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Abstract: Composite action between the components of the concrete-filled steel tube (CFT) is complex
and it is difficult to accurately obtain the experimental relationship between the steel tube and the
core concrete of CFT columns. The triaxially stressed core concrete has been studied by hydrostatic
test in past research, while little research has been focused on the mechanical behavior of steel tube of
CFT columns. It is difficult to obtain the experimental constitutive relationship of the steel tube of
CFT columns to reflect the real-time influence of biaxial stress state and local buckling of steel plate
on the steel tube. To clarify the mechanical behavior of the steel tube of CFT columns, this paper
proposed an elastoplastic analytical method considering biaxial stress state and local buckling of
steel tube to obtain the stress–strain curve of the steel tube. This method applied the Hook’s law and
the plasticity theory to interpret the information conveyed by the measured vertical and hoop strain
histories of the steel tube. To verify its effectiveness, 11 circular concrete-filled steel tube stub columns
were fabricated and tested under axial compression. Superposition results of the axial load–strain
of steel tube and core concrete were compared against the experimental curves. The widely used
Sakino–Sun model of the confined concrete was adopted to calculate the axial load–strain curve of
the core concrete. Satisfactory agreements between the calculated and experimental results confirmed
the rationality of the proposed method in tracing the constitutive relation of the biaxially stressed
steel tube even after the occurrence of the local buckling. The obtained stress–strain relationship is
critical for establishment of mathematical constitutive model and finite element model of steel tube.

Keywords: CFT; cold-formed circular steel tube; stub column; biaxial stress state; local buckling

1. Introduction

Structurally benefitting from the composite action, concrete-filled steel tube (CFT)
columns with enhanced strength and ductility have been increasingly widespread as
gravity-sustaining components especially in high-rising buildings. It is recognized that
the structural benefits of CFT are to be achieved by the effective confinement provided
by the steel tube with a certain range of outer diameter-to-thickness ratio D/t to obtain
the core concrete triaxially stressed and avoid the spalling of shell concrete. Moreover,
the infilled concrete prevents the inward local bulking of the steel tube with improved
stability, especially for the thin-walled steel tube. However, the biaxial stress state of steel
tube resulting from the concrete dilation may conversely lead to a strength reduction in
the steel tube. It is quite complex and difficult to quantify the influence of the composite
action to evaluate the mechanical behavior of CFT. For decades, considerable research
has been trying to develop a deep understanding of the axial mechanical behavior of CFT
columns, but much emphasis has been only placed on the influence of variables on the
overall performance of CFT, such as loading conditions [1–3], slenderness [2,4–6], concrete
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strength [3–8], the yield stress of steel tube [4,5], D/t ratio [4,7–10], the bond strength [8,11],
stainless steel [12], recycled aggregate concrete [12], and section type [13–15].

To solve this problem, a common strategy is the method of superposition, which
requires individual investigation into the performance of confined concrete and steel
tube. As for the confined concrete, several triaxial pressure tests covering a wide range of
concrete strength and confining stress have been conducted to comprehend its mechanical
behavior [16–20]. A variety of stress–strain models are also available for the confined
concrete, such as the trilinear model of Chan (1995), the bilinear model of Roy et al. (1964),
the three-branch curve of Soliman et al. (1967) and Kent et al. (1971), the four-stage model
of Park et al. (1974) and Sheikh et al. (1980), and the continuous model of Sargin (1971) and
Mander et al. (1988) [21]. In 1994, as a part of the fifth phase of the U.S.–Japan Cooperative
Earthquake Research Program, a unified stress–strain model was proposed by Sakino
and Sun for the confined concrete by conventional transverse reinforcements or/and steel
tube [22–24]. More recently, modified models of confined concrete have been proposed on
the basis of these classical models [25–29].

