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Abstract: The dissolution behavior of carbides in martensitic stainless steel and its effect on mi-
crostructure and hardness were investigated by using X-ray diffractometer (XRD) and field emission
scanning electron microscopy (FE-SEM) with energy dispersive spectrometer (EDS) and electron
backscattering diffraction (EBSD). The results indicated that the microstructure after austenitizing
heat treatment and oil quenched consisted of martensite, M23C6 carbides and retained austenite. The
temperature and particle size had great influence on the dissolution of carbides. The EBSD results
showed that the twin-related variant pair V1/V2 governed the phase transformation. Meanwhile,
the density of high-angle grain boundaries (HAGBs) increased with the increase of austenitizing
temperature from 950 to 1150 ◦C. The hardness test results indicated that the hardness first increased
and then decreased with the increase of the austenitizing temperature, and the peak appeared at
1050 ◦C with a Rockwell hardness value of 59.8 HRC. A model was established to quantitatively
explain the contribution of different microstructures to hardness. The contribution to hardness
came mainly from martensite. The retained austenite had a negative effect on hardness when the
volume fraction was more than 10%. In contrast, carbides contributed less to hardness due to their
small content.

Keywords: carbides; dissolution; microstructure; variant selection; hardness

1. Introduction

Cutting tools play an important role in people’s lives and industrial production [1,2].
High-carbon martensitic stainless steel is used to make knives due to its high strength, high
hardness, good wear resistance and good corrosion resistance. This steel, which is designed
to be fully austenite at elevated temperatures, is alloyed with between 11.5 and 18.0%
chromium and up to 0.6% carbon [3]. 5Cr15MoV martensitic stainless steel is a typical
material for making kitchen knives. The as-quenched microstructure of most high-carbon
martensitic stainless steels is mainly lath martensite and carbides [4,5].

The carbides are an important phase in high-carbon martensitic stainless steel. The
volume fraction, type, size and distribution of carbides affect the microstructure and
performance of martensitic stainless strongly [6,7]. Barlow et al. [3] proposed that more
dissolution of carbides resulted in higher retained austenite and lager austenite grain size
during austenitizing and quenching in 420 martensite stainless steel. Kulkarni Srivatsa
et al. [8] indicated that low carbide content and fine carbides along the grain boundary and
in the matrix would improve toughness in 13% Cr martensitic stainless steel. Some other
works [9–12] showed that coarse carbides were harmful to mechanical performance, and
due to the Cr depletion around carbides, corrosion resistance was poor. Junru Li et al. [9]
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proposed that large-size M23C6 carbides, whose size was 0.3–1.5 µm, were notably harmful
to the low-temperature toughness of martensitic heat-resistant steels. Bonagani et al. [10]
showed that after tempering, the presentation of a Fe-rich surface file and massive carbide
precipitation with a Cr depletion zone of 7–9 nm at the carbide interface resulted in the
pitting corrosion becoming poor. However, literature [13] indicated that the depleted carbon
and chromium content in the matrix also contributed to ductility by increasing the necking
deformation needed for void nucleation. A uniform distribution of carbides could improve
the toughness of material and reduce the ductile-brittle transition temperature [14]. Yudan
Yang et al. [15] found that the carbide dissolution in high-carbon martensitic stainless steel
could be distinguished in three stages based on the changes in the content and the average
size of the carbides, which displayed a significant impact on performance. However, the
study on the dissolution behavior of carbides and the relationship between microstructure
and hardness that was quantitatively studied in high-carbon martensitic stainless steel has
been seen rarely.

In this study of 5Cr15MoV martensitic stainless steel, carbide dissolution behavior is
discussed, and its effect on the microstructure, and the quantitative relationship between
microstructure and hardness also, are studied under different austenitizing conditions.
The purpose is to present a novel perspective for understanding the role of carbides on
microstructure and hardness in high-carbon martensitic stainless steel.

