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Abstract: The increase in the population creates an increased demand for construction activities
with eco-friendly, sustainable, and high-performance materials. Insulated concrete form (ICF) is an
emerging technology that satisfies the sustainability demands of the construction sector. ICF is a
composite material (a combination of expanded polystyrene (EPS) and geopolymer concrete (GPC))
that enhances the performance of concrete (such as thermal insulation and mechanical properties).
To investigate the axial strength performance, five different types of prototypes were created and
tested. Type I (without reinforcement): (a) hollow EPS without concrete, (b) alternative cells of EPS
filled with concrete, (c) and all the cells of EPS filled with concrete; and Type II (with reinforcement):
(d) alternative cells of EPS filled with concrete; (e) and all the cells of EPS filled with concrete.
Amongst all the five prototypes, two grades of GPC were employed. M15 and M20 grades are used
to examine the effectiveness in terms of cost. For comparing the test results, a reference masonry unit
was constructed with conventional clay bricks. The main aim of the investigation is to examine the
physical and mechanical performance of sandwich-type ICFs. The presence of polystyrene in ICF
changes the failure pattern from brittle to ductile. The result from the study reveals that the Type II
prototype, i.e., the specimen with all the cells of EPS filled with concrete and reinforcement, possesses
a maximum load-carrying capacity greater than the reference masonry unit. Therefore, the proposed
ICF is recommended to replace the conventional load-bearing system and non-load-bearing walls.

Keywords: expanded polystyrene; geopolymer concrete; sustainability; masonry; axial strength

1. Introduction

Expanded polystyrene (EPS) is considered one of the common materials used instead
of aggregates to reduce weight and for improving thermal comfort [1]. EPS is a kind of
stable foam with low density, consisting of discrete air voids in a polymer matrix [2]. As a
lightweight artificial aggregate, EPS is commercially available and can be incorporated in
mortar or concrete to produce lightweight insulating concrete [3]. From the engineering
point of view, the advantage of using EPS among different types of LWAs is the low
water absorption due to its lower porosity. In addition, the low thermal conductivity of
EPS (0.03–0.04 W/mK) is one of the main reasons for its use in the construction industry,
particularly for insulting purposes [4]. Previous research has promoted the applications
of EPS-based concrete in construction and building products. Currently, EPS lightweight
concrete is used in various structural and non-structural elements such as precast concrete
panels, cladding panels, composite flooring systems, subbase materials in pavements,
floating marine structures, and insulating building elements [5]. However, replacing the
normal-weight aggregate with EPS lightweight aggregate increases the drying shrinkage
strain [6,7].
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Due to the over-exploitation of virgin construction and building materials, there is a
need to develop a suitable alternative eco-friendly building material to satisfy the demand
for infrastructural activities. EPS is found to be one of the alternatives fabricated of recycled
materials; since EPS is a non-degradable material, it can be recycled after its first life,
second life, and so on [8]. EPS is recycled either in the form of beads or modified with heat
treatment [9]. Recycling and using such materials in the construction sector protects the
environment by preventing the emission of harmful gases when incinerated.

Quality construction practices are gaining demand with the increase in the popula-
tion [10]. ICF is found to be a promising construction practice. ICF walls are fabricated by
placing concrete in the individual cells of EPS foam. Construction of ICF structures has
many advantages over conventional structures based on cost, ease of construction practices,
thermal insulation, etc. Some other benefits are heatproof, soundproof, faster construction,
lower maintenance, and resistance against insects, wind, and disasters [11]. In the United
States (US), nearly 3% of houses are constructed using ICF systems [12]. ICF is one of
the sustainable, eco-friendly alternatives to conventional carbon-emitting cement-based
construction practices. ICF’s superior performance is mainly due to the EPS [13]. ICFs are
used as construction materials in the construction of schools, colleges, hospital buildings,
etc. ICF claims several advantages over conventional building materials [14]. ICF has
been a boon to the construction sectors in India since 2013; ICF-based structures have been
accepted in the US, Germany, Japan, Canada, and Mexico. Moreover, the construction
cost of ICF structures is 5–10% less than conventional practices. ICF construction practices
require more awareness to accept this new system of the construction sectors to meet the
current requirements of the infrastructure industry.