However, limited attention has been received to clarify the mechanical behavior of
the steel tube of CFT and it is difficult to obtain the stress–strain curve of the steel tube
through experiments on CFT. At present, two indirect strategies have been applied in the
existing literature to obtain the stress–strain curve of the steel tube of CFT. One method
is the experimental investigation on the hollow steel tube (CHS) [30–33]. It can reflect the
mechanical behavior of axially stressed CHS, but the effect produced by the core concrete
on the behavior of the steel tube has been ignored by this means. In another method, the
plastic theory was applied to conduct elastoplastic analysis on CFT. Incremental Prandtl–
Reuss theory as the most commonly used type of the plastic theory was verified reliable
to obtain the stress–strain relation of the steel tube of CFT [34,35]. However, it was found
that the stresses were sensitive to the strains and a minor inaccuracy in predicting the
strains of steel tube could lead to a huge error in stress prediction by this theory, and
the convergence problem of the iterative calculation procedure also made it difficult for
practical application [36]. So, it is urgent to develop a rational and simple approach to
obtain the experimental stress–strain curve of the steel tube of CFT to comprehend its
mechanical behavior. Based on the obtained experimental stress–strain curve of the steel
tube of CFT, the mathematic axial stress–strain model of steel tube of CFT is anticipated
to be built to consider the biaxial stress state and local buckling, which are not clearly
considered or just considered based on simulation results in current constitutive model of
steel tube infilled with concrete.

The plastic theory in form of deformation type is a potential solution to solve the
above problems. Compared with the incremental Prandtl–Reuss theory, it is mathematically
less complex and easier for implementation based on certain assumptions. In the past
decades, the deformation theory of plasticity was widely used to estimate the buckling
behavior of axially compressed CHS [37], axially and biaxially stressed steel plates under
proportional and non-proportional loading [38,39], and circular stainless steel tube under
combined internal pressure and axial compression [40]. However, the application of this
theory as an alternative in the field of CFT is rare and needs to be investigated. Li et al.
adopted this theory to calculate the biaxial stress of the stainless steel tube of circular
concrete-filled stainless steel tube (CFSST) stub columns with appropriate consideration
of the tube buckling and biaxial stress condition [36], but the material characteristics of
the stainless steel tube differs from the steel tube. Grigoryan et al. presented a method to
determinate the ultimate axial load of CFT based on this theory [41], but the constitutive
law of the steel tube needs to be further investigated.

The stress–strain relationship of circular steel tube infilled with concrete is essential to
clarify the mechanical behavior of CFT columns, but it is difficult to obtain the stress–strain
relationship of steel tube through existing analytical methods. This paper proposed a
method to obtain the constitutive curve of the circular steel tube infilled with concrete by
applying the classical Hook’s law and the deformation theory of plasticity to analyze the
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measured vertical and hoop strains of the steel tube based on experiments on 11 CFT stub
columns. Compared with existing method to obtain the full-range stress–strain relationship
of steel tube of CFT columns, the proposed method considers the local buckling and
the influence of infilled concrete on the steel tube with less mathematically complex for
implementation. The experimental axial stress–strain curves of steel tube of the specimens
were obtained using the proposed method. The effects of local bulking and concrete dilation
on the performance of the steel tube of CFT are well-reflected. Finally, the accuracy of the
proposed method was verified by comparing with the experimental curve.

2. Experimental Program
2.1. Details of the Specimens

A total of 11 CFT stub columns were constructed and tested under axial compression
as shown in Figure 1a. All specimens were fabricated with height-to-outer diameter H/D
of 3 to avoid the end effects. A steel plate with the yield stress fsy of 305 MPa, 312 MPa
and 329 MPa was cold-formed into a circular section with the outer diameter-to-thickness
ratio D/t ranging from 55 to 115. The steel tube with D/t of 31 was seamless steel tube.
The generalized diameter-to-thickness ratio α (= Dfsy/tEs [42,43]) of the steel tube, which
is similar to the slenderness ratio in AISC and well-used in Japan to measure the local
buckling strength of CHS, was covering 0.06 to 0.17. Es is the Young’s Modulus of the steel.
Two endplates were welded to the top and toe of the steel tube to ensure the cross-section
of the specimens could simultaneously sustain the force.
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Figure 1. The specimens and test setup: (a) the specimens; (b) the test setup.

