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Abstract: In this study, electroless nickel plating and electrodeposition were used to deposit thin
films on the polymer lattice template prepared by 3D printing, then seven Octet hollow nickel lattice
materials with different structural parameters were synthesized by etching process at the expense
of the polymer backbone. The microstructure and properties of the Octet structure nickel lattice
were characterized by X-ray diffraction, Electron backscattering diffraction and transmission electron
microscopy. According to the results, the average grain size of the electrodeposition Ni lattice material
was 429 nm, and (001) weak texture was found along the direction of the film deposition. The lattice
deformation mode changed with the increase of the lattice length-to-diameter ratio, and it shifted
from the lattice deformation layer-by-layer and the overall deformation to the shear deformation
in the 45◦ direction. The strength, modulus and energy absorption properties of the Octet lattice
increased with the density, and they were exponentially related to density. In the relative density
range of 0.7~5%, Octet hollow Ni lattices with the same density conditions but different structural
parameters showed similar compressive strength and elasticity modulus; the energy absorption
capacity, however, was weakened as the length-to-diameter ratio increased.

Keywords: Octet lattice; electrodeposition; structural design; mechanical properties

1. Introduction

The lattice material is a new porous material that is lightweight, high-performance
and multi-function [1,2]. Under the same density conditions, compared with the disordered
structures (such as foam and sponges), it has higher strength, modulus, energy absorption
capacity and independently designed structural characteristics [3–5]. Lattice materials have
become one of the research hotspots in aviation, aerospace, shipbuilding, automobile and
biomedicine [6–11].

Over the past 20 years, with the development of high-precision light-curing 3D print-
ing technology, polymer templates have been prepared by photocuring process, then a
film is prepared on it by electron beam deposition, atomic layer deposition, vapor depo-
sition, magnetron sputtering or other processes. Finally, the internal polymer skeleton is
removed by sintering or chemical etching to obtain a metal or ceramic hollow lattice [12–15].
Compared with investment casting, wire weaving and selection laser melting (SLM) and
electron beam melting (EBM), hollow lattices prepared by polymer backbone and plating
process have the advantages of high precision, ultralight, thin wall thickness and high
specific surface area [16–20]. Schaedler et al. used self-propagating photopolymer waveg-
uides (SPPW) and electroless plating processes to prepare a hollow octahedral NiP lattice
with a wall thickness of 120 nm and a density of 0.9 mg/cm3. It was one of the lightest
metal materials at that time all over the world. After being pressed into 50% compression
deformation, it was restored to 98% of its original state [21,22]. Valdevit et al. obtained
the hollow NiP hollow lattices by changing the content of Ni and P. They studied the
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properties of octahedral structured crystals and amorphous hollow crystal lattices. Zheng
et al. studied the hollow lattice of Octet structure Ni and found that the lattice material
had extremely high stiffness. They maintained a close linear proportional relationship
between stiffness and density in a wide density range [23]. Meza et al. prepared a hollow
Al2O3 ceramic lattice by a similar process and found that brittle fracture can be inhibited
by optimizing the ratio of wall thickness to the diameter [24–26].

So far, the research on hollow lattice materials is still in its infancy. Researchers used
different manufacturing processes to obtain different components of metal, alloys and
ceramic hollow lattices, and the effect of the structure and composition on mechanical
properties was studied [15,27–29]. They found that the mechanical properties of microlattice
materials were affected by topological configuration, structural parameters and properties
of skeleton materials [30–33]. However, the relevant research mainly focuses on the hollow
microlattices at the micro and nano scales. With the increase in the single-cell scale, the
mechanical behavior and failure mode of hollow lattice materials at larger scales are pretty
different from those of micro-lattices [21,23]. The study of the mechanical properties of the
large-scale single-cell hollow lattice is still not in-depth enough, affecting the engineering
application of hollow lattices. It is urgent to study the influence of the key structural
parameters on the mechanical response behavior and failure mode of the lattice.

Among the numerous lattice structures, the Octet lattice structure attracts much
attention due to its superior performance. The Octet structure has a regular octahedron
as the core, with eight regular tetrahedrons distributed around it. Each of its nodes is
connected to 12 rods, all of which are the same length and diameter, and the cube-symmetry
of the outer frame, similar to the FCC structure, makes the structure produce an almost
isotropic character. Octet has no excess constraints, and it is stable when subjected to
force. Its cells are composed of b rods and j nodes, which meet the Maxwell criterion
M = b–3 j + 6 ≥ 0; It belongs to the stretch-dominated structure that withstands loads
through the stretching or compression of rods and theoretically has a higher mechanical
efficiency than bend-dominated structures [34,35].

