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In collaboration with the MDPI publishing house, we are pleased to introduce the
reader to our new project, the Special Issue entitled “Advanced Eco-friendly Wood-Based
Composites”. This Special Issue provides an opportunity to investigate the advanced eco-
friendly wood-based composites from a broader perspective. The coronavirus pandemic
and shutdown measures employed to contain it, as well as the ongoing war, have influenced
and decelerated the world economy and adversely impacted the research activities on most
levels in all countries. Surprisingly, researchers in the field of wood-based composites have
continued to make progress, which is also described in this Special Issue.

The wood of forest trees is a renewable, sustainable and easily workable material and
has been widely used in construction, paper making, and furniture and as a feedstock
for biofuels. Wood composites are engineered wood-based materials that are fabricated
from a wide variety of wood and other non-wood lignocellulosic materials, bonded with
synthetic or natural bio-based adhesive systems, and designed for specific value-added
applications and performance requirements [1–6]. Traditional wood-based composites
are fabricated using synthetic formaldehyde-based adhesives that are commonly formed
from fossil-derived constituents, such as urea, phenol, and melamine [7–9]. Along with
their undisputable advantages, these adhesives are characterized by certain problems
related to the emission of hazardous volatile organic compounds (VOCs), including free
formaldehyde emissions from the finished wood composites, which is carcinogenic to
humans and harmful to the environment [10–12]. The growing environmental concerns
connected with the adoption of circular economy principles and the new, stricter legislative
requirements for the emission of harmful VOCs, such as free formaldehyde, from wood
composites pose new challenges for researchers and industrial practice. These challenges
are related to the development of sustainable, eco-friendly wood composites [13–15], the
optimization of the available lignocellulosic raw materials [16–18], and the use of alternative
resources [19–23]. The harmful release of formaldehyde from wood composites can be
reduced by applying formaldehyde scavengers to conventional adhesive systems [24–27],
by the surface treatment of the finished wood composites, or by the application of novel
bio-based wood adhesives as environmentally friendly alternatives to traditional synthetic
resins [28–30]. Another alternative to the use of synthetic formaldehyde-based adhesives is
the manufacturing of binderless wood composites, since wood is a natural polymer material
that is rich in lignocellulosic compounds such as cellulose, hemicellulose, and lignin.

This Special Issue represents a collection of 11 high-quality original research and
review papers that provide examples of the latest advancements in the development and
applications of eco-friendly wood-based composites.

In their paper, Bekhta et al. investigated the potential of incorporating lignin-based
additives, i.e., magnesium and sodium lignosulfonates, in urea-formaldehyde resin in
order to manufacture low-toxic, eco-friendly particleboards with acceptable physical and
mechanical properties and achieve reduced formaldehyde emissions [31]. The adhesive sys-
tem employed by the authors also included polymeric 4,4′-diphenylmethane diisocyanate
(pMDI) as a crosslinker. The authors determined that the lignosulfonate addition levels
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varied from 10 to 30%, resulting in particleboards with physical and mechanical properties
comparable to those of panels bonded with UF resin alone. In addition, the panels bonded
with lignosulfonates and pMDI exhibited a close-to-zero formaldehyde content, reaching
the super E0 emission grade of ≤1.5 mg/100 g.

In another paper, Mirski et al. studied the effect of the structure of lattice beams on
their strength properties [32]. Based on the results obtained from the study, it was concluded
that the solutions proposed by the authors represent alternatives to wooden trusses, which
are joined with flanges using punched metal plate fasteners. However, it should be noted
that, at the current stage of this research, these solutions exhibited approximately 30%
lower static bending strength values than trusses fabricated with metal plates.

The feasibility of employing novel lightweight panels fabricated from waste corrugated
cardboard and beech veneer, as structural materials with applications in interior and
furniture construction, was studied by Jivkov et al. [33]. In laboratory conditions, the
authors developed two types of multi-layered panels and evaluated the bending moments
and stiffness coefficients of seven different types of end corner joints (demountable joints
and those fixed with an adhesive) formed from the developed composites. The authors
concluded that these materials can be successfully used in the construction of furniture and
other interior elements.

Following the circular economy principles, i.e., the reuse, recycling, or upcycling of
materials for the purpose of the increased utilization of waste and by-products in value-
added applications, Mirski et al. investigated the possibilities of using waste wood particles
obtained from the primary wood processing as a filler for polyurethane foams (PUR) with
an open-cell structure [34]. It was found that the addition of 10% waste wood particles
resulted in 30% increased compressive strength values of the PUR foam and 10% decreased
thermal conductivity, respectively. The authors concluded that the developed composite
foams can be efficiently used in thermal insulation applications in the construction of
prefabricated buildings.

