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Abstract: Nanobiotechnology influences many different areas, including the medical, food, energy,
clothing, and cosmetics industries. Considering the wide usage of nanomaterials, it is necessary to in-
vestigate the toxicity potentials of specific nanosized molecules. Boron-containing nanoparticles (NPs)
are attracting much interest from scientists due to their unique physicochemical properties. However,
there is limited information concerning the toxicity of boron-containing NPs, including cobalt boride
(Co2B) NPs. Therefore, in this study, Co2B NPs were characterized using X-ray crystallography
(XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-
dispersive X-ray spectroscopy (EDX) techniques. Then, we performed 3-(4,5-dimethyl-thiazol-2-yl)
2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, and neutral red (NR)
assays for assessing cell viability against Co2B NP exposure on cultured human pulmonary alveolar
epithelial cells (HPAEpiC). In addition, whole-genome microarray analysis was carried out to reveal
the global gene expression differentiation of HPAEpiC cells after Co2B NP application. The cell
viability tests unveiled an IC50 value for Co2B NPs of 310.353 mg/L. The results of our microarray
analysis displayed 719 gene expression differentiations (FC ≥ 2) among the analyzed 40,000 genes.
The performed visualization and integrated discovery (DAVID) analysis revealed that there were
interactions between various gene pathways and administration of the NPs. Based on gene ontology
biological processes analysis, we found that the P53 signaling pathway, cell cycle, and cancer-affecting
genes were mostly affected by the Co2B NPs. In conclusion, we suggested that Co2B NPs would be a
safe and effective nanomolecule for industrial applications, particularly for medical purposes.

Keywords: cobalt boride nanoparticles; toxicogenomics; human pulmonary alveolar epithelial cells;
pathway analysis; in vitro; cytotoxicity

1. Introduction

In the last decade, the field of nanotechnology influenced a variety of industries
enormously due to the enhanced biological and altered physical and chemical features of
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nanoparticles essentially affected by particle solubility, integrity, and reactivity [1]. Nano-
sized materials gained tremendous importance since their features increase the quality of
industrial materials. Hence, different types of nanomaterial are widely used in the medical
and food sectors as well as in the cosmetics field in the form of liposomes, nanosomes,
inorganic compounds, dendrimers, and metals [2–5]. Considering the important and in-
alienable functions of nanosized materials in variegated sectors, it becomes inevitable to
investigate their toxicological properties by using different approaches, including cytotoxic,
genotoxic, and toxicogenomic analysis [6–9].

Cobalt borides are generally known for their reactivity and physical properties, such
as biomedical, magnetic, corrosion, and hydrogen catalysis. Further, their nanosized di-
mensions can exhibit powerful mechanical characteristics [10]. As a class of transition
metals, borides are generally recognized as very rigid materials with high-mass submod-
ules. Critical applications of Co2B in a variety of reactions resulting from its functional
properties gained significant attention [11]. The antioxidant effect of boron and the high
electrochemical properties of cobalt makes Co2B a candidate catalyst for fuel cell and
hydrogen storage applications [12,13]. The oxidation resistance properties of Co2B also
make the compound a good option for surface coating applications [14]. Moreover, the
magnetostrictive and magnetic properties of Co2B nanoparticles (NPs) also make them a
good candidate for their usage in biomedical applications, including drug delivery systems
and photothermal therapy [15–18].

Toxicogenomic tools allow for the revealing of the relationship between the compound–
gene expression, gene expression–disease, and compound–disease and for predicting the
unknown effects of chemicals on cells/tissues and different phenotypes [19]. One of
the most important public toxicogenomic libraries is the Comparative Toxicogenomics
Database (CTD; http://ctdbase.org; accessed on 12 March 2021), which is constructed
from a wide range of data based on the interactions between genes and chemicals affecting
human health [20]. The toxicogenomic approach contributes to informing people about
hazardous chemicals, drugs, and stressor exposures and propounds the mechanisms
underlying toxicity-related health issues. Hence, systematic analysis of the chemical
structures or drugs should be performed for preparing reliable, risk-prevailing safety
reports [21,22].