The concrete was cast in the vertical position through the hole of the top endplate and
progressive vibration was applied to eliminate air pockets and guarantee a homogeneous
mix. During the cast, the concrete was filled spilling over the top endplate to guarantee
the amount of concrete was enough to fill the air pockets. After the overflow of concrete
sank into the steel tube to fill the air pockets, the hole was emptied out and filled with
water 8 h after casting to provide a humid curing condition. Before the loading test, high-
strength mortar was squeezed into the steel tube through the hole of top endplate to fill
the gap caused by shrinkage of concrete and make the concrete surface flush with the top
endplate. Meanwhile, the corresponding standard concrete cubes with a dimension of
150 mm × 150 mm × 150 mm [44] were cast for the concrete strength test. On the test day,
the compressive strength fcu,k of the standard concrete cubes were 58 MPa, 70 MPa, and
93 MPa, respectively, for three grades of concrete. To convert the compressive strength fcu,k
of the concrete cube to corresponding concrete cylinder (100 mm × 200 mm) strength fcu,kcy,
the Equation (1) was adopted according to the reference [35]. The detailed parameters of
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the specimens are listed in Table 1. The section type of steel tube was classified according
to the AISC and EC3 codes as shown in Figure 2 [45], in which the upper limits of the α
were specified as 0.11 and 0.103, respectively.

fcu,kcy =
0.8513 fcu,k − 1.5998

0.96
(1)

Table 1. Details of the specimens.

Specimens D
(mm)

t
(mm) H(mm) fcu,k(MPa) fcu,kcy(MPa) fsy(MPa) fsu(MPa) A

(%)
Es

(GPa) α Type

CFT-31-C60 219 7.06 659 70 60 429 663 25 205 0.06 Class2
CFT-31-C80 219 7.06 659 93 81 429 663 25 205 0.06 Class 2
CFT-55-C30 273 5.00 816 58 50 312 452 35 202 0.08 Class 4
CFT-55-C60 273 5.00 816 70 60 312 452 35 202 0.08 Class 4
CFT-55-C80 273 5.00 816 93 81 312 452 35 202 0.08 Class 4
CFT-78-C30 273 3.50 813 58 50 305 444 36 205 0.12 Class 5
CFT-78-C60 273 3.50 813 70 60 305 444 36 205 0.12 Class 5
CFT-78-C80 273 3.50 818 93 81 305 444 36 205 0.12 Class 5
CFT-93-C30 325 3.57 971 58 50 329 453 33 206 0.15 Class 5
CFT-93-C60 325 3.57 971 70 60 329 453 33 206 0.15 Class 5
CFT-115-C30 376 3.28 1125 58 50 305 435 37 181 0.17 Class 5
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2.2. Test Apparatus and Instrumentations

The specimens were tested under concentric axial compression by a servo-controlled
hydraulic machine. The load was imposed in small increments at an initial rate of 2 kN/s.
After the load development was steady, the rate was increased and maintained a constant
rate of 5 kN/s until the applied load was about 80% of the predicted maximum load [46].
Then, the loading was controlled at the rate of 0.017 mm/s at the final stage of the test. The
test setup is shown in Figure 1b.

Four displacement transducers (LVDTs) were instrumented at symmetric locations
to record the axial displacement of the specimens. Paired vertical and horizontal strain
gauges were arranged on the exterior surface of the steel tube from top to toe to monitor
and record the vertical deformation and the perimeter expansion of the steel tube. At the
early stage of loading, the data from LVDTs and strain gauges was also used to ensure the
compressive loading was applied evenly without eccentricity. The location of the strain
gauges and LVDTs is illustrated in Figure 3.
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3. Test results and Discussions