EPS employed for producing ICF should have a density of 20 kg/m3 to 40 kg/m3 and
a thickness of 50 mm to 100 mm. ICF panels are generally employed to construct a wall
system to portion the functional area with a structural wall system. The wall systems are
mainly subjected to axial compression due to the load transfer from the floor system. The
main intention of the axial load test is to determine the ultimate load-carrying capacity,
failure pattern, and stress–strain relationship, which helps to design the ICF panels. Past
studies have reported that axial compression tests are performed on different wall panels,
such as foamed wall panels, composite panels, reinforced panels, precast sandwich panels,
precast foamed panels, panels with openings, and panels with shear connectors. Similarly,
a four-point bending test was performed on bridge deck panels, Ferro-cement panels,
lightweight panels, fiber-reinforced sandwich panels, and hollow concrete wall panels.

However, OPC production requires argillaceous and calcareous materials and is
energy-intensive. The main reasons for the emission of greenhouse gas during the pro-
duction of OPC are calcination and fossil-fuel combustion [15–17]. The production of
conventional Portland cement increases yearly by about 8% to 10%. These cement types
account for 8% of global carbon dioxide emissions (CO2-e) [18]. To reduce global CO2-e, an
alternative binder must be used. Supplementary cementitious materials (SCMs) such as sug-
arcane bagasse ash, Metakaolin (MK), red mud, and Ground Granulated Blast Furnace Slag
(GGBS) are industrial by-products. SCMs have cementitious properties and are employed
as a cement alternative [19,20]. A durable structure with less greenhouse gas emission
and with less energy can be obtained by the addition of fly ash to the concrete [21–24].
Investigations are carried out on SCMs for producing sustainable, eco-friendly concrete.
The outcomes of using SCMs as partial cement replacements are gaining economic impact
in reducing CO2-e during its production.

In 1978, a novel binding medium was named geopolymer, which employs 0% cement
in its production. These geopolymers are a suitable alternative that completely replaces
conventional Portland cement concrete. The early age strength of geopolymer is higher
than that of traditional cement concrete and possesses higher fire resistance. Moreover,
these SCMs can replace cement by 20% to 30% by weight, beyond which the strength
reduction is more significant. The dissolution makes the production of geopolymer con-
crete (GPC) of source material possible with the alkaline solution (combination of NaOH
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and Na2SiO3) [25]. The source material can be either from geological origin or industrial
by-products such as GGBS, MK, Palm Oil Fuel Shell Ash (POFA), Rice Husk Ash (RHA),
Fly Ash (FA), and so on [26]. Previous research has shown that GPC concrete has su-
perior performance compared with OPC concrete in terms of mechanical and durability
characteristics [25,27].

A combination of GPC and ICF can form a sustainable construction practice. The
proposed system’s significant advantages are lightweight, ease of placement, faster con-
struction, optimized cost, strength, and eco-friendly. Reduction in cost and CO2 emissions
are some of the indicators that might be helpful to achieve sustainability goals. The effective
utilization of GPC in the ICF system can improve the load-withstanding capacity of the
wall panel. With this background, the current study aims to analyze the load-deformation
behavior of GPC-ICF systems subjected to axial compressive loading.

Insulated concrete form (ICF) panels are structural wall panels fabricated by pouring
concrete in interlocked expanded polystyrene (EPS) that hold the concrete together during
the curing process. The EPS form is a permanent part of a wall panel and provides thermal
insulation to the building, whereas the reinforced concrete affords a structural system to the
building [12]. Applications of ICFs are extended to a wide range of building constructions,
including residences, theatres, schools, and hospitals [13]. EPS is a by-product of the
petroleum industry and is derived by the styrene hydrocarbon polymer (polystyrene) ex-
pansion using pentane gas. An EPS bead consists of 2% raw material and 98% of air, which
is chemically composed of two elements: carbon and hydrogen [11]. Generally, EPS sheets
have been used in various applications, including impact mitigation packaging, protective
helmet, expansion joints, construction filling material, false ceilings, and food packaging
material. Diverse structural and geotechnical applications of EPS are also found in the
literature, namely structural insulated panels [28], composite structural insulated panels [5],
insulated concrete sandwich panels [14], lightweight concrete sandwich panels [29], and
thermal insulators [2].

The past study found that the axial compression test was performed on various panels
of fibers, concrete, and EPS sheets. Research shows that the wall panel characterization
focused on load-deflection behavior and load-carrying capacity of the structural element.
Moreover, fewer types of research are available on the ICF wall panels subjected to axial
compressive loads. In the present work, the ICF wall panels are constructed by creating a
hollow outer shell and filling the hollow core with concrete. The study’s main aim is to
examine the ultimate load-carrying capacity of ICF, load-deflection behavior, and failure
pattern of ICF wall panels with GPC filling. The findings may be helpful for future work
with large-scale models.