2. Materials and Methods

The studied material was commercial 5Cr15MoV martensitic stainless steel after cold
rolling and annealing treatment. The dimensions of the cold rolled plates were 1200 mm
× 220 mm × 2.5 mm and their chemical composition, which was measured by using a
PMI-MASTER PRO direct reading spectrometer, is listed in Table 1. The steel was cut into
15 mm × 15 mm × 2.5 mm by a wire cutting machine. To avoid decarbonization, the
vacuum quartz tubes, which were filled with 0.01 MPa argon, were used to protect samples
during heat treatment when they were austenitized at 950, 1000, 1050, 1100 and 1150 ◦C for
10 min. Then, oil quenching was carried out immediately. During oil quenching, the quartz
tubes were broken by a hammer in oil immediately.

Table 1. Chemical composition of 5Cr15MoV martensitic stainless steel (wt.%) [15].

Material C Si Mn P S Cr Mo V Fe

5Cr15MoV 0.46 0.41 0.43 0.018 0.012 14.7 0.47 0.21 Bal.

After quenching, metallographic specimens were ground, polished and etched with
10% sulfuric acid in saturated potassium permanganate solution in order to observe car-
bides. The microstructure was investigated by TESCAN CLARA GMH field emission
scanning electron microscope (FE-SEM) (TESCAN Brno, s.r.o., Brno, Czech Republic)
equipped with an Oxford UlitmMax65 energy dispersive spectrometer (EDS) (Oxford in-
struments, Abingdon, UK) and Oxford Symmetry S2 electron backscattering diffraction
(EBSD) (Oxford instruments, Abingdon, UK). Samples for EBSD study were electropolished
using a solution containing 87% alcohol, 8% perchloric acid and 5% glycerol. Next, the
crystallographic information was analyzed by Channel 5 software (version: 5.12.74.0) from
Oxford-HKL (Oxford instruments, Abingdon, UK). MATLAB software (version: 2021b)
was used for crystallographic analysis [16,17].

The content of each phase was measured with X-ray diffraction (XRD) using Cu-K α

radiation. The scanning angle was 47–93◦, and the scanning rate was 2◦ min−1. Afterward,
the volume fraction of the retained austenite was calculated by Equation (1) [18].

Vγ =
1−Vc

1 + G
Iα(hkl)
Iγ(hkl)

(1)



Materials 2022, 15, 8742 3 of 15

where Vγ and Vc are the volume fraction of retained austenite and carbides, respectively; G
is the ratio of the intensity factors corresponding to austenite and martensite specific crystal
faces, as shown in Table 2. Iα(hkl) and Iγ(hkl) are the diffraction peak integration intensity of
martensite and austenite lattice planes, respectively. Vc is taken from experimental data.

Table 2. G values used in the calculation of volume fraction of austenite.

Characteristic Diffraction Line G

(200)γ/(200)α’ 2.423
(220)γ/(200)α’ 1.274
(311)γ/(200)α’ 1.446
(200)γ/(211)α’ 1.331
(220)γ/(211)α’ 0.6955
(311)γ/(211)α’ 0.7939

The hardness of as-quenched samples was measured by using a Rockwell hardness
tester with a load of 150 kg and a loading time of 15 s. Samples for hardness testing were
ground to grit size 1000 with silicon carbide paper to guarantee a well-defined surface state.

3. Results
3.1. Microstructure Characterization of the Annealed Sample

The commercial 5Cr15MoV martensitic stainless steel used in this study was annealed
at 800 ◦C for 36 h. The microstructure characterization result is shown in Figure 1. As
shown in Figure 1a,b, it can be clearly seen that the microstructure is composed of a large
amount of spherical and ellipsoidal precipitates, ferrite and a small amount of retained
austenite. The EDS result shows that these precipitates are Cr-enriched carbides. XRD
results shown in Figure 1c indicate that the microstructure consists of ferrite and M23C6
carbides. The mass fraction of phases in the 5Cr15MoV martensitic stainless steel was
calculated by Thermo-Calc using the TCFE7 database. As shown in Figure 1d, below
820.2 ◦C, the mass fraction of the M23C6 carbides remains unchanged at around 9.3%.
Thus, the carbide is identified as (Fe, Cr, Mo)23C6.
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3.2. Microstructure Characterization of the Quenched Samples