Typical deformation development of the specimens is shown in Figure 4, which takes
the CFT-31-C80, CFT-55-C80, and CFT-78-C80 as representative examples for specimens
classified in Class 2, Class 4, and Class 5 series. El, εf, and εu are the strains corresponding to
onset of the local buckling of the steel tube, formation of the concrete crushing shear plane,
and the ultimate strength of the specimens, respectively. These specific strains are chosen
in Figure 4 because the test CFT columns at these strains exhibited specific experimental
phenomenon and load change.
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As shown in Figure 4, expansion of steel tube was initialized within the region near
the endplates and the middle height of the specimens. At the strain of 2%, bulge of the
steel tube of CFT-31-C80 was founded close to the middle height of the column after the
ultimate strength at strain of 0.51%. Then the concrete was successively crushed at strain
of 3%. The local buckling of CFT-55-C80 was found at strain of 1% near the top endplate
and middle region of the steel tube after the ultimate strength at strain of 0.57%, and the
shear plane of crushed concrete was formed at strain of 2%. Different from the specimens
of Class 2 and Class 4, local buckling of the CFT-78-C80 at strain of 0.3% was prior to the
ultimate strength at strain of 0.7%, and the shear crushing of concrete occurred at a higher
height of the column. It should be noted that the shear failed concrete caused secondary
local buckling of the steel tube, which dominated buckle deformation of the steel tube with
increasing axial compression.
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Crushing of concrete in shear failure and local buckling of the steel tube were observed
in all the specimens. Figure 5 shows the failure mode of the all the specimens except for
CFT-125-C30, of which the test was terminated in advance due to the fluctuated hydraulic
pressure of the loading devices. The dash line and dash-dot line locate the local bucking of
steel tube and the shear failed concrete, respectively. With increasing D/t, wrinkles of the
buckled steel tube were severer.
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Figure 5. Failure modes of the specimens.

Figure 6 presents the measured load–strain curve of the specimens. The strain was
obtained by dividing the average measured results of the four LVDTs by the height H of the
specimens. Symbols of “#”, “3”, and “4” marked the ultimate strength of the specimens,
local buckling of the steel tube, and the concrete failure, respectively. Local buckling of
steel tube was prior to the ultimate strength when the thickness of steel tube exceeding the
limitation of Class 4, which indicated that the influence of local buckling was greater on
the columns with a thinner-walled steel tube. For specimens with D/t of 31, 55, and 78,
the local buckling was delayed with decreased concrete strength. Concrete shear failure of
specimens in Class 2 and Class 4 occurred around strain of 2%, and the shear failure was
advanced with increasing D/t. Higher strength concrete of specimens showed earlier shear
failure due to less ductility. The residual load capacity of specimens in Class 2 and Class 4
at strain of 4% was around 4000 kN, which was higher than that of specimens in Class 5.
With increasing concrete strength and ratio of D/t, the strength degradation of the columns
was steeper.
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As shown in Figure 7, paired vertical and hoop strain histories of 9 points on the
external surface of the steel tube of the specimens were measured. In this figure, the T, M,
and B represented the strain measured at the top, middle, and bottom height of the column,
respectively. The V and H represented the vertical and hoop strain, respectively. The
numbers 1, 2, and 3 indicated the different positions of the measured points distributing
across the section of the specimens as shown in Figure 2. The measured strain of steel tube
was smaller at lower height of the column due to the stress delivery through bond strength
between the steel tube and core concrete.
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4. Theoretical Relation of the Axial Stress–Strain between CHS and Steel Tube of CFT

It is difficult to obtain the experimental stress–strain curve of the steel tube directly
from the test on the CFT, and only the load-displacement curve of the specimens and
strain history of the steel tube can be directly measured in the test. Therefore, this paper is
intended to propose an alternative method to obtain the experimental constitutive curve of
the biaxially stressed steel tube of the specimens. The concept of this method is to establish
a relationship of the axial stress–strain between CHS and steel tube of CFT by using the
deformation theory of plasticity to analyze the measured vertical and hoop strains of the
steel tube of CFT under the assumption of proportional loading of the steel tube. Once the
experimental relationship of the axial stress–strain curve between CHS and steel tube of
CFT is known, the axial experimental stress–strain curve of the steel tube of CFT can be
converted from the stress–strain curve of CHS, which can be obtained by experiments on
CHS or calculated by the existing effective constitutive model.