2. Materials and Methods
2.1. Binder

Class F Fly Ash (FA) and GGBS were the source materials obtained from the local
market. The chemical composition of the binder material is illustrated in Table 1 [30].

Table 1. The oxide composition of FA and GGBS.

Oxides FA
(%) GGBFS (%)

SiO2 61.2 42.4
Al2O3 26.9 13.2
Fe2O3 6.21 1.12
CaO 1.91 41.2
MgO 0.29 1.3
Na2O 0.58 0.3
K2O 1.21 0.7

Ti 0.4 -
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2.1.1. Filler

Locally available manufactured sand (M-sand) and crushed granite chips were em-
ployed as the filler materials (fine and coarse aggregates) for the production of GPC. The
specific gravity, water absorption, and fineness modulus of M-sand were found to be
2.75, 1.37%, and 2.59, respectively. The specific gravity and water absorption of coarse
aggregate were found to be 2.81 and 0.92%, respectively. The size of the M-sand employed
in the present investigation falls between 4.75 mm and below, whereas coarse aggregate
is between 12.5 mm and 20 mm, confirming IS 383 [31]. Figure 1 illustrates the semi-log
graph of M-sand and coarse aggregate.
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2.1.2. Activator Solution (AS)

A synthesis between an alumino-silica source and an alkaline activator solution [13],
yields an alumino-silica source and an alkaline activator solution (AS). AS is a combination
of NaOH (NH) and Na2SiO3 (NS) [32,33]. NH and NS are obtained from local dealers in
Coimbatore. In general, the NH is available in the form of flakes or pellets, and it must be
made into a solution by dissolving the required amount of NH pellets or flakes in water.
NS is available in the form of liquid and can be used directly.

2.1.3. Expanded Polystyrene (EPS)

EPS is a combination of air and styrene, and the whole wall shell system is fabricated
of 98% air and 2% styrene. Due to the advantage of the EPS shell, the ICF wall panels retain
their shape even after failure. Table 2 illustrates the material properties of an ICF wall.

Table 2. Properties of the ICF wall.

Specification Material Properties

Size of the ICF wall 20.32 cm (8 inches) × 30.50 cm (12 inches) × 121.00 cm (48 inches)

Water vapor Permeability 0.0020 ng·s·m2·Pa

Moisture Absorption (humidity):% mass 0.4417

Moisture Absorption (humidity):% volume 0.0099

2.1.4. Mix Design

As mentioned above, AS is a combination of NH and NS. The NH concentration
employed in the present investigation is four molarity, and the ratio of AS used is 1:1.5 [34].
The pellets or flakes of NH are to be made into a solution before concrete production [35].
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The AS was made one day before the casting to initiate the polymerization reaction [25].
The mix design carried out in the study was entirely based on the trial-and-error method.
Table 3 illustrates the recipe for the mix involved in the current investigation.

Table 3. Mix ratios employed in the current investigation.

Type of Mix

Binder
Aggregate (kg/m3) Alkaline Activator (kg/m3)

Molarity (M)(kg/m3)

FA GGBS M-Sand Coarse NH NS

M15 180 20 450 650 28.96 43.44 4
M20 100 100 450 650 28.96 43.44 4

2.2. Methods
2.2.1. Specimen Preparation

The filler materials, fine and coarse aggregates, were mixed in the rotary-type mixer
drum for 1–2 min. Then binder materials FA and GGBS were added to the mixer drum,
and the drum was rotated for 2–3 min to achieve uniformity in the mix. After attaining
uniformity in the mix, the prepared AS mix was added; then the mixture was rotated for
another 2 min to achieve homogeneity [35]. After preparing the mix, fresh properties were
tested on the prepared mix to check its workability. After checking the slump test, the
freshly prepared mix was poured into the EPS shell’s hollow portion. The mix was set at
room temperature for 24 h to initiate the polymerization reaction process. After setting,
the ICF (combination of EPS and GPC) was cured at a room temperature of 27 ± 2 ◦C for
28 days to achieve the target strength. At the end of 28 days of the curing period, the ICF
was tested to examine the load-carrying capacity. Table 4 shows the details of specimens
prepared for the study. Figure 2 represents the outer shell of the EPS form. Figures 3–5
represent the casting of ICF panels and masonry reference units. For better performance
with respect to durability of the steel reinforcement stainless steel of various types (Ferritic,
Duplex, and Austenitic) can also be used [36].
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Table 4. Details of the ICF specimens.