In this investigation, we obtained commercially available Co2B NPs and characterized
them using X-ray crystallography (XRD), transmission electron microscope (TEM), scanning
electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) analyses.
Then, we performed a cytotoxicity evaluation on HPAEpiC cell culture for 72 h using MTT,
LDH release, and NR cell viability assays. In addition, whole-genome microarray analysis
was performed to identify the differentially expressed genes after treating HPAEpiC cells
with Co2B NPs. Finally, we identified the differentially expressed genes and performed gene
ontology (domain biological processes) using the database for annotation, visualization, and
integrated discovery (DAVID) software and revealed the relationships between chemical–
gene interactions and human diseases. The unique physicochemical properties of Co2B
NPs make them a good candidate for use in various industries; therefore, this study was
aimed to execute uncharted favorable toxicogenomic features of Co2B NPs for safe and
serviceable utilities.

2. Materials and Methods
2.1. Nanoparticles Characterizations

Co2B NPs were purchased commercially (CAS No.12045-01-1, American Elements,
Los Angeles, CA, USA), and the structure of the molecule was investigated via XRD,
SEM, TEM, and EDX analyses. The microstructure and particle sizes of Co2B NPs were
analyzed by a Rigaku/Smart Lab diffractometer (CuKα radiation, λ = 0.154059 nm at 40 kV
and 30 mA). The measurements of the geometry were taken, coupled with θ–2θ changed
between 100 and 850 with steps of 0.020. Particle size and the surface arrangement of
Co2B NPs were investigated by a scanning electron microscope (FEI inspect S50 SEM,

http://ctdbase.org


Materials 2022, 15, 8683 3 of 13

Thermo, Hillsboro, OR, USA) and transmission electron microscopy (JEM-ARM200CFEG
UHR-TEM, JEOL, Peabody, UK). The chemical composition of Co2B NPs was characterized
via energy-dispersive X-ray spectroscopy (EDS, EDX, Thermo, Hillsboro, OR, USA).

2.2. Cell Culture

Total of 106 cells (HPAEpiC, ScienceCell, Carlsbad, CA, USA) were seeded in 48-well
plates and incubated with Alveolar Epithelial Cell Medium (ScienceCell, Carlsbad, CA, USA)
at 37 ◦C in a humidified 5% CO2 cell culture chamber. The experimental group consisted of
12 different concentrations of Co2B NPs (from <1 mg/L to >1000 mg/L) with hydrogen
peroxide (H2O2; 25 µM Sigma-Aldrich, St. Louis, MO, USA) as positive control and
negative control. Each group was conducted in triplicate to calculate standard deviations,
and experiment was carried out for 72 h. To prepare Co2B NPs concentrations (0.625, 1.25,
2.5, 5, 10, 20, 80, 160, 320, 640, and 1280 mg/L), compounds were dispersed in <1% DMSO
final concentration of medium (Sigma-Aldrich, St. Louis, MO, USA) [23].

2.3. MTT Assay

A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution was
prepared according to the manufacturer’s guide (Cayman Chemical Company, Ann Arbor,
MI, USA). MTT solution was added to each experimental group and incubated for 4 h at
37 ◦C in a humidified 5% CO2 cell culture chamber. After incubation, formazan crystals
were dissolved by 100 µL DMSO, and color intensity for each well was measured using a
plate reader at 570 nm wavelength [24].

2.4. LDH Release Assay

A commercially available LDH cytotoxicity assay kit (Cayman, USA) was used to
analyze cytotoxicity according to the manufacturer’s guide. Briefly, a total of 106 cells were
seeded in 48-well plates and exposed to Co2B NPs for 72 h at 37 ◦C in a humidified 5% CO2.
Total of 90 µL supernatant was transferred to a new 48-well plate, and 10 µL LDH solution
was added to each well. Samples were incubated at 37 ◦C for 30 min, and the absorbance
of the samples was investigated at 490 nm using a microplate reader [25].

2.5. Neutral Red Assay

The neutral red assay was performed by using the In Vitro Toxicology Assay Kit
(Sigma-Aldrich®, USA) according to manufacturer’s guide. Cell cultures were treated with
the NR solution for 2.5 h at 37 ◦C and samples were washed with formaldehyde/CaCl2
solution to discard excess NR solution. Finally, the samples were incubated with acetic
acid/ethanol for 30 min at room temperature to dissolve the NR solution. Samples col-
orimetric measurements were performed at 540 nm using a microplate reader (Bio-Tek
Instruments, Winooski, VT, USA) [26].

