3)

ERR
out =

√
2

2
AEReiδR eiϕ2 e2θ

[
1
−i

]
=

√
2

2
AEReiδR ei(ϕ2+2θ)

[
1
−i

]
, (4)

Among them, ELL
out represents the left-handed component of the reflected output light

under the incidence of left-hand circularly polarized light, and ERR
out represents the right-

handed component of the reflected output light under the incidence of the right-handed
circularly polarized light. ±2θ is the geometric phase.

For the radial/azimuthal vector light field with the same concentric polarization
rotation direction, the interface phase distribution should satisfy [63]:

Φ(r,α) = −2πr
NA
λ

+ lα, (5)

In Equation (5), NA is the numerical aperture, NA = λ/P, λ is the operating wavelength,
P is the total period of the 2π phase along the radial direction, and l is the topological
charge number. Therefore, the phase that needs to be designed can be expressed as:
ΦLL = ϕ2− 2θ = −2πr/P−α, ΦRR = ϕ2 + 2θ = −2πr/P+α. According to Equations (3)
and (4), we can obtain:

ELL
out =

√
2

2
AELeiδL ei(ϕ2−2θ)

[
1
i

]
=

√
2

2
AELeiδL ei(− 2πr

P −α)

[
1
i

]
, (6)

ERR
out =

√
2

2
AEReiδR ei(ϕ2+2θ)

[
1
−i

]
=

√
2

2
AELeiδL ei(− 2πr

P +α)

[
1
−i

]
, (7)

It can be seen from Equation (6) that when the incident light is left-handed circularly
polarized light, the left-handed component of the reflected light is a vortex beam with a
topological charge of −1. Similarly, it can be observed from Equation (7) that when the
incident light is right-handed circularly polarized light, the right-handed component of the
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reflected light is a vortex beam with a topological charge of +1. When a linearly polarized
light is incident, the output light can be expressed as:

Eout =

√
2

2
ELL

out +

√
2

2
ERR

out = AEe−i 2πr
P

[
cos(α+ β)
sin(α+ β)

]
, (8)

In Formula (8), when the linearly polarized light is incident along the x-direction
(β = 0), the output light is radial vector light, and when the linearly polarized light is
incident in the y-direction (β = π/2), the outgoing light is azimuthal vector light.

3. Design of Multi-Function Metasurfaces

Figure 2 is a schematic diagram of a reflective metasurface, which is high-resistance
silicon with a relative dielectric constant of 11.7 and a thickness of h = 180 µm on fused
silica. The period P of the high resistance silicon pillar is 300 µm. By changing the lengths
L1 and L2 in two orthogonal directions of the silicon pillar, its phase can be controlled to
cover the entire 2π range [64]. At the same time, an additional PB phase is generated by
rotating the silicon pillar. The metasurface acts as a half-wave plate, and a phase difference
of π is required between the principal axes of the designed metasurface units. To improve
the polarization conversion efficiency, we can consider the special cases of Ax ≈ Ay ≈ A
and ϕx − ϕy = π in which the silicon pillar acts as a half-wave plate. In Equation (2), ϕ2 is
the phase of the silicon pillar along the L2 direction, θ is the rotation angle of the structure,
and 2θ is the geometric phase. Among them, the phase of the output light is changed by
changing the length and width of the silicon pillar to meet the half-wave plate function,
and the angle of the silicon pillar is rotated to meet different incident light polarization
states, through which each metasurface unit is individually designed to achieve a specified
polarization conversion.
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Figure 2. Schematic diagram of the reflective metasurface structure.

Figure 3a,b show the phase and amplitude results of changing L1 and L2 of the silicon
pillar at 0.7 THz. Accordingly, the corresponding operating wavelength is 428.6 µm. The
full 2π phase regulation at 0.7 THz is achieved by changing the lengths of L1 and L2. The
location of the selected four coding structures is marked in the figure. As shown in Table 1,
the structure sizes of the four units are selected as L1 = 120, 86, 270, 260 µm and L2 = 270,
260, 120, 86 µm. Figure 3c shows the amplitude values Ax under the incident polarization
along the x-direction and the amplitude values Ay under the incident polarization along
the y-direction. The amplitude difference is ∆A =