Based on the deformation theory of plasticity, a transformation relationship between
the biaxial stress–strain curve and the axial stress–strain curve was derived, which essen-
tially follows the content of the literatures [47–49]. The cubic element of steel is assumed to
be subject to principal stress σ1, σ2 = 0, and σ3 with corresponding strain ε1, ε2 = 0, and ε3
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as shown in Figure 8. The σ1 and σ3 are correspondent to the hoop and axial stress of the
steel tube of CFT, respectively. At the elastic stage, the principal stress and strain follow the
Hook’s law as Equations (2)–(4), and the Poisson’s ratio ν is assumed to be 0.3 at this phase.

ε1 =
1
E
[σ1 − ν(σ2 + σ3)] (2)

ε2 =
1
E
[σ2 − ν(σ1 + σ3)] (3)

ε3 =
1
E
[σ3 − ν(σ1 + σ2)] (4)
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At the plastic stage, the relationship between octahedral shear stress τoct and the
equivalent stress σ can be expressed by Equations (5) and (6) according to the theory
of plasticity.

τoct =
1
3

√
(σ1 − σ2 )

2 + (σ2 − σ3 )
2 + (σ1 − σ3 )

2 (5)

τoct =

√
2

3
σ (6)

For simplicity, α1, α2, and α3 are ratios of principle stresses defined by Equation (7)
and the τoct can be simplified as Equation (8).

α1 = σ1/σ3, α2 = σ2/σ3, α3 = σ3/σ3 (7)

τoct =

√
2

3
σ3
√

α1
2 + α22 + 1− α1α2 − α1 − α2 (8)

Octahedral shear stress τoct,a in axial stress state (α1 = 0, α2 = 0, α3 = 1) and octahedral
shear stress τoct,b in biaxial stress state (α2 = 0, α3 = 1) can be obtained by Equation (9) and
Equation (10), respectively. The σ3a and σ3b are the axial stress of steel under axial and
biaxial stress state, respectively.

τoct,a =

√
2

3
σ3 =

√
2

3
σ3a (9)

τoct,b =

√
2

3
σ3 =

√
2

3
σ3b
√

α1
2 + 1− α1 (10)
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If Von Mises criterion is assumed to be valid as shown in Figure 9, octahedral shear
stress τoct is independent of stress state and only related to the principal stress. That is,
equivalent stress determines the yield of steel no matter in what stress state as expressed in
Equation (11). The Von Mises criterion for the biaxially stressed steel tube can be expressed
as Equation (12).

τoct,a = τoct,b (11)

σ2
1 − σ1σ3 + σ2

3 = f 2
sy (12)
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Thus, the theoretical relationship of the axial stress of steel in the axial and biaxial
conditions is obtained by Equation (13).

σ3b = σ3a/
√

α1
2 + 1− α1 (13)

The reduction factor of the axial stress of steel from axial to biaxial stress state is defined
as ψ by Equation (14) to calculate the difference of axial stress–strain curve between the
biaxially stressed steel tube of CFT and the corresponding axially stressed CHS. Because the
hoop and axial stress of the steel tube of CFT cannot be measured directly from experiments
on CFT, the calculation method of α1 is to be presented in the following part to obtain the
reduction factor ψ.

ψ = 1/
√

α1
2 + 1− α1 (14)

Based on the assumption that the components of deviatoric stress and strain are
proportional, Equation (15) can be obtained. µ′ is the function of the strain state.

σ1 − σ2

ε1 − ε2
=

σ2 − σ3

ε2 − ε3
=

σ3 − σ1

ε3 − ε1
= 2µ′ (15)

If the assumptions that (1) the equivalent stress σ is a function of the equivalent strain
ε as Equation (16), and (2) the volume of steel is incompressible (Poisson’s ratio ν = 0.5) are
valid, the µ′ can be calculated by Equation (17). E′ is the function of the equivalent strain ε.