2.6. Microarray Analysis

Cell cultures were exposed to IC50 of Co2B NPs in triplicate, and total RNA from
the cultures was isolated by using a commercially available RNA isolation kit (Sigma-
Aldrich, USA), and RNA samples purity and quantity were determined by using Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and ND-1000 Spectropho-
tometer (NanoDrop, Wilmington, NC, USA). Total RNA was reverse transcribed into cDNA
by using T7 oligo (dT) primers, and samples were biotinylated using TargetAmp-Nano La-
beling (Lucigen, Middleton, WI, USA). Human HT-12 v4.0 Expression Beadchips (Illumina,
Inc., San Diego, CA, USA) were used to hybridize cDNAs to analyze Amersham fluorolink
streptavidin-Cy3 (GE Healthcare Bio-Sciences, Little Chalfont, UK) array signals under a
bead array reader confocal scanner (Illumina, San Diego, CA, USA) [27].
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2.7. Data Analysis

All cell viability assays were analyzed statistically by using SPSS Software Version 24.0
(IBM, Armonk, NY, USA). To extract raw data from microarray analysis, Illumina GenomeS-
tudio v2011.1 software was performed. Normalization and logarithm transformations were
carried out by using the quantile method. The statistical significance of the expression data
was determined as a two-fold change. Finally, the database for annotation, visualization,
and integrated discovery (DAVID) analysis was used to investigate interactions between
gene expression and associated biological pathways.

3. Results
3.1. Characterization of Nanoparticles

We investigated the X-ray diffraction pattern of Co2B NPs using the Rigaku Smart
Lab diffractometer with CuKα radiation (λ = 0.154059 nm) operated at 40 kV and 30 mA.
According to the analysis, the dominant peak was obtained at 2θ = 29.10, and, in parallel
with the literature, the investigated molecule was proven to be Co2B (Figure 1). In addition,
the Debye Scherrer equation for the calculation of particle size is

D = Kα/βcosθ

where K is the Scherrer constant, λ is the wavelength of the X-ray beam used (1.54–184 Å),
β is the full-width at half-maximum (FWHM) of the peak, and θ is the Bragg angle. The
Scherrer constant denotes the shape of the particle, and its value is most commonly taken
as 0.9 [X1]. The average grain size of the particles was determined as 60 nm by this equa-
tion. Energy-dispersive X-ray spectroscopy (EDS, EDX) analysis of the Co2B NPs was used
to investigate the atomic ratios of Co/B (at %). The EDS results indicated that commer-
cially available Co2B NPs were found to consist of boride and cobalt molecules and small
quantities of other molecules, including carbon, oxygen, and nitrogen. On the other hand,
oxygen and nitrogen measurements were probably coming from the air, and these peaks were
thought to be background noises (Figure 2). The transmission electron microscope (JEOL
JEM-ARM200CFEG UHR-TEM, illustration taken as a scale of 3 µm) image of Co2B NPs put
forth that the nanoparticle size was investigated as 60 nm (Figure 3). Moreover, and scanning
electron microscope (SEM) image (FEI inspect S50 SEM, 3 µm scale) of NPs (Figure 4) showed
a homogeneous scattering of the Co2B NPs, and differential sizes ranged from 1 µm to 30 nm
(Figure 4). Moreover, Zeta potential analyses put forth that the polydispersity index (PDI) of
synthesized Co2B NPs was 4.3, which is a very high number. This result showed that Co2B
NPs have high heterogenicity with a wide particle size range.
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Figure 4. Scanning electron microscope (SEM) image (FEI inspect S50 SEM, 3 µm scale) of Co2B NPs.