As can be seen in Figure 2, the microstructure of the as-quenched samples at different
austenitizing temperatures is mainly composed of lath martensite, carbides and a small
amount of retained austenite. In order to observe the carbides clearly, we used 10% sulfuric
acid in saturated potassium permanganate solution to etch samples, in which the carbides
are eroded and the martensite matrix is not eroded. However, the morphology of the
martensite matrix can be observed clearly in the band contrast (BC) map by using EBSD.
In Figure 2, the red arrows point to carbides. As shown in Figure 2, the morphologies
of carbides are mainly spherical and ellipsoid, which were inherited from the annealed
state [15]. It is well-known that the area fraction equals the volume fraction if the particles
distribute uniformly in the matrix [19]. The volume fractions of carbides summarized in
Table 3 were counted by using the image processing method based on the SEM images.
With an increase of the austenitizing temperature from 950 to 1150 ◦C, the volume fractions
of carbides decrease from 8.82% to 0.25%. Notably, the volume fraction of the carbides
decrease rapidly at 1050 ◦C. At 950 ◦C, the carbides dissolve slightly, and the prior austenite
grain boundaries are indistinct. With an increase of the austenitizing temperature, carbide
dissolution accelerates and the size of prior austenite grains also increase. When the
austenitizing temperature reaches 1150 ◦C, the carbides almost disappear. According to the
results of EDS shown in Figure 2i and the XRD shown in Figure 3, the carbides are M23C6
(M = V, Mo, Cr, Fe).

As shown in Figure 2b,d,f,h,j, the martensite lath retained austenite, which is indi-
cated in the red regions that are observed clearly. With an increase in the temperature,
the size of the martensite lath becomes finer. Due to the inaccurate volume friction of the
retained austenite, by using EBSD results, which were collected in a small area, the XRD
measurement was carried out, and the results are shown in Figure 3. At an austenitizing
temperature of 950 ◦C, the diffraction peaks of M23C6 and martensite are the strongest,
while the diffraction peaks of austenite are the weakest. With an increase in the austenitiz-
ing temperature, the diffraction peaks of M23C6 and martensite become weaker, and the
diffraction peaks of austenite become stronger. The calculated result of the retained austen-
ite volume fraction by Equation (1) is shown in Table 3. At austenitizing temperature of
950 ◦C, the volume fraction of retained austenite is 1.95%. At austenitizing temperature of
1150 ◦C, the volume fraction of retained austenite is 11.10%. In Figure 3, a very pronounced
decrease of 2-theta for martensite with the increase of austenitizing temperature can be
observed, which corresponds to an increase of lattice parameters, implying more carbon in
the martensite. These results indicate that with an increase in the austenitizing temperature,
the volume fraction of retained austenite increases because the Ms temperature decreases
as the number of C and alloying elements increases [3].
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Figure 2. SEM micrographs (a,c,e,g,i) and band contrast (BC) maps (b,d,f,h,j) of the microstructure
of the high-carbon martensitic stainless steel at different austenitizing temperature: (a,b) 950 ◦C;
(c,d) 1000 ◦C; (e,f) 1050 ◦C; (g,h) 1100 ◦C; (i,j) 1150 ◦C with EDS result of carbides. In the SEM images,
the red arrows point to carbides, and in the BC maps, the austenite is expressed by red regions.
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Table 3. Volume fraction of carbides and retained austenite at different temperatures.

Phases
Austenitizing Temperature (◦C)

950 1000 1050 1100 1150

Fraction of carbide (%) 8.82 6.36 2.82 2.16 0.25
Fraction of retained austenite (%) 1.95 2.57 3.28 7.58 11.10
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Figure 3. XRD result of the as-quenched samples.

3.3. Hardness

Figure 4 shows the Rockwell hardness of the samples after oil quenching at different
austenitizing temperatures. The results show that the hardness of the experimental steel
increases with the increase of the austenitizing temperature in the range of 950–1050 ◦C,
and the hardness increases from 50.3 HRC to 59.8 HRC. However, the hardness decreases
from 59.8 HRC to 37.0 HRC as the austenitizing temperature is in the range of 1050–1150 ◦C,
which is due to the softening effect of retained austenite.
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4. Discussion
4.1. Dissolution Behavior of M23C6