σ = E′ε (16)

µ′ =
E′

2(1 + υ)
=

E′

3
(17)
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Combining Equations (15) and (17), the relationship of the principal stress and strain
can be obtained as Equations (18)–(20).

ε1 =
1
E′

[
σ1 −

1
2
(σ2 + σ3)

]
(18)

ε2 =
1
E′

[
σ2 −

1
2
(σ1 + σ3)

]
(19)

ε3 =
1
E′

[
σ3 −

1
2
(σ1 + σ2)

]
(20)

For simplicity, β1, β2, and β3 are the ratios of principal strain defined by Equation (21)
and β2 = 0 in the biaxial stress state. For the steel tube of CFT, β1 is the ratio of axial strain
to hoop strain.

β1 = ε1/ε3, β2 = ε2/ε3, β3 = ε3/ε3 (21)

Substituting Equations (7) and (21) into Equations (2)–(4) and Equations (18)–(20), the
α1 at the elastic and plastic stage can be calculated by Equation (22).

α1 =

{ β1+0.3
1+0.3β1

Elastic stage
β1+0.5

1+0.5β1
Plastic stage

(22)

5. Analytical Results

To obtain the axial stress–strain curve of the steel tube of the specimens, the experimen-
tal real-time β1 was substituted into Equation (4) to obtain α1 and then the reduction factor
ψ was calculated by substituting the α1 into Equation (3). Because β1 was an experimental
result, the reduction factor ψ determined by β1 was comprehensive to reflect the effect
of concrete dilation, bond strength, and local buckling on the performance of the steel
tube. Moreover, the stress–strain curve of CHS was obtained by the constitutive model
of CHS stub columns without considering the local buckling of CHS to avoid duplication
of consideration with the reduction factor ψ. The concept and calculation flow of this
proposed method are shown in Figure 10. The reduction factor ψTM-ave is the averaged ψ
within the top and middle region of the steel tube, which is defined and used in Section 5.2.
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5.1. Ratios β1 of Hoop Strain to the Vertical Strain of the Measured Point

Figure 11 illustrated the ratio β1 of the hoop strain to the vertical strain of the measured
points. Based on the assumption of plane-remain-plane, βT-ave, βM-ave, and βB-ave were
obtained by averaging the measured β1 of three points across the section of the steel tube
from the top to the bottom of the specimens. The Poisson’s ratio of steel tube was around
0.3 at the initial stage as shown in Figure 11. With increasing axial strain, almost all the
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ratios βT-ave and βM-ave of the steel tube within the upper region dropped faster than βB-ave
within the bottom region, which revealed that the dilation of core concrete or the local
buckling of steel tube was more likely to develop within upper-region steel tube instead of
the bottom part. This phenomenon has also been found in research [1,3]. The performance
of the upper-region steel tube was of representative of the whole steel tube. So, the ψTM-ave
of the upper region was chosen to calculate the stress–strain curve of the steel tube of
the specimens.
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5.2. Real-Time Reduction Factor ψ

The calculation results of the reduction factor ψ were illustrated in Figure 12. The sym-
bols of rhombus and triangle represent the average reduction factors ψT-ave and ψM-ave of
the top and middle region of the specimens, respectively, and the dotted line of ψTM-ave av-
eraging ψT-ave and ψM-ave was employed to calculate the stress–strain curve of the steel tube
of the specimens. It appeared that the reduction factors ψT-ave, ψM-ave, and ψTM-ave main-
tained around 1.0 at the initial stage, which exactly reflected the noninterference between
the steel tube and core concrete at the elastic stage. Once the interaction between the con-
crete and steel tube occurred, the reduction factors ψT-ave, ψM-ave, and ψTM-ave decreased.
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5.3. The Constitutive Model of CHS