Specimen Type Reinforcement Type Specimen Description Type of Mix

S1

(Without reinforcement)

Hollow EPS without concrete -
S2 Alternative cells of EPS were filled with concrete M15
S3 All the cells of EPS were filled with concrete M15
S4 Alternative cells of EPS were filled with concrete M20
S5 All the cells of EPS were filled with concrete M20

S6

(With reinforcement)

Alternative cells of EPS were filled with concrete M15
S7 All the cells of EPS were filled with concrete M15
S8 Alternative cells of EPS were filled with concrete M20
S9 All the cells of EPS were filled with concrete M20

S10 Masonry (reference) -
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2.2.2. Workability Test

The freshly prepared mix was tested for its workability using a slump cone. A slump
test was performed to assess the fresh property of the GPC. A 300 mm high slump cone
was employed in the present investigation to assess the fresh property. Waste lubricant was
applied on the inner side of the cone initially to prevent the sticking of concrete with the
cone. Then, the mold was filled with concrete in three layers with the compaction of 25 rods
for each layer, after filling the cone with the freshly prepared concrete. The excessive layer
at the top of the mold was trimmed, and slowly, the mold was lifted. The difference in GPC
height and the mold is represented as the slump value [37].



Materials 2022, 15, 8801 7 of 17

Materials 2022, 15, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 4. The casting of the ICF. 

 

Figure 5. Construction of the conventional brick masonry. 

2.2.2. Workability Test 

The freshly prepared mix was tested for its workability using a slump cone. A slump 

test was performed to assess the fresh property of the GPC. A 300 mm high slump cone 

was employed in the present investigation to assess the fresh property. Waste lubricant 

was applied on the inner side of the cone initially to prevent the sticking of concrete with 

the cone. Then, the mold was filled with concrete in three layers with the compaction of 

25 rods for each layer, after filling the cone with the freshly prepared concrete. The exces-

sive layer at the top of the mold was trimmed, and slowly, the mold was lifted. The dif-

ference in GPC height and the mold is represented as the slump value [37]. 

  

Figure 5. Construction of the conventional brick masonry.

2.2.3. Test Setup for Axial Compression Test on ICF

The axial compression test on the ICF was conducted with a Servo hydraulic UTM
of 100 T capacity (MTS). The MTS system is operated based on displacement control; the
displacement rate is controlled during the loading. The ICF’s maximum load-carrying
capacity and load-deformation behavior are recorded for every 0.01 mm displacement.
The ICF panels are positioned in the vertical direction of the MTS system. A 20 mm thick
plate and the spacer bars are provided at the top of the wall panel to distribute the load
uniformly throughout the specimen. Above that, a two-point loading platform is provided
to transfer the load from the MTS system to the 20 mm thick plate as shown in Figure 6.
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3. Results and Discussion
3.1. Workability

As per ASTM C 143 [37], the fresh property test on freshly prepared concrete is
conducted. A slump cone test was conducted immediately after preparing the mix to
determine the workability of freshly prepared geopolymer concrete. It is found from the
test results that the M15 mix possesses a target slump of 78 mm, and the M20 mix retains
an 85 mm slump.

3.2. Compressive Strength (CS)

The CS test was performed on a hollow EPS shell and EPS shell (with M15 and M20
concrete) using a computerized UTM of 100 T capacity following IS 516:2004 [38], as shown
in Figure 7. The CS test was performed on the 28-day cured GPC specimens. The reference
specimen (EPS shell) possesses a maximum average CS of 9.56 MPa. The EPS shell with
M15 geopolymer concrete contains an average CS of 20.6 MPa, and the EPS shell with M20
geopolymer concrete possesses an average CS of 29 MPa. Higher strength development of
geopolymer concrete was attributed to the presence of GGBS content. From Figure 8 it is
clear that an increase in the GGBS content increases the CS of the geopolymer concrete. The
curing of geopolymer concrete does not require water, so the curing of geopolymer mix is
initiated at room temperature conditions. The strength development of the mix is mainly
attributed to the polymerization reaction of the alumina-silica source with the alkaline
solutions. The load was applied at the top of the geopolymer concrete blended ICF system.
Initially, the geopolymer concrete present in the core of the ICF system reaches its ultimate
strength and tends to collapse completely by splitting the concrete into pieces. The concrete
was no longer strong enough to withstand the additional load, but the EPS outer periphery
contributed to unite the system and prevent wall failure.
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Figure 7. Compressive strength test setup of EPS shell and composite unit (EPS with concrete).