Based on the SEM images, the size and morphology of M23C6 carbides were inves-
tigated at different austenitizing temperatures. The morphology of carbides was mainly
spherical and ellipsoid. As shown in Figure 5a, with an increase in the austenitizing tem-
perature, the volume of M23C6 carbides decreased gradually, and the average diameter
of M23C6 carbides did not decrease monotonically. With an austenitizing temperature
in the range of 950–1050 ◦C, the average diameter remained the same at approximately
0.53 µm. At the austenitizing temperature 1100 ◦C, the average diameter increased by a
small margin to 0.6 µm. When the austenitizing temperature was 1150 ◦C, the average
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diameter decreased to 0.28 µm rapidly. As shown in Figure 5b, with an increase in the
austenitizing temperature, the frequency of tiny M23C6 carbides decreased rapidly. This
result was basically consistent with the previous study [15]. However, the study [15]
indicated that the dissolution of M23C6 carbides was distinguished in three stages based on
the changes in the content and the size of carbides. Firstly, small-sized carbides (<0.5 µm)
dissolved dominantly. Secondly, large-sized carbides (<1 µm) dissolved dominantly. Lastly,
larger-sized carbides (>1 µm) began to dissolve. These distinctions might not be correct.
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Figure 5. Volume fraction, average diameter (a) and distribution frequency (b) of M23C6 carbides at
different austenitizing temperatures.

According to Figure 1d, at the austenitizing temperature in the range 950–1150 ◦C, the
M23C6 carbides dissolve. From a thermodynamic point of view, at the beginning of the
dissolution of M23C6 carbides, the thermodynamic conditions for each carbide particle are
the same; thus, the dissolution of carbide particles is in no particular order, assuming the
composition of the matrix is uniform.

According to study [20], as spherical precipitates became smaller, the dissolution rate
increased. For spherical precipitates, the kinetics of dissolution of carbides was assumed
on the basis of a diffusion-controlled regime and there was no interaction between carbides.
The kinetic formulation of dissolution was developed [20].

tm =
R2

0
|k|Dv

(2)

k =
2(CI − CM)

(CP − CI)
(3)

where tm is the time of dissolution; R0 is the radius of spherical precipitates; Dv is the diffu-
sion coefficient of the element; CI is the concentration in the matrix side at the precipitate-
matrix interface; CM is the far field composition of the alloy; and CP is the composition of
the precipitate.

In 5Cr15MoV martensitic stainless steel, C diffusivity is several orders of magnitude
faster than Cr and V, while Cr has the highest fraction among the substituted elements.
Therefore, the kinetics of dissolution rate of carbides is assumed to be controlled by the
Cr diffusion. According to the literature, the diffusion coefficient of Cr in austenite can be
taken from [21]:

DCr = 10.80 exp
(
−69700

RT

)
cm2s−1 (4)

According to Equations (2)–(4), the dissolution behavior of carbides can be discussed in
detail. When the initial size of carbides remains unchanged and temperature increases, DCr
and CI increase, which results in tm decreasing. In addition, the temperature is assumed to
be constant, and the tm is only determined by the particle size and is proportional to the
square of the particle radius. Using the Thermo-Calc with TCFE7 database, the content of
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Cr in the matrix side at the precipitate-matrix interface was calculated. Thus, the time of
carbides dissolution can be calculated. Figure 6 shows the dissolution kinetics of carbides
at different temperatures. It is clear that the dissolution time of carbides is proportional to
the square of the particle radius, and the higher the temperature, the faster the dissolution.
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The above analysis indicates that small particles disappear first and then larger par-
ticles dissolve, which is due to the difference in size of the carbide particles. As the
dissolution of a large number of fine carbides first results in a decrease of the chromium
concentration between the carbides and the matrix, the dissolution rate of larger carbides
particles becomes slower.

The M23C6 carbides act as the sources of carbon and chromium during the dissolution
process. At an austenitizing temperature in the range of 950–1150 ◦C for 10 min, carbon is
evenly distributed in the austenite matrix due to the high diffusion coefficient of carbon
in austenite. According to the volume fraction of carbides shown in Table 3, the carbon
content of austenite at the austenitizing temperature can be calculated by Equations (5)–(7).
As oil quenching was carried out immediately after austenitizing, it was considered that
the carbon content of martensite was inherited from the austenite. Although there was
retained austenite in samples, there was only a small volume fraction after quenching at
950–1100◦C. Thus, the carbon content in martensite shown in Table 4 could be roughly
considered as the carbon content in austenite.