3.2. Cell Viability Analyses

All of the performed cell viability assays (MTT, LDH, and NR) indicated clear
concentration-dependent cytotoxicity. The first observable toxicity (10% cytotoxicity) was
monitored at 80 mg/L of Co2B NP concentration. IC50 concentration for the nanoparticle
was calculated as 310.353 mg/L using single factor and regression analysis. We observed
that the concentration of Co2B NPs should be higher than 310.353 mg/L to inhibit 50% of
the growth of the HPAEpiC cell line (Figure 5). The IC50 concentration was used in further
experimental methods in gene expression and pathway analysis.
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Figure 5. MTT, LDH, and NR assay results of cobalt boride (Co2B) nanoparticles on the human lung
alveolar epithelial cell line. Ctrl (−): negative control (only cell culture), Ctrl (+): positive control
(hydrogen peroxide (H2O2)). Symbol (*) represents statistically significant decrease in cell viability
at 80 mg/L concentration, p < 0.05 (Microsoft Excel 2010, ANOVA: Single Factor and Regression
Analysis were used to calculate the values).
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3.3. Gene Expression and Pathway Analysis

In microarray analysis, nine reads were performed, and the p-value was calculated as
0.03 for the samples. It was found that the expression of 719 genes of a total of 40,000 gene
probes was significantly downregulated or upregulated (fold change ≥2) after the exposure
of 310.353 mg/L Co2B NPs to the HPAEpiC cell culture. We found that the expression
levels of 347 and 372 genes were significantly increased and decreased, respectively. Gene
expression analyses showed that the five most upregulated genes were metallothionein 3
(MT3), 5S ribosomal 9 (RN5S9), eukaryotic translation elongation factor 1 alpha 2 (EEF1A2),
BEN domain containing 5 (BEND5), and dihydropyrimidinase like 4 (DPYSL4) genes with
fold changes (FC) of 23.08, 18.40, 12.93, 11.26, and 8.65, respectively. Moreover, it was
found that the most downregulated genes were kinesin family member 20A (KIF20A),
quinolinate phosphoribosyltransferase (QPRT), caspase recruitment domain family mem-
ber 16 (CARD16), hyaluronan mediated motility receptor (HMMR) and RAS like family
12 (RASL12) genes with fold changes (FC) of −7.81, −5.85, −5.68, −5.22 and −4.96, re-
spectively. The top upregulated and downregulated 25 genes were summarized in Table 1.
As a result of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis
using DAVID, Co2B was found to be more effective on the p53 signaling pathway, cell cycle,
and cancer pathways (Figure 6). When DAVID functional annotation analysis for func-
tional categories of Co2B NP application was evaluated, we observed that the formation of
phosphoprotein structures related to the energy metabolism was significantly altered as
a result of Co2B exposure (Figure 7). Moreover, DAVID gene ontology results revealed a
significant difference associated with the in-microtubule motor protein, growth factor, and
kinase protein genes in Co2B exposed cells (Figure 8). Microarray data were deposited in
the ArrayExpress (EMBL-EBI) public database with the accession numbers E-MTAB-9035.

Table 1. A total of 25 upregulated and downregulated genes subject to cobalt boride (Co2B)
NP application.

Cobalt Boride (Co2B)
Fold Change (FC)

Upregulated Genes FC Downregulated Genes FC

MT3 23.08 KIF20A −7.81
RN5S9 18.40 QPRT −5.85

EEF1A2 12.93 CARD16 −5.68
BEND5 11.26 HMMR −5.22
DPYSL4 8.65 RASL12 −4.96
RRAGD 8.12 VWA5A −4.94
RNASE4 7.90 DLGAP5 −4.92

GALNTL4 7.67 TNFSF11 −4.72
CYP3A7 6.95 LOC100134259 −4.68

BTG2 6.76 CENPA −4.52
TMEM145 6.74 TOP2A −4.46

NDUFA4L2 6.68 DLGAP5 −4.45
RRAD 6.43 CXCL12 −4.44

RNASE4 6.31 ECHDC2 −4.44
HIST1H2BD 6.27 CASP1 −4.43
TNFSF13B 6.21 HMMR −4.36

VLDLR 6.17 TNFRSF11B −4.31
HES4 6.05 CD248 −4.24

IGFBP3 5.84 CDC20 −4.21
RRAD 5.74 CCNB2 −4.05
GDF15 5.65 CCL2 −4.02

ANGPTL4 5.63 GSTM5 −4.00
IGFBP3 5.50 FAM83D −3.97

BHLHB3 5.31 SCG5 −3.95
ATF3 5.27 ASPM −3.83
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4. Discussion