∣∣Ax − Ay
∣∣, corresponding to the four

coding structures. Figure 3d shows the phase value ϕx under the incident polarization
along the x-direction and the phase value ϕy under the incident polarization along the
y-direction. The phase difference value is ∆ϕ = ϕx − ϕy, corresponding to the four coding
structures. The phase of four coding structures are linearly increased in 90◦ steps. At the
same time, to ensure that all selected coding structures play the role of half-wave plates at
the selected frequency of 0.7 THz, the phase differences ∆ϕ are close to π. Based on these
four coded silicon pillars, a metasurface was designed for generating vector beams.
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L1/x 120 86 270 260
L2/y 270 260 120 86

Digital coding number “0” “1” “2” “3”

Under the incident polarization along the x-direction, the emergent light is a radial
vector beam, and under the incident polarization along the y-direction, the emergent light
is an angular vector beam. To realize the above design, the four coding structures are
firstly arranged according to radial diffusion. Different from this phase modulation, the
metasurface is also evenly divided into eight regions, and the arranged coding structures
in each region are rotated by the same angle θ. The θ angle is determined by the required
phase α = 2θ, as shown in Figure 4. The phase changes of the two encoding methods are
simply illustrated in Figure 4.

Among them, the four colors in Figure 4a represent four coding structures, respectively,
that are determined by changing L1 and L2 to form the dynamic phase. The eight region
phases α of Figure 4b are arranged in rotation from 0 to 2π, thereby forming the second PB
phase. The designed metasurfaces are arranged according to the above arrangement.
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y-direction and the phase difference value ∆𝜑. 

Table 1. Parameter settings. (Unit: μm). 

Encoding Particles 
    𝐿 /x 120 86 270 260 𝐿 /y 270 260 120 86 

Digital coding number “0” “1” “2” “3” 

Under the incident polarization along the x-direction, the emergent light is a radial 
vector beam, and under the incident polarization along the y-direction, the emergent 
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are firstly arranged according to radial diffusion. Different from this phase modulation, 
the metasurface is also evenly divided into eight regions, and the arranged coding 
structures in each region are rotated by the same angle θ. The θ angle is determined by 
the required phase α = 2θ, as shown in Figure 4. The phase changes of the two encoding 
methods are simply illustrated in Figure 4. 
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Silicon dioxide can be deposited on high-resistance silicon wafers by plasma chemical
vapor deposition. The silicon wafer was directly bonded to the fused silica wafer by spin-on
adhesive followed by UV exposure. The photoresist lithography and deep reactive ion
etching process are etched using traditional mask lithography technology. High-resistance
silicon is widely used in terahertz optics due to its low loss and low dispersion in the
terahertz spectrum. The metasurface is composed of 13 × 13-unit structures. Figure 5a
is the normalized intensity distribution at 0.7 THz under the incidence of x-polarized
light. It can be seen that the light intensity distribution is a doughnut shape with a hollow
center. The intensity outside this shape is relatively low, and the arrows in the figure
indicate the polarization distribution, which is radially directed toward the concentricity.
The polarization states represented by the arrows are the calculated results of the vector
electric field obtained by the simulation. Figure 5b shows the yz plane intensity distribution
of the generated vector beam under the incident x-polarized light without diffraction
characteristics. Figure 6a shows the normalized intensity distribution at 0.7 THz under the
incidence of y-polarized light. The normalization factor is (|E|2 − |E|2min)/(|E|2max − |E|2min),
and |E|2 represents the intensity of the plane electric field. It can also be clearly seen
that the light intensity distribution is in the shape of a donut with a hollow center. The
polarization distribution of the arrow in the figure is an angular distribution with the
same rotation direction. Figure 6b is the intensity distribution of the yz plane under
the incident y-polarized light. It can be seen that the emergent beam has a long non-
diffraction distance of about 10λ. The results are very consistent with the idea of the
theoretical design. Under the incidence of y-polarized light, the halo of azimuthal vector
beams generated by the metasurface is more uniform. However, under the incidence
of x-polarized light, the radial vector beam halo generated by the metasurface has poor
uniformity. Fortunately, by increasing the number of coding metaunits to refine the phase
change, this inhomogeneity can be reduced. It can also be optimized by increasing the
resolution in the pattern design. When designing the units, the amplitude and phase of
each cell should be relatively uniform.
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Figures 7 and 8 are the left-handed and right-handed component intensities and 
phase distributions when the metasurface is illuminated by left-handed circularly 
polarized light and right-handed circularly polarized light, respectively. Figure 7a is the 
normalized intensity distribution of the left-handed component of the reflected beam at 
0.7 THz under left-handed polarized light incidence. A hollow doughnut-shaped vortex 
beam in the center is shown. Figure 7b shows the phase distribution corresponding to the 
left-handed component, and the helical phase distribution indicates that the output light 
is a vortex beam with a topological charge of −1. In contrast, the intensity distribution and 
phase distribution of the right-handed component in Figure 7c,d are irregular. Likewise, 
in Figure 8, the left-handed and right-handed components exhibit the same theoretical 
effect when the incident light polarization is opposite. The simulation results provide a 
good demonstration of the vortex beam properties of the generated beam. 
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Figure 6. (a,b) Normalized intensity distribution at 0.7 THz under the y-polarized light incidence.