Wcarb = Vcarb ×
ρcarb

ρ0
(5)

1 = Wcarb + Wγ (6)

W0
c = Wcarb

c ×Wcarb + Wγ
c ×Wγ (7)

where Wcarb and Wγ are the mass fraction of carbides and austenite, respectively; Vcarb is the
volume fraction of carbides; ρcarb and ρ0 are the density of carbides and matrix, respectively;
and ρcarb is 6.97 g/cm3, ρ0 is 7.87 g/cm3; W0

c , Wcarb
c and Wγ

c are the mass fraction of carbon
in the matrix, carbides and austenite, respectively.

Table 4. Mass fraction of carbon in martensite.

950 ◦C 1000 ◦C 1050 ◦C 1100 ◦C 1150 ◦C

Wγ
c (wt.%) 0.075 0.189 0.344 0.372 0.450

4.2. Crystallographic Analysis of the Microstructure

Figure 7 displays the BC maps and IPF maps of quenched samples. The boundaries
in Figure 6 are drawn for misorientation between adjacent points larger than 5◦, because
the misorientation calculations imply that all of the boundaries between variants should
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have misorientations larger than 10◦. To clearly depict the variant morphology in BC maps,
the boundaries are divided into three types according to the misorientation: white lines
(5◦ < θ < 15◦), black lines (15 < θ < 45◦) and yellow lines (θ > 45◦). With an increase in the
austenitizing temperature, as well as an increase in the dissolved carbon content, the size
of the packet becomes larger, but the lath is refined and the frequency of the high-angle
grain boundaries (HAGBs, θ > 45◦) increases significantly, as shown in Figure 7k.

The literature [22] studied the effect of carbon content on the variant selection rules,
and the grain boundary density showed that in micro-alloy with carbon from 0.03 wt.% to
0.06 wt.%, the twin-related variant pair V1/V2 governed the phase transformation at 0.06C,
whereas the misoriented pair V1/V4 was dominated at 0.03C. In order to study the variant
selection in 5Cr15MoV stainless steel, the following analysis was carried out.

It is well known that 24 specific ferrite orientations (variants, V1–V24) could be formed
within a single austenite grain in the K-S orientation relationship (OR): {111}γ//{110}α,
<110>γ//<111>α [23,24]. However, the actual OR of martensite with respect to an austenite
matrix would always deviate some degrees to the exact K-S OR due to the transformation
strain. Using iterative numerical calculation methods developed by the authors’ research
group based on the Euler angle database from the EBSD results [16,17], the actual average
OR of each sample was calculated, which is shown in Table 5. The fraction of 23 variant
pairs (V1/V2-V24) was calculated in the samples based on the calculated OR, which is
shown in Table 6. To identify the variant selection, the length fraction of inter-variant
boundaries between V1 and other variants, we employed the specific calculation method
explained in reference [25], which is shown in Figure 8. It can be seen that the V1/V2
variant pairs consistently governed the martensite transformation. With an increase in
the temperature, the length fraction of the inter-variant boundary of the V1/V2 variant
pair also increased. Study [26] indicated that the increase of carbon led to a decrease of
the transformation temperature and an increase of the transformation driving force, such
that more V1/V2 variant pairs were obtained to accommodate the transformation strain to
improve the hardenability in 0.12C steel and 0.09C steel. Thus, in this study, the fraction
of the boundary length of the V1/V2 variant pair that increased with the increase of the
temperature was due to the effect of the carbon content from 0.075 wt.% to 0.45 wt.%. This
discussion can explain the frequency of high-angle grain boundaries increasing with the
increasing temperature. According to references [27,28], there was a near-linear relationship
of hardness and density of high-angle grain boundaries. Thus, the hardness would increase
with the increasing temperature. However, in this study, the hardness increases first and
then decreases with the increase in density of the high-angle grain boundaries.
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Table 5. Average orientation relationships (OR) of five samples.