In this study, Co2B NPs were commercially obtained, and particle characteristics were
evaluated via SEM, TEM, XRD, and EDS analyses. The investigations executed concluded
that Co2B NPs had a size of around 60 nm and a homogenous structure. With the help
of XRD and EDS analysis, Co2B NPs contents were determined as boron and cobalt, and
the molecular formulation was identified as Co2B. Cytotoxicity tests were performed to
find out whether the Co2B NPs were toxic in the HPAEpiC cell line. By performing three
different cytotoxicity/viability assays, it became possible to obtain more reliable results,
and according to the investigations, our toxicity tests correlated with each other. Toxicity
analysis showed that Co2B NPs should have a higher concentration to induce cytotoxi-
city on HPAEpiC cell culture. According to the cell viability assays, up to an 80 mg/L
concentration of Co2B NPs did not stimulate any significant toxicity in the cell cultures.
Moreover, 310.353 mg/L of Co2B NPs was required to complement the IC50 value, which
was 50% of the inhibitory concentration to investigate gene expression modification for
pathway analysis. Recent studies claimed that different boron compounds were investi-
gated to have biocompatible properties in various applications. For instance, boron nitride,
tungsten boride, and boron carbide nanoparticles were investigated to have lower cytotoxi-
city in vitro. Moreover, higher concentrations were needed to achieve significant toxicity
in particular cell types [6,27–29]. Additionally, a study on boron nitride (BN) as a drug
delivery system showed that application with 100 mg/mL of BN resulted in nearly 30%
cytotoxicity on the differentiated neuron-like cells after 24 h of incubation [30]. From this
result, researchers claimed that BN had low toxicity properties, and the compound was
suitable for a drug delivery system. Compared to our results, an 80 mg/mL concentration
of Co2B NPs resulted in nearly 20% cytotoxicity, which was a much lower toxic property
than the previous study [31]. Moreover, chitosan nanoparticles that have been proposed
as an effective drug delivery system were claimed to exhibit cytotoxic properties at the
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concentration of 2 mg/mL against the conjunctival cell line [32]. Furthermore, in our
recent study, folic acid-conjugated boron nitride nanoparticles (FA-BN NPs) were proposed
as an effective and self-assembling drug delivery system for Alzheimer’s disease (AD)
treatment [7]. In the study, boron lipoic acid (BLA)- and memantine (MEM)-loaded FA-BN
NPs showed promising drug delivery and release potential in the experimental AD models.

On the other hand, there is no information about the toxicity or biological activity
of Co2B. Thus, it was inevitable to constitute a comprehensive toxicogenomic study to
understand the biological properties of Co2B NPs.

Illumina microarray gene expression analysis of a total of 40,000 probes exhibited that
347 genes were found to be upregulated and 372 genes were found to be downregulated.
The five most upregulated gene probes resulting from Co2B NP application could be
listed as MT3, EEF1A2, BEND5, DPYSL4, and RRAGD genes. The MT3 gene, one of the
genes affected by cobalt boride exposure, was claimed to have proliferative, cell cycle,
and apoptotic effects on cancer cells by regulating the expression of MMP3 in the triple-
negative breast cancer (TNBC) cell line [33]. Previous studies investigated that eEF1A2
(eukaryotic protein elongation factor 1 alpha 2) was identified as a protein translation factor
that has a high expression in tumors of the ovary, breast, and lung. Moreover, it was shown
that eEF1A2 could stimulate Akt and activate Akt-dependent invasion, actin remodeling,
and cell migration [34–36]. One of the most overexpressed gene probes against Co2B NP
application, BEND5, was proposed to have DNA-binding and transcription repression
activities. Moreover, the hypermethylation of BEND5 was analyzed to contribute to cell
proliferation, and it was proposed as a prognostic marker for colorectal cancer [37,38]. On
the other hand, the DPYSL4 gene, shown to be overexpressed in our study, was investigated
to play a crucial role in cancer suppression properties through P53 regulation and activates
energy metabolism via constituting mitochondrial super-complexes. Furthermore, another
study suggested that the DPYSL4 gene could regulate epithelial cell polarization, cell
proliferation, and differentiation in tooth germ morphogenesis. Moreover, it was found
that the DPYSL4 gene was a direct target for the P53 protein [39,40]. Studies showed that
the Rag GTPases (RRAGD) could regulate the mTORC1 signaling pathway by regulating
the translocation of mTORC1 to the site of activation (lysosomal surface) and result in
suppression of the folliculin tumor [41,42]. According to the most upregulated genes, it
was analyzed that some of them were related to carcinogenicity, invasion, and migration.
On the other hand, interestingly, others were found to be related to tumor suppression and
energy metabolisms.