The constitutive model of CHS in reference [42] was adopted in this paper to derive
the stress–strain curve of the steel tube of the specimens. As shown in Figure 13, the solid
curve fchsl-ε was the model of CHS without considering the local buckling effect and the
dashed line f chs-ε after point P was the descending branch to consider this effect. Point P
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indicates the local buckling of the CHS. The S represents the ratio of the measured local
buckling strength to the measured yield strength fsy of CHS. The Q was the second stiffness
ratio of the ascending portion of the CHS model. The εch was the characteristic strain.
The fsm and εsm were the peak stress and the strain corresponding to fsm. The fres was the
residual stress of CHS at the compressive strain of 0.04. The mathematical expressions and
parameters of the model were listed in Appendix A.
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5.4. Stress–Strain Curves of the Steel Tube of the Specimens

The stress–strain curves fst-ε of the steel tube of the specimens were obtained by
multiplying the curves fchsl-ε of the corresponding CHS by the reduction factors ψTM-ave as
Equation (23). The fst was correspondent to the absolute value of σ3.

fst(ε) = fchsl(ε)ψTM−ave(ε) (23)

The calculation results were shown in Figure 14. For comparisons, curves f chs-ε
of the corresponding CHS considering the local buckling effect were also presented. It
demonstrated that the strength degradation of the steel tube of CFT occurred earlier than
that of CHS, which was caused by the biaxial stress condition of the steel tube of CFT.
However, the degradation almost happened at the same time for both kinds of steel tubes
with an increasing ratio of D/t, especially with the D/t exceeding 91. Moreover, the residual
strength of the steel tube of CFT at the strain of 0.04 indeed improved due to the support of
infilled concrete and with increasing D/t, the improvement became greater. Therefore, the
stress–strain model for CHS indeed must be modified for the application of the steel tube
of CFT to consider the influence produced by the core concrete.
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6. Verification

To verify the reliability of the proposed elastoplastic analytical method, superposi-
tion results of the load–strain curves of the steel tube and core concrete were compared
with the experimental curves. Figure 15 shows the comparisons of the non-dimensional
experimental curves Nexp/N0-ε and calculated results Ncal/N0-ε of the specimens in this
paper. Nexp is the measured axial load of the specimens. Ncal is the calculated axial load of
the specimens, which can be expressed by Equation (24). N0 is the nominal squash load
provided in Equation (25).

Ncal = Nc + Ns = Ac fc + AsψTM−ave fs (24)

N0 = Ac fcu,kcy + As fsy (25)

where Ns is the axial load of the steel tube calculated by the proposed method, Nc is the
axial load of the core concrete calculated by the confined concrete model proposed by
Sakino–Sun [24], fc is the axial stress of the confined concrete model corresponding to
any axial strain εc, and Ac and As are the cross-section area of the core concrete and steel
tube respectively.



Materials 2022, 15, 8275 18 of 22

Materials 2022, 15, x FOR PEER REVIEW 18 of 22 
 

 

initial loading stage, the loading surface of servo-controlled hydraulic machine had partial 

gaps with the steel end plate, while the calculated one did not consider the gap. Further-

more, to exhibit the load sharing pattern of the steel tube and core concrete, curves of 

Ns/N0-ε and Nc/N0-ε are also presented. This indicates that the infilled concrete shared 

more axial loading comparing with steel tube. 

 

 

 

 

Figure 15. Comparison of experimental curves and calculated results by proposed method. 

7. Conclusions 

Due to the difficulty in obtaining the stress–strain relationship of steel tube of CFT 

columns, this paper proposed an analytical method to obtain the full-range stress–strain 

Figure 15. Comparison of experimental curves and calculated results by proposed method.

The comparisons indicate that the calculated results are generally in satisfactory
consistency with the experimental results, although the ultimate strength of some specimens
is underestimated by the proposed method due to the calculation deviation. As shown in
Figure 15, the experimental stiffness is smaller than the calculated one (e.g., CFT-91-C60,
CFT-115-C30). The reason for this phenomenon is that the steel end plate as shown in
Figure 1 might not be ideally flat as expected due to the welding and assembly, so at
the initial loading stage, the loading surface of servo-controlled hydraulic machine had
partial gaps with the steel end plate, while the calculated one did not consider the gap.
Furthermore, to exhibit the load sharing pattern of the steel tube and core concrete, curves
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of Ns/N0-ε and Nc/N0-ε are also presented. This indicates that the infilled concrete shared
more axial loading comparing with steel tube.