Euler Angle (ϕ1, Φ, ϕ2)

Exact K-S OR 114.2◦, 10.5◦, 204.2◦

Actual OR

950 ◦C 118.0◦, 9.1◦, 198.4◦

1000 ◦C 118.9◦, 9.3◦, 197.6◦

1050 ◦C 119.0◦, 9.2◦, 197.3◦

1100 ◦C 119.4◦, 9.2◦, 197.0◦

1150 ◦C 117.8◦, 9.1◦, 198.5◦

Table 6. Misorientation axes and angles between V1 and the other variants calculated from the
experimentally determined OR (actual OR), and the inter-variant boundary characteristics [22].

Variant Plane Parallel Direction Parallel
Rotation Angle/Axis from V1 CP

Group
Bain

Group
Boundary

TypeExact K-S OR 950 ◦C 1000 ◦C 1050 ◦C 1100 ◦C 1150 ◦C

V1 (111)γ//(011)α [−101]γ//[−1−11]α - - - - - - CP1 B1 -
V2 [−101]γ//[−11−1]α 60.0◦/[11−1] 60.2 60.1 60.2 60.2 60.2 B2 Block
V3 [01−1]γ//[−1−11]α 60.0◦/[011] 59.8 60.0 59.8 59.8 59.5 B3 Block
V4 [01−1]γ//[−11−1]α 10.5◦/[0−1−1] 6.3 6.3 5.9 5.8 6.1 B1 Sub-block
V5 [1−10]γ//[−1−11]α 60.0◦/[0−1−1] 59.8 60.0 59.8 59.8 59.5 B2 Block
V6 [1−10]γ//[−11−1]α 49.5◦/[011] 53.9 53.9 54.3 54.3 54.2 B3 Block
V7 (1–11)γ//(011)α [10−1]γ//[−1−11]α 49.5◦/[−1−11] 51.8 51.4 51.8 51.7 52.2 CP2 B2 Packet
V8 [10−1]γ//[−11−1]α 10.5◦/[11−1] 8.9 9.3 9.1 9.2 8.6 B1 Packet
V9 [−1−10]γ//[−1−11]α 50.5◦/[−103−13] 52.2 52.1 52.3 52.3 52.2 B3 Packet

V10 [−1−10]γ//[−11−1]α 50.5◦/[−7−55] 51.5 51.2 51.3 51.3 51.5 B2 Packet
V11 [011]γ//[−1−11]α 14.9◦/[1351] 12.9 13.2 13.0 13.0 12.8 B1 Packet
V12 [011]γ//[−11−1]α 57.2◦/[−356] 58.3 58.2 58.0 57.9 58.0 B3 Packet
V13 (−111)γ//(011)α [0−11]γ//[−1−11]α 14.9◦/[5−13−1] 12.9 13.2 13.0 13.0 12.8 CP3 B1 Packet
V14 [0−11]γ//[−11−1]α 50.5◦/[−55−7] 51.5 51.2 51.3 51.3 51.5 B3 Packet
V15 [−10−1]γ//[−1−11]α 57.2◦/[−6−25] 57.1 56.8 56.9 56.8 57.2 B2 Packet
V16 [−10−1]γ//[−11−1]α 20.6◦/[11−11−6] 16.5 16.7 16.4 16.4 16.3 B1 Packet
V17 [110]γ//[−1−11]α 51.7◦/[−116−11] 51.3 51.2 51.2 51.1 51.1 B3 Packet
V18 [110]γ//[−11−1]α 47.1◦/[−24−102] 51.2 50.9 51.4 51.4 51.6 B2 Packet
V19 (11–1)γ//(011)α [−110]γ//[−1−11]α 50.5◦/[−31310] 52.2 52.1 52.3 52.3 52.2 CP4 B3 Packet
V20 [−110]γ//[−11−1]α 57.2◦/[36−5] 58.3 58.2 58.0 57.9 58.0 B2 Packet
V21 [0−1−1]γ//[−1−11]α 20.6◦/[30−1] 17.6 18.1 17.8 17.9 17.5 B1 Packet
V22 [0−1−1]γ//[−11−1]α 47.1◦/[−102124] 51.2 50.9 51.4 51.4 51.6 B3 Packet
V23 [101]γ//[−1−11]α 57.2◦/[−2−5−6] 57.1 56.8 56.9 56.8 57.2 B2 Packet
V24 [101]γ//[−11−1]α 21.1◦/[9−40] 18.3 18.6 18.3 18.4 18.2 B1 Packet
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4.3. Correlation of Microstructure and Hardness