In this paper, seven different Octet structure Ni hollow lattices were prepared by
electrodeposition process. The microscopic structure and structure of hollow nickel lattices
were characterized. Through the quasi-static compression test of nickel macrolattice, the
influence of the two structural parameters (rod diameter and rod length) on the quasi-static
compressive mechanical properties of Octet lattice materials was systematically studied
firstly; we believe it will provide an important basis for the application and structural
selection of Octet lattice materials.

2. Materials and Methods

The preparation process of the hollow lattice was as follows: the 3D model was
established using SolidWorks first. The template of lattice polymer was prepared by
stereo lithography-based 3D printing method (Lite 600HD, Shanghai UnionTech, Shanghai,
China), which method obtained Octet lattice with different structural parameters by curing
liquid photosensitive resin by a UV laser beam. The Somos Taurus (Royal DSM, Heerlen,
The Netherlands) photosensitive resin was chosen because the carboxyl-containing acrylic
ester oligomer is chemically soluble. Then the polymer lattice template was pretreated,
electroless plated Ni and electrodeposited in turn. Finally, the hollow Octet structure was
obtained by sacrificing the polymer frame.

To obtain a conductive surface that can be used for electroless Ni plating, the sample
was first immersed in an aqueous sodium phosphate solution to remove the oil stain on the
surface of the polymer resin, and chromium trioxide solution was used for coarseization.
Then it was immersed in a solution containing hydrochloric acid and stannous chloride
for sensitization. The template was then immersed in the activator solution to deposit a
palladium catalyst using sodium sub-phosphate solution to disperse the colloidal palladium
on the polymer template for the purpose of exposing palladium particles as a catalyst.
Finally, the sample was immersed in the electroless nickel plating solution, the electroless
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plating solution used nickel sulfate as the nickel source, sodium hypophosphite as the
reducing agent, sodium citrate and ammonium chloride as the complexing agent, and
the pH of the electroless nickel plating solution was maintained between 9–10 by adding
ammonia at 50 ◦C. Electroless nickel plating for 30 min was sufficient to deposit a conductive
metal layer on the template surface, after which different densities of Octet lattices can be
obtained by controlling the electrodeposition time (Figure 1).
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Figure 1. Schematic of the fabrication process for hollow nickel lattices.

The electrodeposition solution was based on commercial nickel sulfonate (AR). To
obtain a better structural uniformity, the cathode sample was placed between the two nickel
anodes, and electrodeposition was carried out at 50 ◦C and pH 3.5~4.5. A double pulse
power supply was used with a current density of 2.0 A/dm2, and the pulse frequency and
the duty cycle were set up as 1000 Hz and 1:5, respectively.

After electroless was plated and electrodeposited to the desired thickness, the top and
bottom surfaces of each sample were sanded with a grinder to expose the polymer. Then
the sample was immersed in an alkaline solution etched to remove the template at 40 ◦C.
The corrosion liquid formula consists of 100 mL ethanol and 100 mL deionization mixed
solution, and 10 g sodium hydroxide was added to it.

Scanning electron microscopy (SEM) was used to characterize the morphology of the
hollow lattice surface. Electron backscattering diffraction (EBSD) was performed along the
thin film deposition direction to obtain information about the grain orientation and grain
size distribution of the electrodeposition film. Phase analysis of electrodeposition lattice
specimens was conducted by Bruker D8 ADANCE X-ray diffraction (XRD). Information
on microstructure was collected using the FEI Talos F200X model transmission electron
microscopy (TEM).

The performance of the hollow lattice was affected by the cross-sectional wall thickness-
to-diameter ratio (t/d) and truss length-to-diameter ratio (L/d). As t/d increased, the
deformation behavior of the octahedral microlattice shifted from Euler buckling to yield [33].
The effect of the length-diameter ratio on the deformation behavior and mechanical proper-
ties of macroscopic large Ocete lattice was not clear. In this paper, the hollow lattice with
seven structural parameters was designed and prepared. The basic characteristics of the
hollow lattice were reflected by the diameter and length of the Octet structural polymer
skeleton. Keeping the length of Octet lattice material rod L = 2.5 unchanged, the diameter
was adjusted to 0.25 mm, 0.375 mm and 0.5 mm to obtain three hollow lattices. Then kept,
the diameter of the lattice material rod constant d = 0.5 mm, and adjusted the length of the
rod to 2.5 mm, 3.75 mm, 5 mm and 6.25 mm to obtain another 4 sets of lattices.
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The relative density (ρ/ρs) was the ratio of the apparent density of the lattice structure
to the density of the matrix material. The density of the lattice material was defined as the
ratio of the lattice mass to the volume of geometric space. The relative density of the seven
lattice samples prepared was basically similar, all of which were about 3.15%. All sample
dimensions are provided in Table 1. According to the data in the article [36], the corre-
sponding value of the solid electrodeposition nickel property were density ρs = 8.9 g/cm3,
Young’s modulus Es = 200 GPa and yield strength σs = 300 MPa.