3.3. Axial Load Deformation of ICF

The axial load test was performed on five types of ICF wall panels. The testing of
ICF wall panels is depicted in Figure 6. From the test, it was found that (S1) hollow EPS
without concrete failed by crushing, and no sign of buckling was seen in this failure type;
and when the load was released, the EPS shell regained its original shape, similar results
were found by the researchers [12]. All the other types of panels possess a similar kind of
failure; during the test, it was ensured that no load was applied eccentrically on the top
of the panel. The original shape of the ICF is not degraded on loading the ICF and under
deformation; while releasing the load, it regains its original shape. The elastic nature of the
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outer shell adds advantages to the concrete present in the core of the wall panel. On the
contrary, the failure pattern of the concrete was not visible due to the outer shell of the EPS.
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Figure 9 depicts the load-deformation graph of ICF wall panels and masonry units.
Specimen S1 (hollow EPS without concrete) exhibits the lowest load of 53 kN with a defor-
mation of 19 mm. Specimen S2 (alternative cells of EPS were filled with concrete without
reinforcement, M15) shows a load of 149 kN with a deformation of 15 mm. Specimen S3
(all the cells of EPS were filled with concrete without reinforcement, M15) exhibits a load
of 176 kN with a deformation of 20 mm. To understand the loading capacity of the EPS
panel under axial compressive loading, the concrete is filled in the voids of the EPS. This is
also to optimize the use of concrete in the EPS cells. Lower-grade concrete is preferred to
reduce the preparation cost. Specimen S4 (alternative cells of EPS were filled with concrete
without reinforcement, M20) demonstrated a load of 230 kN with deformation of 10 mm.
Specimen S5 (all the cells of EPS were filled with concrete without reinforcement, M20)
showed a load of 260 kN with a deformation of 20 mm. It is observed that the EPS with M20
grade has shown a higher load with less deformation. This is seen in the specimen with
the GPC filled in all cells. The reinforcements in the wall system improve the compressive
strength and bending capacity. The reinforcements were added to increase the strength and
stability of the structural wall system. Four vertical bars of 8 mm diameter and five ties
of 6 mm diameter were employed in the present investigation. The ties were provided at
a constant interval of 150 mm. The reinforcement was provided in each cell of the wall
panel to measure the maximum load-carrying capacity of the reinforced ICF-based wall
panels. This also connects the EPS panels as an anchorage to form continuity. The details of
load-carrying capacity and axial deformation of EPS panels with GPC and reinforcements
are as follows: Specimen S6 (alternative cells of EPS were filled with concrete, M15) exhibits
a load of 226 kN with deformation of 20 mm. Specimen S7 (all the cells of EPS were filled
with concrete, M15) indicates a load of 300 kN with deformation of 11 mm. Specimen S8
(alternative cells of EPS were filled with concrete, M20) shows a load of 350 kN with a
deformation of 8 mm. Specimen S9 (all the cells of EPS were filled with concrete, M20)
exhibits a load of 360 kN with a deformation of 11 mm. Specimen S10 (reference masonry
unit) shows a load of 150 kN with deformation of 16 mm.
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Figure 9. Load–axial-deformation behavior of ICF wall panels and masonry units.

The above test results show that the specimens without reinforcement possess higher
deformation than those with reinforcement. Moreover, an increase in the grade of concrete
increases the ultimate failure load and decreases the deformation of the ICF wall panels.
Specimen S6 possesses a maximum deformation of 20.5 mm; this can be attributed to
hollow, empty cells in the ICF wall panels. Moreover, rapid failure was seen in the brick
masonry wall. When the ultimate load is reached, the brick masonry walls crumbles; this
type of failure is avoided in ICF wall panels. The presence of an EPS shell can be attributed
to this. The elastic nature of the EPS shell holds the GPC at the core even after failure.
Sudden failure (brittle) was seen in the conventional brick wall. In the present investigation,
ICF-based wall panels do not show brittle failure in all cases when they are subjected
to loading.

