
Citation: Cui, Y.; Pei, M.; Huang, J.;

Hou, W.; Liu, Z. The Damage

Performance of Uncarbonated

Limestone Cement Pastes Partially

Exposed to Na2SO4 Solution.

Materials 2022, 15, 8351. https://

doi.org/10.3390/ma15238351

Academic Editor: Eddie Koenders

Received: 30 October 2022

Accepted: 16 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

The Damage Performance of Uncarbonated Limestone Cement
Pastes Partially Exposed to Na2SO4 Solution
Yu Cui 1 , Min Pei 2, Ju Huang 1, Wei Hou 3 and Zanqun Liu 1,*

1 School of Civil Engineering, Central South University, Changsha 410075, China
2 Hunan CJS Technologies Co., Ltd., Changsha 410000, China
3 School of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang 421000, China
* Correspondence: zanqun.liu@csu.edu.cn; Tel.: +86-139-7310-0810

Abstract: Pore structure and composition of cement paste are the main two factors in controlling the
sulfate attack on concrete, but the influence of carbonization on pore structure and composition is
often ignored in sulfate attack. Therefore, will the damage performance of concrete partially exposed
to sulfate solution be different avoiding the alterations of pore structure and composition due to
carbonation? In this paper, the cement pastes were partially immersed in 5 wt. % sodium sulfate
solution, with N2 as protective gas to avoid carbonation (20 ± 1◦C, RH 65 ± 5%). Pore structures of
cements were changed by introducing different contents of limestone powders (0 wt. %, 10 wt. %,
20 wt. %, and 30 wt. %) into cement pastes. The damage performance of the specimens was studied
by 1H NMR, XRD and SEM. The results showed that the immersion zone of pure cement paste under
N2 atmosphere remained intact while serious damage occurred in the evaporation zone. However,
the damage of cement + limestone powders pastes appeared in the immersion zone rather than in
the evaporation zone and cement pastes containing more limestone were more severely damaged.
Compositional analysis suggested that the damage of the evaporation zone or the immersion zone
was solely caused by chemical attack where substantial amount of gypsums and ettringites were
filled in the pore volumes. Introduction of limestone powders led to the increase of the pore sizes
and porosity of cement pastes, causing the damage occurred in the immersion zone not in the
evaporation zone.

Keywords: sulfate attack; carbonation; partial immersion; cement paste; pore structure

1. Introduction

When concretes are partially exposed to groundwater and sulfate-bearing soil, damage
is usually produced near the evaporation zone while the immersed part directly buried
in groundwater or soil remains intact [1,2]. Studies have shown that the damage in the
evaporation zone of concrete is similar to the damage in stone caused by salt crystallization,
i.e., the physical sulfate attack [3]. In fact, the great difference exists between cementitious
materials and stones: barely no sulfation reactions take place in stones but in concretes [4,5].

To date, even though many research studies have been reported on the damage
mechanisms of cement-based materials that are partially immersed in sulfate solutions,
controversies still linger on the mechanism of damage. Chen [6] and Xiong [7] found
that both chemical reaction and salt crystallization took place in the evaporation zone
of cement-based materials, and the latter was the driving mechanism for cracking in the
evaporation zone. Huang [8] pointed out that chemical attack was the direct cause in the
evaporation zone of the specimens. Clearly, according to the salt crystallization pressure
theory [9,10] (salt crystals growing from a supersaturated solution and exerting destructive
pressure on the pore wall), the precondition for physical salt crystallization damage to
occur is that the salt solution must be supersaturated. Capillary adsorption leads to upward
migration of sulfate ions and thus an increase in the concentration of sulfate ions in the
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upper part due to water evaporation. However, cement hydration products (e.g., Ca(OH)2)
prefer to react with sulfate ions to produce expansive products, such as ettringites and
gypsums [11–13], which consume sulfate ions, making it difficult for the salt solution to
reach supersaturation before chemical erosion damage occurs. The pore structure of the
specimen influences the height of capillary rise, the rate of water evaporation in the upper
part of the specimen, and permeability of sulfate ions [3,14,15]. These affect the physical
salt crystallization and chemical rection in the specimens. Therefore, the destruction of
specimens partially exposed to the sulfate solution greatly depends on the pore structures.