Table 1. Summary of architecture and properties of tested microlattices.

Sample Diameters Length Length-to-Diameter Ratio Relative Density

A 0.25 2.5 10 3.3%

B 0.375 2.5 6.7 3.3%

C 0.5 2.5 5 3.1%

D 0.5 3.75 7.5 3.1%

E 0.5 5 10 3.1%

F 0.5 6.25 12.5 3.3%

G 0.5 7.5 15 3%

Finally, the universal experimental machine equipped with video recording equipment
was used to test the room-temperature quasi-static compression properties of hollow Ni
lattice materials with different diameters and lengths. All specimens for quasi-static
compression consist of 4 × 4 × 4 single cells.

3. Results
3.1. Microstructure

Figure 2a showed the Octct electrodeposited hollow nickel lattice sample with a truss
diameter of 0.25 mm and length of 2.5 mm, (b) and (c) were the surface topography of the
Octet, and (d) showed the orthogonal topography of hollow rod section. As was shown in
the figures, the hollow lattice with the polymer removed retained the three-dimensional
structure of the polymer template, and the hollow rod interface was circular and nearly
circular. The surface of the electrodeposited surface was dense, without obvious holes and
cracks. The local nucleation clusters and protrusions appeared on the surface because the
position was closer to the anode plate, and the nucleation rate was faster.

Materials 2022, 15, 8417 4 of 14 
 

 

was adjusted to 0.25 mm, 0.375 mm and 0.5 mm to obtain three hollow lattices. Then kept, 
the diameter of the lattice material rod constant d = 0.5 mm, and adjusted the length of the 
rod to 2.5 mm, 3.75 mm, 5 mm and 6.25 mm to obtain another 4 sets of lattices. 

The relative density (ρ/ρs) was the ratio of the apparent density of the lattice structure 
to the density of the matrix material. The density of the lattice material was defined as the 
ratio of the lattice mass to the volume of geometric space. The relative density of the seven 
lattice samples prepared was basically similar, all of which were about 3.15%. All sample 
dimensions are provided in Table 1. According to the data in the article [36], the 
corresponding value of the solid electrodeposition nickel property were density ρs= 8.9 
g/cm3, Young’s modulus Es = 200 GPa and yield strength σs = 300 MPa. 

Table 1. Summary of architecture and properties of tested microlattices. 

Sample Diameters Length Length-to-Diameter Ratio Relative Density 
A 0.25 2.5 10 3.3% 
B 0.375 2.5 6.7 3.3% 
C 0.5 2.5 5 3.1% 
D 0.5 3.75 7.5 3.1% 
E 0.5 5 10 3.1% 
F 0.5 6.25 12.5 3.3% 
G 0.5 7.5 15 3% 

Finally, the universal experimental machine equipped with video recording 
equipment was used to test the room-temperature quasi-static compression properties of 
hollow Ni lattice materials with different diameters and lengths. All specimens for quasi-
static compression consist of 4 × 4 × 4 single cells. 

3. Results 
3.1. Microstructure 

Figure 2a showed the Octct electrodeposited hollow nickel lattice sample with a truss 
diameter of 0.25 mm and length of 2.5 mm, (b) and (c) were the surface topography of the 
Octet, and (d) showed the orthogonal topography of hollow rod section. As was shown 
in the figures, the hollow lattice with the polymer removed retained the three-dimensional 
structure of the polymer template, and the hollow rod interface was circular and nearly 
circular. The surface of the electrodeposited surface was dense, without obvious holes and 
cracks. The local nucleation clusters and protrusions appeared on the surface because the 
position was closer to the anode plate, and the nucleation rate was faster. 

 

Figure 2. (a) Macroscopic pictures of hollow nickel lattices; (b–d) Hollow lattice surface and cross-
sectional topology; (e) XRD pattern of electrodeposition film.