The ultimate load of all the ICF wall panels is higher than that of conventional brick
masonry. Furthermore, after reaching the ultimate load, the load is removed, and the EPS
system holds the crushed concrete inside the core and prevents the failure mode (brittle)
of GPC. The load vs. deflection behavior of conventional masonry and ICF-based walls is
depicted in Figure 10.
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In general, concrete is strong in compression and weak in tension. Once concrete
reaches its ultimate strength, the shape and structure of concrete tend to deteriorate and
collapse completely. In the case of an ICF wall, the structure does not collapse even after
it reaches its peak load. While loading, the ICF wall tends to compress and regain its
original shape after the load release; this might be attributed to the presence of the EPS
periphery (which comprises 98% air and 2% polystyrene). In conclusion, “the encapsulation
of concrete in the EPS system changes the failure type from brittle to ductile.”

In the case of both M15 and M20 mixes, cracks developed at the top of the specimen,
and the specimens failed due to crushing. Under uniform loading, all the ICF panels
exhibited significant resistance to compressive stress. The projected cells of panels have
shown their failure under compressive loading. In both cases (M15 and M20 mix), the initial
crack started at a load of 25 kN, and further, the cracks tend to develop at the consequent
loads till failure. Figure 11, shows the axial stiffness of the ICF wall. In addition to the
load-deflection parameter, load to weight ratio, was estimated and is shown in Figure 12.
The weight of the individual ICF wall panel was found in terms of kg and concerted into
Newtons for better assessment. It is found that S4 and S8 possess the maximum value; this
shows that S4 and S8 have higher efficiency compared with all other panel types.
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Figure 11. The axial stiffness of the ICF walls.
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3.4. Strain Energy

The strain energy is the energy absorbed by a body while undergoing deformation.
The strain energy is an indirect indicator used to evaluate ductility. The area under the
load-displacement characteristic curve is used to evaluate the ductility. The absorption of
energy is related to the ductility of the material. Because the ICF wall panel absorbs more
energy than the reference panel, it implicitly reflects ICF’s superior ductility. Equation (1)
may be used to determine the energy absorption (EA) of a wall panel [12].

Energy Absorption capacity (EAC) = V
∫ εc

0
σdε (1)

where V is the specimen volume in cubic meters, εc is compressive strain, and σ is com-
pressive stress. The compressive load-displacement curve may also be used to calculate
energy absorption. The area represents the absorbed strain energy by the wall panel under
the compressive load-displacement curve [12]. The ICF wall panels’ high strain energy
indicates their high ductility compared with the reference panels. Figure 13 illustrates the
energy-absorbing capacity of the wall panels.
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Figure 13. Energy-absorbing capacity of the ICF-based wall panels.

3.5. Crack Pattern

Due to the elastic nature of the EPS shell, cracks were not observed in all the ICF-based
wall panels. Many minor cracks were seen on the bottom side of the ICF wall panels, then
the top surface of the wall panels, as seen in Figures 14 and 15. One or two major cracks
were observed in the top surface of the ICF wall panels. Almost all the ICF-based wall
panels possess similar failure and crack patterns; the presence of an EPS shell could be
attributed to this. Notably, the degradation in load capacity is mainly due to the crushing
of concrete in the cells, but the shielding of EPS can enhance the load-carrying capacity
further. The final reduction in the load-carrying capacity of panels is due to the tearing of
EPS at the bottom phase.

It is observed that the ICF wall panels exhibit the ability to resist the load even after
the failure of the concrete core. However, a sudden failure was observed in the reference
panel. The reference panel broke into pieces after failure, which is presented in the ICF
wall panels because of the elastic nature of the EPS sheets enveloping them. This elastic
property of EPS holds the concrete core in position even after its failure. Brittle failure was
observed in the reference panel. ICF does not exhibit any such failure; instead, it displays
an elastic nature when the axial compressive load is applied. Moreover, after removing
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the load, EPS in ICF holds together the failed concrete and prevents the collapse of failed
concrete when it reaches its peak load.
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3.6. Cost Efficiency