7. Conclusions

Due to the difficulty in obtaining the stress–strain relationship of steel tube of CFT
columns, this paper proposed an analytical method to obtain the full-range stress–strain
curves of the steel tube of the specimens based on the deformation theory of plasticity and
experiments conducted on 11 CFT stub columns under uniaxial compression to investigate
the mechanical behavior of the steel tube infilled with concrete. The load–strain curve of
CFT and strain development of steel tube were measured and presented. The following
conclusions can be drawn by the experimental and analytical results.

(1) The proposed method provides an effective way to analyze the measure strain history
to obtain the experimental stress–strain curve of the steel tube of CFT considering
biaxial stress state and local buckling, which is critical to comprehend the elastoplastic
behavior of the steel tube interacted with the core concrete.

(2) Comparisons of the stress–strain curves of the steel tube and CHS indicated that the
infilled concrete indeed helpfully improved the residual stress of the steel tube, but it
would cause an earlier strength degradation of the steel tube. This feature is suggested
to be considered in finite simulation work on CFT columns.

(3) Different from the specimens of Class 2 and Class 4, local buckling of the specimens
of Class 5 was prior to the ultimate strength, which indicated that the influence of
local buckling was greater on the columns with thinner-walled steel tube. To reduce
the local buckling effect on the behavior of CFT columns, the thin-walled steel tube is
suggested to be used carefully.

(4) Crushing of concrete in shear failure and local buckling of the steel tube were observed
in all the specimens. The shear failed concrete caused secondary local buckling of
the steel tube, which dominated buckle deformation of the steel tube with increasing
axial compression.

(5) Higher strength concrete of specimens showed earlier shear failure due to less ductility.
With increasing concrete strength and ratio of D/t, the strength degradation of the
columns was steeper.

8. Future Work

The analytical results indicated that proposed method is an effective and simple
approach to obtain the experimental stress–strain curve of the steel tube of CFT. Based on
the obtained experimental stress–strain curve of the steel tube of CFT, the mathematic axial
stress–strain model of steel tube of CFT is anticipated to be built to consider the biaxial
stress state and local buckling, which are not clearly considered or just considered based on
simulation results in current constitutive model of steel tube infilled with concrete. These
works are in progress based on our previous proposed model of CHS [42], which showed
that the mathematic axial stress–strain model of steel tube of CFT in progress had higher
accuracy than existing models, and will be reported in the near future.
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Appendix A

The expressions of the CHS model are listed below. εs is any given compressive strain
and the f s is the stress corresponding to the εs. N is the round coefficient determining the
ascending portion. The ascending branch can be defined by Equation (A1) to Equation
(A6). Peak stress and peak strain can be defined by Equation (A7) to Equation (A9). The
descending branch can be defined by Equation (A10) to Equation (A13).

fs = Esεs

Q +
1−Q

(1 + |εs/εch|N)
1/N

 (A1)

S =
1

0.82 + 1.22α
(A2)

εsy =
fsy

Es
(A3)

εsm =
0.25
α1.3 εsy (A4)

Q = 0.03ε−0.63
sm , εsm in % (A5)

εch =
S fsy −QEsεsm

(1−Q)Es
(A6)

fsm = Esεsm

Q +
1−Q

(1 + |εsm/εch|N)
1/N

 (A7)

εsm =
0.25 fsy

Esα1.3 (A8)

N = 6 (A9)

fs =
A

B + εs
(A10)

A =
fres fsm(0.04− εsm)

fsm − fres
(A11)

B =
0.04 fres − fsmεsm

fsm − fres
(A12)

fres = fsm(0.12 + 0.23εsm), εsm in % (A13)
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