Many experimental studies have ignored the effect of carbonation on physical salt
attack [16]. Carbonation alters the pore structure and phase composition of cement spec-
imens [17,18] and significantly affects the damage to the evaporated zone of concrete
under partially immersed in sulfate solutions. By preforming accelerated carbonation and
then partially immersed the specimens in Na2SO4 or MgSO4 solutions, Liu [19,20] and
Yoshida [2] found that salt crystallization was the direct cause of damage to the specimens
and that the greater the carbonation depth, the more serious damage of salt crystallization.
Moreover, compared with the references, the mass loss rate of the accelerated carbonized
specimen is the largest due to physical salt attack. Hence, to understand the effect of pore
structure on the destruction mechanism of Portland cement partially exposed to sulfate
environments, carbonation should be avoided. The limestone powder is often used as an
inert supplementary material to adjust the pore structure of components. When limestone
powders are dosed at less than 10%, it can refine the pore structure [21], whereas exces-
sive limestone powders lead to coarsening of the pore structure and with the increase of
porosity [22,23].

The aim of this study is to illuminate the effect on the mechanism of destruction
mechanism of partially exposure to specimens with the pore structure changes. Therefore, in
this study, the composition and microstructure of the cement paste specimens were adjusted
by contents of limestone addition. Subsequently, the specimens were partially immersed in
5 wt. % Na2SO4 solution, and the specimens were placed in N2 environment. Additionally,
1H Nuclear Magnetic Resonance (1H NMR), X-ray Diffraction (XRD) and Scanning Electron
Microscopy (SEM) microscopic analyses were used to study the mechanism of damage. This
study provides evidence that aids understanding the pore structures effect on sulfate attack.

2. Experimental Procedures
2.1. Materials

P I 42.5 cement and high purity limestone powder (CaCO3 content up to 98%) pro-
duced by Hubei Jingmen Gao Xu Chemical Co., Ltd. Were used in this study. The chemical
compositions of cement and limestone power are shown in Table 1. The d50 of cement
and limestone powder determined by laser particle size determination are 13.096 µm and
14.426 µm, respectively. Na2SO4, MgCl2·6H2O, and Ca(OH)2 were analytical reagent.

Table 1. Chemical composition of cement and limestone (%).

CaO SiO2 Fe2O3 MgO Al2O3 SO3 TiO2 K2O

Cement 62.68 19.62 2.96 1.89 4.37 2.06 0.24 0.71
Limestone 54.99 0.21 0.07 0.55 0.24 0.63 / 0.01

2.2. Specimens Preparation and Exposure Conditions

The fresh pastes were mixed according to the mixing proportion in Table 2 and cast
in 7 mm × 40 mm× 160 mm molds. The pastes were covered with plastic film to avoid
water evaporation and cured at a constant temperature room (20 ± 1 ◦C). After 24 h,
specimens were demolded and cured in a saturated Ca(OH)2 solution at 20 ± 1 ◦C for
56 days. For comparison, some specimens were taken out, dried on the surface, and put into
a vacuum desiccator containing silica gel desiccant for 7 days. The remaining specimens
were maintained in saturated Ca(OH)2 solution as a reference. The dried specimens were
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partially immersed in a 5% Na2SO4 solution for 80 days (the solution was replaced once
15 days to keep the concentration constant [24]) with an immersion depth of 5 cm. During
this period, some partially immersed specimens were placed in an air environment while
the remaining partially immersed specimens were placed in a sealed environment chamber
with ≥95% nitrogen gas. The temperature and humidity were maintained at 20 ± 1 ◦C and
65 ± 5% in both environments.

Table 2. Mixing proportions of the cement pastes.

Number Cement/% Limestone/% W/B

PC 100 0

0.55
LS10 90 10
LS20 80 20
LS30 70 30

2.3. Test Setup

The experimental setup mainly consisted of a sealed environment box, a specimen
immersion box, a solution box, a nitrogen concentration tester, and a liquid nitrogen tank,
as shown in Figure 1. The specimen box with a height of 40 mm contains a 5% Na2SO4
solution. When the specimens were partially immersed in this box, the nitrogen gas was
provided as protective gas in sealed chamber. The humidity in the sealed environment box
was controlled within 65 ± 5% using saturated MgCl2 solution in the solution box.
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Figure 1. Experimental setup. (a) Schematic diagram (b) Experimental setup.