Figures 7 and 8 are the left-handed and right-handed component intensities and phase
distributions when the metasurface is illuminated by left-handed circularly polarized light
and right-handed circularly polarized light, respectively. Figure 7a is the normalized
intensity distribution of the left-handed component of the reflected beam at 0.7 THz under
left-handed polarized light incidence. A hollow doughnut-shaped vortex beam in the
center is shown. Figure 7b shows the phase distribution corresponding to the left-handed
component, and the helical phase distribution indicates that the output light is a vortex
beam with a topological charge of −1. In contrast, the intensity distribution and phase
distribution of the right-handed component in Figure 7c,d are irregular. Likewise, in
Figure 8, the left-handed and right-handed components exhibit the same theoretical effect
when the incident light polarization is opposite. The simulation results provide a good
demonstration of the vortex beam properties of the generated beam.
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Figure 7. Reflected beam at 0.7 THz under the left-handed polarized light incidence. (a,b) Normalized
intensity distribution and phase distribution of the left-handed component. (c,d) Normalized intensity
distribution and phase distribution of the right-handed component.
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The OAM patterns were quantitatively analyzed by employing Fourier transform 
analysis. The formula is as follows [65]: 𝐴 = 𝜓(𝜑)𝑒 𝑑𝜑, (9) 𝜓(𝜑) = ∑ 𝐴 𝑒 , (10) 

As shown in Figure 9, the OAM topological charge number l = −7 to 7 is selected, and 
the energy weight of the OAM topological charge number is defined as: 

energy weight= ∑ , (11) 

It can be seen that for the left-handed component in Figure 9a, the topological charge 
number 𝑙 = −1  accounts for the main part of the component, and the remaining 
topological charge number components are relatively small. In the right-handed 
component in Figure 9b, the topological charge number 𝑙 = 1 accounts for the main 
component. 

Figure 8. Reflected beam at 0.7 THz under the right-handed polarized light incidence. (a,b) Normal-
ized intensity distribution and phase distribution of the left-handed component. (c,d) Normalized
intensity distribution and phase distribution of the right-handed component.

The OAM patterns were quantitatively analyzed by employing Fourier transform
analysis. The formula is as follows [65]:

Al =
1

2π

∫ 2π

0
ψ(ϕ)e−jlϕdϕ, (9)

ψ(ϕ) = ∑l Alejlϕ, (10)

As shown in Figure 9, the OAM topological charge number l = −7 to 7 is selected, and
the energy weight of the OAM topological charge number is defined as:

energy weight =
Al

2

∑7
l′=−7 Al′

2 , (11)

It can be seen that for the left-handed component in Figure 9a, the topological charge
number l = −1 accounts for the main part of the component, and the remaining topolog-
ical charge number components are relatively small. In the right-handed component in
Figure 9b, the topological charge number l = 1 accounts for the main component.
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4. Conclusions

We propose a method for generating vector beams in the terahertz band using an all-
dielectric reflection-type metasurface. By using the superposition of the dynamic phase and
the PB phase of the encoding unit structure at the same time, the generation of the vector
beams under the incidence of linearly polarized light can be realized. The metasurface
is composed of four kinds of coded cell structures, all of which have a half-wave plate
function and fully cover the 2π phase. The proposed reflective metasurface has potential
applications in generating vector beams with high integration. The method can be extended
to other frequency ranges.
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