Materials 2022, 15, 8417 5 of 13

The XRD pattern of the electrodeposited samples is shown in Figure 2e. The XRD
spectra were consistent with the diffraction standard card JCPDS: 04-085 peak for the nickel
metal powder, which has significant diffraction peaks at 44.51◦, 51.9◦ and 76◦, and this result
corresponded to (111), (200) and (220) crystal faces for Ni, respectively. Compared to XRD
standard cards, the Ni lattice XRD map showed a strong (200) diffraction peak, indicating
that the crystal plane has produced a selective orientation, possibly due to the presence of
impurities in the electrolyte and the electrolyte concentration gradient, that usually reduced
the (100) surface energy to increase the intensity of the (100) texture [24,37,38].

An electron backscatter diffraction test was performed cross-sectionally on the lattice
sample along the thin film deposition direction. Figure 3a,b show the lattice grain orienta-
tion distribution and the pole figure, and a relatively concentrated (001) directional texture
can be seen. Small, isoaxial grains in the nanometer scale could be observed in Figure 3a,
and the grain distribution was widespread. Figure 3c shows the relationship between the
size and the number of Ni grains. These grains were mainly concentrated between 150 and
500 nm, accounting for ~75% of the total grain count, with an average grain size of 429 nm.
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Figure 4 shows a TEM bright-field image of the electrodeposited lattice. It can be
found that the particle size of nanocrystalline nickel was not completely uniform; the small
particle size was about 10~20 nm, and the large particle size was about 1µm. The sample
was a mixed crystal structure of nanocrystalline and microcrystalline, and a small number
of large particles with a particle size of several hundred nanometers were embedded in
many small particles of tens of nanometers. The electron diffraction pattern of the selected
region was annular, and the crystal plane spacing corresponding to the diffraction ring was:
0.203, 0, 0.177, 0.125, 0.107 and 0.102 nm, which belonged to the typical crystal plane of
pure nickel. This indicated that the prepared nanocrystalline nickel had a high purity and a
face-centered cubic structure.

Grain refinement was an effective means to improve the mechanical properties of
nickel metal materials, and nanocrystals can improve the strength and hardness of metal
nickel compared with coarse crystals. In addition, small amounts of dislocations and twins
were observed inside the nanoparticle crystalline material. The presence of smaller grains
and more grain boundaries in nanocrystals hindered the movement of dislocations during
plastic deformation, and nanotwins with very fine thicknesses could also increase the
strength of the material [39,40].
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3.2. Deformation Behavior

Figure 5 shows the stress–strain curves of quasi-static compression experiments with
different length-to-diameter ratio lattices and relative densities of approximately 3.15%. The
compression curve of hollow lattice material was mainly divided into three parts: the initial
elastic phase, the inelastic phase and the stress plateau phase [41]. When the compressive
strain was less than 0.06, the lattice struts were in the elastic deformation region. With the
further increase in the compressive strain, the stress–strain curve of the lattice slowly shifted
from the elastic region to the platform region, and then the platform region remained within
the range of strain of about 0.1~0.6. The next stage of densification usually occurred in the
compression of lattice materials, and the stress in this region raised rapidly with the strain
until the structure was completely compressed into a solid material. In addition, the stress
of the large length-to-diameter ratio remained lower at a longer strain than the lattice with
a small length-to-diameter ratio, so the critical strain in the densification region increased
as the length-to-diameter ratio increased in the lattice rods. In the figures, the Octet lattice
strain was small and did not fully reach the stage of rapid densification.
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Figure 5. (a) Compression curve of lattices of the same length and different diameters; (b) Compres-
sion curve of lattices of the same diameters and different lengths.

It can be found that the difference between the stress plateau region and fluctuation
region in the hollow lattice curve was caused by the difference in the length-to-diameter
ratio of the rod. As the amount of compression deformation gradually increased, the
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stress–strain curve of the lattice with a large length-to-diameter ratio (e.g., lattice A, E, F
and G) was jagged, and yield and plastic deformation occurred when the lattice sample
reached peak stress. The stress began to decrease until the first stress underestimation
appeared, after which even secondary and tertiary stress rose and fell. Lattices with small
length-to-diameter ratios (such as lattice C) had interesting deformation behavior that
differed from other lattices, where the lattice reached the stress peak and then a slight
decrease, followed by a longer stress plateau region. In the stress plateau phase, the strain
gradually increased, but the stress remained basically unchanged. Its compression curve
was basically similar to that of typical elastoplastic foam materials.