ICF and brick walls’ cost efficiency is measured by taking the strength-to-cost ratio [39].
The cost involved in this analysis is considered based on the materials’ purchase cost. All
the raw ingredients are obtained from local dealers in Coimbatore. The cost of the raw
materials is found to be: 130 USD/MT for cement; 67.88 USD/MT for GGBS; 7.31 USD/MT
for M-sand; 9.14 USD/MT for coarse aggregate; and 13 USD/MT for FA. The production
cost of ICF panels and brick walls is marginal. The early age of GPC is relatively higher than
conventional cement-based concrete. The strength-to-cost ratio of the ICF and brick wall is
illustrated in Table 5. The higher the value of cost efficiency, the higher the effectiveness
in its production. M20 grade concrete mix possesses higher strength than M15 grade mix.
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This can be attributed to the higher percentages of GGBS content in it. The production cost
of the ICF panels and their counterpart brick walls is marginal; this can be attributed to
alkaline activators, sodium hydroxide and sodium silicate solutions. Figure 16 illustrates
the cost-efficiency analysis of M15 and M20 grade GPC specimens.

Table 5. Cost-efficiency analysis of ICF and brick walls.

S.No Material

ICF Brick Wall

M15 M20

Rate QTY Cost QTY Cost QTY Cost

(USD/MT) (1 Wall) (USD/Wall) (1 Wall) (USD/Wall) (1 Wall) (USD/Wall)

1 Cement 134.91 - - - - 30 4.05
2 FA 13.49 180 2.43 100 1.35 - -
3 GGBS 78.6 20 1.57 100 7.86 - -
4 CA 9.44 650 6.14 350 3.30 - -
5 MS 7.55 450 3.40 450 3.40 60 0.45
6 SS 121.41 43.44 5.27 43.44 5.27 - -
7 SH 303.33 28.96 8.78 28.96 8.78 - -
8 Bricks 0.15/brick - - - - 275 41.25
9 ICF panel 10/panel 2 20 2 20 - -

10 Total Cost USD/wall 47.59 49.97 45.75
11 28 days compressive strength (MPa) 20.60 29.00 6.20
12 Cost efficiency (MPa/USD/wall) 0.43 0.58 0.14

Note: SH: Sodium hydroxide; SS: Sodium silicate; QTY: Quantity.
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The cost-efficiency analysis shows that the ICF-based system provides higher effec-
tiveness in terms of its cost of production. It is concluded that ICF wall panels can be used
as alternatives to conventional brick-based walls to enhance the construction speed and
lower the production cost.

3.7. Advantages of ICF over Masonry Walls

ICF does not require skilled construction labor, so the labor cost is considerably lower.
The ICF construction time of the ICF wall is reduced by 50%, and an increase in the
construction unit decreases the labor cost. Due to the interconnectivity of EPS with the
aid of reinforcement, ICF has higher resistance against static loads. ICF construction in
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hot and cold regions can reduce power consumption costs due to high heat insulation.
Plumbing and electrical ducts can be installed more easily in ICF than in conventional
masonry units. ICF can reduce noise as a sound barrier between rooms and create a better
living environment. ICF walls are more cost efficient than traditional masonry units. EPS is
a recycled material; therefore, the construction of structures using ICF can be considered
under green construction practices.

4. Conclusions

The performance of encapsulated concrete EPS wall panels under axial compres-
sion was studied in the current investigation. The major conclusions of the findings are
reported below:

• The encapsulation of concrete in the EPS system changes the failure type from brittle
to ductile, and the elastic property of the EPS holds the encapsulated concrete in the
core even after the failure;

• The result from the study reveals that Specimen S9 (all the cells of EPS were filled with
concrete, M20) exhibits a load of 360 kN with deformation of 11 mm more than the
reference masonry unit and all other models;

• In comparison with the reference wall panel, Specimen S2, the load-carrying capacity
of Specimen S2 was 3.33% less, whereas the Specimens S3, S4, S5, S6, S7, S8, and S9
gained an increase of 60%, 87%, 57%, 107%, 133%, and 160%, respectively;

• Due to the EPS outer shell, the wall panels possess higher deformations than the
conventional brick masonry wall;

• The brick masonry walls exhibit brittle failure; without any sign, the masonry wall
fails into pieces, whereas the ICF wall panels retain their shape even after failure.
Therefore, ICF can be recommended to replace the conventional load-bearing and
non-load-bearing walls;

• Research on the carbon and energy-effective mix design proportion of GPC-based ICF
to attain target strength, workability, durability, and sustainability may be carried out.
Further investigations are required to elaborately explain the failure pattern, loading-
deflection behavior, material characterization of EPS, and the infilling materials so that
national standards/guidelines can be developed.
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