Contrarily, when the lowest downregulated five gene probes were analyzed, it was
observed that KIF20A, QPRT, CARD16, HMMR, and RASL12 had the top place for the gene
list. Firstly, the KIF20A gene probe was found to have the top spot for downregulated genes
after Co2B NPs, and according to the recent analysis, the KIF20A gene was found to have a
metastatic and proliferative impact on bladder cancer in vitro. Moreover, overexpression
of the gene was investigated to prevent apoptosis and enhance cell proliferation directly
in the lung adenocarcinoma cell line [43,44]. The quinolinate phosphoribosyltransferase
(QPRT) gene was shown to be activated by Wilms’ tumor gene 1 (WT1) resulting in ex-
panded antiapoptotic properties in acute myeloid leukemia and acting as an oncogenic
protein. In addition, other researchers claimed that QPRT protein was observed in follicular
thyroid carcinomas by immunohistochemistry techniques with a high ratio, and it could
be potentially used as a new marker for follicular thyroid nodule investigations [45,46].
Another downregulated gene against Co2B NP exposure was CARD16, which was analyzed
to assemble with caspase recruitment domain (CARD)-mediated caspase-1 (CASP1) and
initiate inflammation through activation of interleukin (IL)-1β release [47]. Furthermore,
increased expression activity of the hyaluronan-mediated motility receptor (HMMR) gene
was reported to augment poor prognosis, aggressive phenotype, and disease progression
in ovarian cancer [48]. Finally, antiapoptotic features of the RASL12 gene were identified
in a study where the cellosaurus (ANBL-6) cell line was transfected with the ras12 gene,
resulting in the prevention of doxorubicin-induced apoptosis [49]. As seen from these data
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from the literature, the highest downregulated genes are mainly related to cell prolifera-
tion and antiapoptotic and metastatic properties. In light of this information, it could be
concluded that Co2B NP application inhibited gene products that enhance carcinogenic
features, and the NPs contributed antitumoral formations.

Moreover, when expressional differential top genes were investigated, it was found
that the most upregulated genes, such as the DPYSL4 and RRAGD genes, related to anti-
carcinogenic and apoptotic mechanisms. In parallel with overexpressed genes, the most
downregulated genes, such as the KIF20A, QPRT, HMMR, and RASL12 genes, related
to tumorigenesis and antiapoptotic phenotypes. It could be understood that the anticar-
cinogenic upregulated genes and antiapoptotic downregulated gene sets correlated with
each other. It might be comprehended from these results that Co2B NPs could act as an
anticarcinogenic agent on the HPAEpiC cell line.

5. Conclusions

As a result of the DAVID analysis of KEGG pathways associated with the significantly
differentiated genes, Co2B NPs were found to be more effective on the p53 signaling
pathway, cell cycle, and cancer pathways. When the functional categories in the cells
were evaluated, it was observed that the formation of the phosphoprotein structures was
significantly altered as a result of the cobalt boride application. In addition, DAVID gene
ontology results revealed a significant change in microtubule motor protein, growth factor,
and kinase protein expression in Co2B NPs exposed to HPAEpiC cells. According to the
cytotoxicity and gene expression analyses, it could be concluded that industrial application
of Co2B NPs would not cause serious toxicological outcomes if the NPs concentrations reach
higher rates. Co2B NPs exhibited good potency for advanced uses, especially in biomedical
applications, due to their positive impact on global gene expression profiling. On the other
hand, our preclinical data put forth highly safe properties of the NPs, and comprehensive
in vivo investigations should be performed to constitute a more confident safety report
for Co2B NP applications. Moreover, different polymeric nanoparticle structures should
be investigated to obtain more comprehensive analyses to conclude if different Co2B
architectures have similar results.
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