2.4. 1H NMR, XRD and SEM Analysis

The pore structures of specimens were determined by 1H NMR. After certain curing
ages, the specimens were removed from the solution, and the surfaces of the specimens
were cleaned with a brush. The evaporation and immersion zone of the specimens were
cut according to the position shown in Figure 2a. The samples were saturated with water
in vacuum to a constant weight [25] prior to test. A MicroMR12-025 manufactured by New-
mark Electronic Technology Ltd., California, USA was used, with a resonance frequency of
11.793 MHz, a magnet temperature control of 35.00 ± 0.02 ◦C, and a probe coil diameter of
25 mm.

XRD tests were performed for compositional analysis. When the experiment was
conducted at 50 and 80 days, the samples were collected from the different parts of speci-
mens (see Figure 2a) and then were sliced with a thickness of ca. 1 mm (3 mm in total) in
evaporation zone (see Figure 2b), to identify any corrosion performances in different layers
of the evaporation zone. The powder sample were finely ground with isopropanol in an
agate mortar and dried in a vacuum desiccator for 7 d. Then, the samples were mixed with
20 wt. % ZnO (an internal standard). The XRD patterns of samples were collected using
an Automated D/max-III X-ray diffractometer from Rigaku, Tokyo, Japan with a Cu-Kα

target, an acceleration voltage of 40 kV, and a current of 40 mA. The scan ranged from 5◦ to
65◦. The scanning step and rate is 0.02◦ and 2◦/min, respectively.
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Figure 2. Sampling method of the specimen. (a) Different zones of the specimen. (b) Sampling in
evaporation zone.

After the immersion test, the microstructures of deteriorated specimens were analyzed
by SEM. The deteriorated portion was dried in a vacuum desiccator for 7 d. Afterward,
the sample was then placed in a vacuum coater for gold spraying. A Nova Nano-SEM 230
field emission SEM from FEI Electron Optics B.V., Oregon, USA was used to observe the
microscopic morphology of the samples in secondary electron mode with an acceleration
voltage of 18 kV.

3. Results and Discussion
3.1. Damage of Specimens

Figure 3a shows pictures of specimens after 80 days of exposure to 5% Na2SO4 solution
in air. The surface of the evaporation zone of all specimens was covered with considerable
whitish crystals. The formation of whitish crystals on the evaporation zone surface is a clear
indicator for salt crystallization. The addition of limestone the LS20 specimen fractured in
the evaporation zone (after 50 days of partial immersion, the LS30 specimen had already
fractured in the evaporation zone). The evaporation zone of all specimens had different
degrees of deterioration. The degree of damage in the evaporation zone was more serious
in all specimens than in the immersion zone.
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Figure 3. Damage characteristics of specimens partially immersed for 80 days, under different
environments. (a) In air, (b) in N2, (c) PC in N2, and (d) LS30 in N2.

However, the damage characteristics of the specimens in N2 environment were differ-
ent from those in air. After 80 days of partial immersion (Figure 3b), only a small amount
of whitish substance appeared on the surface of the evaporation zone of all specimens.
For PC specimens, the evaporation zone cracked, and the immersion zone remained in-
tact (Figure 3c), but LS specimens were the opposite. This suggests that. For specimens
containing limestone in nitrogen atmosphere, the location of damage changed depending
on the amount of limestone incorporated into the specimens. The specimens containing
30 wt. % limestone showed negligible deterioration in the evaporation zone, while the
damage in the immersion zone was obvious. Expansion, cracking, and spalling are found
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on the pastes surface (Figure 3d). This is most likely due to the fact that the high dosing of
limestone powder changed the microstructure of the specimens.