Figures 6 and 7 showed the compression deformation process of different diameters
and lengths (the relative density was approximately 3.15%). Figure 6 represents the three
lattices (with the same length) of A, B, and C in Table 1. Figure 7 referes to the five lattices
(with the same diameter) C, D, E, F, and G in Table 1. A common deformation phenomenon
can be seen in both figures, that lattices (e.g., lattice B, C, D) with small length-to-diameter
ratios (L/d < 10) showed the characteristics of overall deformation and layer-by-layer
deformation, the deformation first occurred in the middle layer of the sample and gradually
extended towards both ends with marked lateral expansion. This may be due to the
increased ability of the struts to transmit axial loads in these short and thick lattice samples.
The stress distribution on the truss was relatively uniform, causing basic simultaneous
deformation at different positions [42].

As the length-to-diameter ratio increased, the hollow lattice deformation mode shifted
from overall deformation and layer-by-layer failure to shear failure in the diagonal direction.
When the long-diameter ratio (L/d ≥ 10) lattice (e.g., lattice A, E, F, G) was subjected to
axial load, the stress concentration first generated at the node, which caused the rod to
rotate around the node to produce plastic deformation even brittle fracture, causing the
stress–strain curve to decreased. When the deformation unit of the specimen overlaps the
undeformed element, the specimen is re-subjected to the load to raise the curve, and the
compression curve decreases again when the deformation or fracture occurs again at the
middle node of the structural unit. This failure mainly occurred at the rod node, and there
was no obvious deformation in the center of the rod [42,43].
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It can also be seen in Figure 7 that the separation of rods and nodes can be observed in
the lattice with a length greater than 5 (e.g., lattice E, F and G) in the initial deformation
phase. Moreover, the detached point distributed along the 45◦direction caused the large
length-to-diameter ratio lattice to produce brittle failure at the node. As the amount of
deformation increased, the lattice deformation part extended diagonally with the detach-
ment point.

4. Discussion
4.1. Dependence of Relative Strength on the Relative Density

Compressive strength, elastic modulus and energy absorption were usually three
important parameters to evaluate the compressive performance of lightweight materials.
The mechanical properties of a lattice structure were usually evaluated as a fraction of the
mechanical properties of its matrix material, and they depended on the relative density
(ρ/ρs) of the lattice structure. The slope of the initial linear strain curve in the compression
test was defined as the elastic modulus E of the lattice material, and the first stress peak was
defined as the compressive strength σ of the lattice material. Regardless of the topology,
the mechanical properties of the lattice structure were known to decrease as the relative
density decreased.

By adjusting the wall thickness of the A–G lattice electrodeposited film, lattices of
different relative densities were obtained. Three test samples were intercepted from plates
containing multiple cells for repeated experiments, and the test samples came from the
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same lattice plate. The relative density was basically the same, their mechanical properties
were basically the same and the repeatability results were satisfactory.

Comparisons were made with the Gibson–Ashby theoretical model to quantify the
structural efficiency of Octet hollow lattice samples in this study. Figure 8 shows the
relationship between the relative strength and relative density of the Octet lattice for
different structural parameters. The strength and modulus of all lattices gradually increased
as the density increased. According to the regularity of the data, the exponential relationship
can be used to describe the relationship between the relative strength, relative modulus
and density of the lattice Ni. Lattices of different rod lengths and rod diameters have
substantially comparable strengths and elastic modulus at essentially the same density.
The fitting relationships between relative strength, relative modulus and density were
σ/σs = K(ρ/ρs)1.73 and E/Es = C(ρ/ρs)1.88, respectively; all the strength and modulus of
lattices of different rod lengths and diameters basically fluctuated around these two curves.
The coefficients K and C were generally related to the material configuration. By comparing
the mechanical properties and deformation process of different structural parameters of
the Octet lattice, it can be found that changing the structure parameters of the Octet hollow
lattice changed the deformation characteristics and failure mode of the lattice, but the
strength and elastic modulus of the different structural parameters for the Octet hollow
lattice did not change substantially [14,21,34,44].
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Figure 8. Mechanical properties of lattices with different length-diameter ratios: (a,c) strength;
(b,d) modulus.