In this study, after oil quenched, the microstructure mainly consisted of martensite,
M23C6 carbides and retained austenite. Different microstructures have different hardness.
The hardness of M23C6 is 1520–1600 HV [29]. The austenite hardness is roughly equivalent
to the hardness of the austenitic stainless steel in the annealed condition, whose maximum
value usually ranges between 185 and 210 HV [30]. According to the study [31], the
hardness of martensite mainly depended on the carbon content in austenite; the alloy
element hardly ever affected the maximal hardness of the martensite. In this study, at
different austenitizing temperature, the carbon content in the austenite was different due
to the dissolution of the M23C6 carbides, shown in Table 4. The Vickers hardness of
martensite has a strong relationship with carbon content. From Figure 4, at 1150 ◦C, the
hardness decreases rapidly due to the high volume of retained austenite, which indicates
that retained austenite was a negative factor for hardness. Thus, a simple model was
developed to illustrate the contribution of different microstructures to the hardness of the
matrix. The model is based on the composite model, which is expressed as Equation (8).

HV = HVM × fM + HVcarb × fcarb − k× HVA × fA (8)

where HVM, HVcarb and HVA are the hardness of martensite, carbides and austenite,
respectively. fM, fcarb and fA are the volume fraction of martensite, carbides and austenite,
respectively. k is a factor that was related to austenite and martensite content. If fA < 10%,
k is 0, otherwise k is fM/ fA. The calculation method of HVM is detailed in literature [31].

As shown in Figure 9, for this study, the experimental results and the calculated results
are in good agreement at the range of 1000–1100 ◦C, although the maximum hardness value
differs by 2 HRC. For the results from Ref [32], at 950 ◦C, the calculated result is larger than
experimental result (>5 HRC). This might be sensitivity to the volume of carbides at 950 ◦C,
because the dissolution of carbides is slow at 950 ◦C. At the range of 1000–1100 ◦C, the
experimental results and the calculated results are in good agreement. As for the results
from Ref [33], the experimental results and the calculated results are in good agreement at
the range of 950–1100 ◦C. These suggest that this simple model was still relatively accurate,
which showed that the contribution to hardness came mainly from martensite, and a small
amount of retained austenite (<10%) had little effect on hardness; however, a large amount
of retained austenite (>10%) had a very negative effect on hardness. Due to the small
content of carbides, they contributed less to hardness.
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5. Conclusions

In this study, the behavior of the dissolution of M23C6 carbides was discussed in detail,
and its effect on microstructure was studied. In order to explain the relationship between
microstructure and hardness, a sample model was developed. The main conclusions were
as follows:

1. After oil quenched, the microstructure of 5Cr15MoV high-carbon martensite stainless
steel was mainly composed of lath martensite, M23C6 carbides and retained austen-
ite. With an increasing austenitizing temperature, the volume fraction of carbides
decreased and retained austenite increased. When austenitizing temperature was
1050 ◦C, the highest hardness was obtained.

2. At the initial stage, the dissolution of M23C6 carbides particles was in no particular
order. The small particles disappeared rapidly first due to their small size. Moreover,
the dissolution rate of larger carbides particles would become slow as the dissolution
of a large number of fine carbides first resulted in decreasing chromium concentration
between carbides and matrix.

3. In 5Cr15MoV high-carbon martensite stainless steel, the martensite phase transfor-
mation conformed to K-S rules. The twin-related variant pair V1/V2 governed the
phase transformation; meanwhile, the density of HAGBs increased at an austenitizing
temperature in the range of 950–1150 ◦C, i.e., a mass fraction of carbon from 0.075%
to 0.45%.

4. The contribution to hardness came mainly from martensite in 5Cr15MoV high-carbon
martensitic stainless steel. The retained austenite had a very negative effect on
hardness when the volume fraction of retained austenite was more than 10%. In
contrast, carbides contributed less to hardness due to their small content.
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