3.2. Pore Structure Analysis

The pores provided volumes for expansive crystals growth during sulfate attack and
channels for ions diffusion, and therefore pore structure is important target for analysis
on damage from sulfate attack. Here, the pore size distributions of the specimens before
sulfate attack are shown in Figure 4. The pore sizes are classified into three ranges: <100 nm,
100–200 nm, and >200 nm.
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The total porosity of the specimens gradually increased with increasing in limestone
addition. As the limestone addition increased from 10 wt. % to 30 wt. %, the total porosity
was increased by 0.4% (LS10), 3.7% (LS20) and 6.6% (LS30), respectively. It was found
that the pore radius of specimen containing limestone were coarsened. Specifically, the
percentage of pores <100 nm in LS specimens decreased slightly, while the proportion of
larger pores (>100 nm) increased by 2.7% (LS10), 6.1% (LS20), and 10.4% (LS30), respectively.
It has shown [26] that the addition of 8 wt.% coarse limestone powder (>10 µm) to the
cement was able to significantly increase the >100 nm pores in the cement paste and
increased the total porosity of the cement paste. This may be related to the fact that
introducing 30 % inert limestone powders produced significant “dilution effect”. This
resulted in a reduced cement content and thus increased in the effective w/c of the test
mix, leading to the formation of coarser pores. According to the capillary adsorption
principle [27] (Equation (1)), the height of capillary adsorption rise is determined by the
pore radius. The smaller the pore size, the higher the height of capillary adsorption. With
the increase of limestone powder addition, the pores in the specimen are coarsened, and
therefore, the capillary rise height in the evaporation zone is significantly reduced. This
might be responsible for much slight damage of LS samples in the evaporation zone. On
the other hand, the larger pores also facilitate the SO4

2- diffusion [15] (Equation (2)), which
causes more serious sulfate attack in the immersion zone of LS specimens than in the
evaporation zone.

h =
2γ cos θ

∆ρgR
(1)

where h is the liquid rise height, m. ∆ρ is the liquid-gas phase density difference, kg/m3. g
is the acceleration of gravity, 9.8 m/s2. R is the capillary radius, m. γ is the liquid surface
tension, N/m. θ is the contact angle, ◦.

D∗ = D
ϕ

τ
(2)
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where D* is the effective diffusion coefficient of sulfate ions, m2/s. D is the diffusion
coefficient of sulfate ions in solution, m2/s. ϕ is the concrete porosity, %. τ is the concrete
curvature (a constant in this study).

After immersion test, the porosity in different parts of the specimens of both PC and
LS30 specimens were investigated, as shown in Figure 5.
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The porosity in the evaporation and immersion zones was lower than that of the ref-
erence sample (that immersed in saturated Ca(OH)2 solution for 136 days). The total pore 
volume was ascribed to the consequence from ‘‘filling effect” [24]. Specifically, the poros-
ity in the evaporation zone of the PC specimen was reduced by 5.5%, as a result of reduc-
tion in pores with diameter of <100 nm (−3.77%) and 100–200 nm (−1.77%). While the pore 
size in the immersion zone was only reduced by 0.4%. As pore size diminishing is related 
to the filling of expansive product formed in sulfate attack, this indicates that sulfate attack 
reactions in PC specimens might mainly take places in the evaporation zone. This explains 
that in Figure 3c, the damage occurred in the evaporation zone while the immersion zone 
remained intact. 

However, the porosity reduction in limestone cement is quite opposite. The total po-
rosity in the evaporation zone of LS30 specimens was only decreased by 1.3% while that 
in the immersion zones was reduced by 3.7%. This suggests that amounts number of large 
pores facilitated the diffusion of sulfate ions into the immersion zone to sulfate attack re-
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immersed for 80 days specimens.

The porosity in the evaporation and immersion zones was lower than that of the
reference sample (that immersed in saturated Ca(OH)2 solution for 136 days). The total
pore volume was ascribed to the consequence from “filling effect” [24]. Specifically, the
porosity in the evaporation zone of the PC specimen was reduced by 5.5%, as a result of
reduction in pores with diameter of <100 nm (−3.77%) and 100–200 nm (−1.77%). While
the pore size in the immersion zone was only reduced by 0.4%. As pore size diminishing
is related to the filling of expansive product formed in sulfate attack, this indicates that
sulfate attack reactions in PC specimens might mainly take places in the evaporation zone.
This explains that in Figure 3c, the damage occurred in the evaporation zone while the
immersion zone remained intact.