The Octet lattice is a stretch-dominated structure, but by adjusting the length and
diameter of the rod, this lattice compression curve in Figure 5 exhibited the generalized
stress–strain behavior of two metal lattices dominated by stretching or bending, unlike
those mentioned in the literature [25]. In Figure 8, the mechanical properties of the lattice
samples were between bend-dominated and stretch-dominated, which did not fully meet
the deformation mode of the stretch-dominated structure, but the attenuation rate of the
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lattice with density behavior was lower than that of the bend-dominated structure. That
is probably because there were many structural parameters that affected the strength and
stiffness of the hollow lattice. Moreover, parameters such as lattice length, diameter and
wall thickness must be studied in detail in order to quantify the influence of structural
parameters on mechanical properties.

4.2. Dependence of Energy Absorption on Density

The energy absorption can be obtained by calculating the integral area of the stress–
strain curve under compressive load, where the energy absorption was determined as:

W =
∫ ε

0
σdεa (1)

where ε was the specified strain, 0.6, and σ was the compressive stress. Figure 9 shows the
energy absorption capacity W (0.6) of different Octet lattices at different densities.
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Figure 9. The relationship between the energy absorption performance of Octet hollow lattice and
the length-to-diameter ratio and density (a) is the same length; (b) is a lattice of the same diameter.

Figure 9 shows the change in energy absorption capacity of seven groups of lattice
samples with density, and WA–WG represented the energy absorption capacity of A–G
lattice samples. As can be seen from the Figure 9, the energy absorption capacity increased
with density because the rod area under load increased. The lattice energy absorption
capacity and density can also be in line with the exponential relationship. The energy
absorption capacity gap was small between three groups, A, B and C samples at low
density. However, when the density exceeded 0.2 g/cm3, the energy absorption of lattice
C exceeded A and B. The five groups of different lengths have a clear trend; that was, the
energy absorbed by the lattice energy decreases with the increase in length. This showed
that reducing the length-to-diameter ratio of the hollow lattice was conducive to improving
the energy absorption per unit volume. For example, at a density of about 0.28 g/cm3, the
energy absorption capacity of sample C was 23% and 45% higher than that of sample B and
sample G, respectively. By designing the structure of the Octet hollow truss structure, an
ideal energy-absorbing structure can be obtained.

4.3. Dependence of Compression Stability of the Density

It can be seen from Figures 5 and 9 that as the lattice length-to-diameter ratio increased,
the difference between the stress of the first peak and the stress of the adjacent valley
gradually increased, and the stress peak increased when the density increased. Thus,
the stability of the stress in the platform region was characterized by the dimensionless
parameter θ [18], expressed as θ = ∆σ/σpeak. Moreover, ∆σ was the difference between the
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first maximum compressive strength and the stress of the adjacent valley; the smaller the θ,
the higher the lattice compression stability.

Figure 10 shows the volatility of different lattice compression curves at different
densities. From the figure, it can be found that the value of θ tended to increase with
the increase in the lattice length-to-diameter ratio because lattices with a large length-to-
diameter ratio were prone to unstable deformation and fracture. The θ of the lattice of
C, D, E, F and G five groups remained basically equivalent over a large strain density
range, such as the θ value of lattice F is basically equal to 0.8. This lattice collapsed by
essentially the same amount after reaching stress peaks at different densities. Moreover,
this further caused the energy absorption capacity of the lattice to be lower than that of
the small length-diameter ratio. The lattice with a small length-diameter ratio has a longer
stress plateau region, which enables the lattice material to have the characteristics of high
energy absorption, and it can dissipate the external impact energy through the deformation,
collapse, fracture and cell wall friction of the lattice pore.
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5. Conclusions

In this study, Octet nickel-based lattice materials with different structural parameters
were manufactured, and surface morphology and structure characterization of the Ni
hollow lattice were carried out. The influence of the structural parameters on the mechanical
properties of Octet lattice materials was studied:

(1) The grain sizes of electrodeposition Ni lattice materials were mainly concentrated
between 150 and 500 nm, and it had (001) weak texture along the direction of thin
film deposition

(2) As the length-to-diameter ratio of the lattice increased, the stress–strain curve volatility
of the lattice increased, and the lattice compressive deformation mode shifted from
layer-by-layer and overall deformation to shear deformation in the 45◦ direction.

(3) Hollow Octet lattices with different structural parameters have essentially the same
compressive strength and elastic modulus at the same density. The strength and mod-
ulus of the lattice increased with the increase of density and belong to the transition
region of stretch-dominated and bend-dominated of the Gibson–Ashby model.

(4) The energy absorption capacity and compression stability decreased with the increase
of the length-to-diameter ratio of the lattice rod because the macroporous lattice is
prone to instability deformation and brittle fracture.
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