In another interesting study, an attempt was made to predict the mechanical properties,
i.e., the modulus of elasticity (MOE) and modulus of rupture (MOR), of artificially weath-
ered fir, alder, oak, and poplar wood by investigating the variations in the color parameters
of the wood samples and developing a machine learning model [35]. It was found that
the deflection to failure of the wood samples increased with the weathering, which was
attributed to the increased viscoelasticity of the weathered wood samples. Significantly,
the experimental work was performed only on small-sized, clear wood samples without
defects. Thus, the effectiveness of the developed model should be further analyzed using
large-sized wood specimens.

Handika et al. reported the isolation of lignin from black liquor, used as a pre-
polymer for the preparation of bio-based polyurethane resin, which was exploited for the
impregnation of ramie fiber (Boehmeria nivea (L.) Gaudich) with the aim of improving its
thermal and mechanical properties [36]. One-step fractionation of the isolated lignin was
performed using methanol and acetone as solvents. Based on the experimental results, the
authors concluded that the increased mechanical properties, i.e., the tensile strength and
MOE, as well as the enhanced thermal stability of the impregnated ramie fiber, could expand
its future potential for wider industrial application as a sustainable and functional material.

Wronka et al. studied the potential of using raspberry (Rubus idaeus L.) and black
chokeberry (Aronia melanocarpa (Michx.) Elliott) lignocellulosic particles for manufacturing
particleboards intended for furniture applications [37]. The authors also characterized the
wooden particles, obtained from the re-milling particleboards, in order to evaluate their
recycling possibilities. The authors reported the successful fabrication of particleboards
from both lignocellulosic by-products. Significantly, the addition of raspberry particles
should not exceed 50% in order to obtain boards with mechanical properties that fulfil
the European standard requirements. In addition, it was found that the upcycling of
the particles obtained from the re-milled panels is rather limited due to the significantly
different fractions and shape of particles.
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The study carried out by Dukarska et al. aimed to investigate and characterize the
physical properties of wood particles intended for the manufacturing of particleboards
according to their moisture content [38]. It was found that the increased moisture content of
the wood particles resulted in an increase in their dimensions, regardless of their degree of
fineness, as well as an increased slippery angle of repose. In addition, the greater moisture
content of the particles resulted in an increased tapped bulk density for both types of
particles evaluated, e.g., the microparticles of the outer layers of the particleboards and the
particles of the core layers of the panels. The results obtained could be of great benefit in
the industrial practices of the wood-based panel industry with respect to the optimization
of the technological parameters and related production costs.

One of the greatest challenges for the wood composite industry is the increased de-
mand for wood and other lignocellulosic raw materials [39–41]. This has led to significantly
increased interest in the industrial and research sectors in efforts to identify alternative
raw materials as natural feedstocks for the production of wood composites. In their study,
Pędzik et al. evaluated the potential of using walnut (Juglans regia L.) wood residues as an
alternative raw material for the production of particleboards [42]. The authors reported that
the mechanical properties of the panels, which were produced in the laboratory with 50%
walnut wood particles, fulfilled the European standard requirements for particleboards
intended for load-bearing applications.

Exposure to wood dust is one of the greatest occupational hazards to the health and
safety of workers in wood-processing and furniture enterprises [43–46]. The results of the
study carried out by Dembiński et al. will be of great benefit for the industrial practice
of furniture factories in terms of methods for predicting the separation efficiency in the
long-term use of filter bags employed in the wood-based panel industry [47].

Last but not least, a comprehensive review of the possibilities of using hemp as an
abundant and renewable natural raw material for the polymer industry was conducted
by Tutek and Masek [48]. The authors presented and critically discussed the chemical
composition and physical and mechanical properties of hemp fibers, oil, wax, and extracts
and provided relevant examples of the use of hemp derivatives in polymer composites.

The ongoing transition of the wood-based panel industry toward a circular, low-carbon
bio-economy is a strong prerequisite for the continuous development of sustainable and
eco-friendly wood composites. The examples presented herein represent only a selection
and short overview of the future research trajectories related to the development, properties,
and applications of innovative, high-performance, eco-friendly wood composites with a
lower environmental impact.
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