However, the porosity reduction in limestone cement is quite opposite. The total
porosity in the evaporation zone of LS30 specimens was only decreased by 1.3% while
that in the immersion zones was reduced by 3.7%. This suggests that amounts number
of large pores facilitated the diffusion of sulfate ions into the immersion zone to sulfate
attack reactions, and expansive reaction products mainly occupied the pore volumes in
the immersion zone. More specifically, the reduction in porosity in the immersion zone of
L30 samples is attributed to the significant decrease (by 3.4%) in the small pores (<200 nm).
The result obtained is similar to that seen by Ikumi et al. [28]. This demonstrates the small
pores are preferred sites for chemical reactions to happen. Moreover, according to theory of
crystallization pressure, when the crystals filled in relatively limited space, considerable
pressure may cause pore or even specimens cracking [29].

3.3. Compositional Analysis

The damage of partially immersed specimens in sodium sulfate solution was found
after 80 days. To understand the composition evolutions in the specimens before and after
the damage, samples after 50 days (undamaged) and 80 days (damaged) were taken for
analysis. Figure 6 shows the XRD patterns of the undamaged specimens after 50 days in
sodium sulfate solution.

The powders from evaporation zone and the immersion zone in the specimens and
the powders from reference sample (that immersed in saturated Ca(OH)2 for 106 days)
were sampled and analyzed by XRD test. Compared with the reference sample free of
sulfate attack and carbonation, the increase in the diffraction peaks intensity of ettringite
and gypsum in the PC specimens subjected to 50 days of sulfate attack is noticeable. This
is a clear indicator for the massive formation of ettringite and gypsum crystals during
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sulfate attack in both evaporation zone and immersion zone. However, it seems that more
expansive products were formed in the evaporation zone. This may be related to the
capillary adsorption action provided by the pores with small radius, causing more sulfate
ions with Ca(OH)2 reacted. LS cements also see an obvious increase in the content of
ettringite and gypsum crystals in both evaporation zone and immersion zone, whereas
the content of formed products from sulfation reactions is much higher in the immersion
zone than that in the evaporation zone. This becomes more pronounced as the increase
of limestone addition. This also shows that the foreign sulfate ions are preferred to react
with hydrates in the immersion zone of LS samples due to larger pores radius enhance
sulfate ions diffusion. However, it should be noted, at least at this time, no sodium sulfate
crystals were detected in any parts of specimens, which suggests that salt crystallization
did not occur along with sulfate attack in all the specimens. Even though considerable
expansive products had formed after 50 days, no obvious damage was observed on the
surface of specimens.
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Figure 6. XRD pattern of specimens with different limestone content after partially immersed
specimens for 50 days. (E—ettringite; G—gypsum; Mc—monocarboaluminate; CH—portlandite).

Distinct damage was found only after 80 days in evaporation zone of PC samples but
in immersion zone of LS samples. A few white crystals were also found on the surface of
PC samples, and it is thus suspicious for the salt crystallization in the evaporation zone.
Therefore, the samples in the evaporation zone were sliced with a thickness of ca. 1 mm
(3 slices in total) and compositions in each layer were determined by XRD (shown in
Figure 7).

However, in Figure 7a, no sodium sulfate crystals were found, even at the outer layer
(E1) of the evaporation zone. This confirms that salt crystallization is not the reason for the
damage in this part. Instead, the prominent increase in the ettringite and gypsum crystals
in each layer was noticed. There is no great difference in the ettringite and gypsum contents
in each layer. In the immersion zone, however, the content of ettringite and gypsum is
5.4 wt. % and 4.5 wt. %, which is much less than that in the evaporation zone (11.5 wt. %
and 5.5 wt. %, respectively), as shown as Figure 8. This might be the reason why the
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immersion zone of PC samples remained intact at the end of experiment. The evidence
demonstrates the chemical reactions should be responsible for the damage of PC samples
in the evaporation zone.
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limestone content after partially immersed specimens for 80 days.

In contrast, for LS specimens, diffraction peaks of ettringite and gypsum become more
intensive in the immersion zone rather than in the evaporation zone (Figure 7b–d). The
quantitative analysis of ettringite and gypsum were carried out and the results are shown
in Figure 8.

Clearly, the content of ettringite in the immersion zone of LS30 reached 11.4 wt. %
while in the outer layer (E1) and the inner layer (E3) of the evaporation zone, it was only
7.8 wt. % and 2.4 wt. %. In the E2 and E3 layer, the content of gypsum is too low to be
detected. While the weakening of capillary adsorption reduces the concentration of sulfate
ions in the evaporation zone, slowing down the degree of erosion, under the influence of
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water evaporation, the E1 sulfate concentration in the evaporation zone of the samples is
higher than the E2 and E3 [27], so that more chemical products are produced. The results
illustrate that the immersion zone of LS30 samples was more severely attacked by the
sulfate ions than the evaporation zone. Consequently, damage on LS samples was found at
the immersion zone instead of evaporation zone. The contents of ettringite and gypsum in
the immersion zone decreased when less limestone was incorporated. The content of these
expansive products reached 12.9% (LS10), 15.5% (LS20), and 15.7% (LS30), respectively.
This explains why LS30 and LS20 specimens were more severely damaged than LS10
(undamaged). The reason behind may be that increase in the limestone addition leads to
the larger porosity that favors sulfate ions diffusion [15], as discussed above.

3.4. Microstructure Analysis

Jiang [1] claimed that the specimens partially exposed to salt solutions, the absence of
the characteristic peaks of sodium sulfate crystals in XRD was subjected to the crystals being
too little, but the little crystals could be detected by SEM-EDS. Therefore, the morphology
of fragments from the surface in Figure 3c,d were observed using SEM and the images are
shown in Figure 9.
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A large number of needlelike ettringite and massive gypsum were present on the
damaged surface of the evaporation zone of the PC specimen. Ettringite grew gradually
from the circular pore boundary and slowly filled the pores, and many cracks were found
around the gypsum and ettringite. Liu [30] claimed that expansive reaction products in
the pores generated crystallization pressure easily, which caused the cracks of pores. The
sodium sulfate crystals were not observed, indicating that the cracking damage at the
edges of the evaporation zone of the PC specimens was not related to the crystallization
of sodium sulfate crystals. Instead, the formation of expansive crystals from the chemical
reactions between the foreign sulfate ions and hydrates is the main reason for such damage.
Ettringite and gypsum crystals were present in the LS30 immersion zone fragments and
numerous cracks were produced. However, gypsum crystals in the LS30 submerged zone
were much larger in size. According to previous studies [31,32], the cement-based materials
containing large amounts of limestone powder are often subjected to volume expansion,
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cracking and flaking in a sulfate environment. This is mainly related to the significant
increase in porosity that promotes the sulfate ions invasion into the cement specimen,
which then react with hydrates to form massive expansive products. Müllauer [33] found
that ettringite filled in small pores generated a stress, which was responsible for expansion
and damage. Even though ettringite and gypsum formation in larger pores also takes place,
its contribution to expansion and damage is negligible. Therefore, as mentioned above
for XRD and SEM, these results also indicated that the chemical reaction produces a large
amount of ettringite filling the small pores and generating expansion stresses, which leaded
to cracking of the specimen.

4. Conclusions

In this study, specimens with different pore structures were subjected to the sulfate
attack by partial immersion in sodium sulfate solutions. The specimens were protected in
the nitrogen atmosphere to avoid the pore size and composition evolution resulting from
carbonation. In this way, the effect pore structure of cement on sulfate attack mechanism
were discussed and the following conclusions can be draw from this paper.

(1) The large quantity of small pores (<100 nm) in PC specimens caused strong capillary
adsorption that favors the migration of sulfate ions to the evaporation zone. The
reactions between these ions and hydrates led to the massive formation of expansive
products (ettringite and gypsum) that were filled in the pores and caused cracking of
the specimen, whereas the damage in the immersion zone was relatively slight.

(2) Limestone addition significantly increased the larger pores (>100 nm) while decreased
the finer pores (<100 nm) in specimens, which resulted in a gradual coarsening of the
pore structure and an increase in porosity. As such, the capillary absorption effect in
limestone-cements was weakened, and, therefore, sulfate attack in the evaporation
zone was alleviated. However, the larger pores promoted diffusion of sulfate ions and
thus serious damage chemical attack was found in the immersion zone.

Therefore, in the conditions free of carbonation, it is not the salt crystallization but the
chemical reactions between sulfate ions and hydrates that should be responsible for the
damage of cements under sulfate attack. As the increase in the large pores in the cements,
the damaged part shifts from the evaporation zone to the immersion zone.
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