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Abstract: In this paper, we obtained the analytic solution of the three-dimensional problem of elastic-
ity concerning non-homogeneous half-space, in which the surface is under normal and tangential
loading applied in a circular area. Half-space is composed of the homogeneous body, as well as
coatings containing two homogeneous layers: interlayer and top layer. The analysis was carried out
in cases where the Young’s modulus of the intermediate layer differed from the Young’s modulus of
the substrate and the top layer. We have concentrated on first principal stress analysis. The obtained
results can serve as an indication for the design of the composition of coatings in the context of
tensile stress.

Keywords: three-dimensional problem of elasticity; double-layer coating; normal loading; shear loading

1. Introduction

Coatings improve a surface’s tribological properties, particularly in terms of friction-
ally cooperative elements. Therefore, the appropriate selection of coatings may cause a
decrease in the friction and reduction in the thermal or chemical adverse influence of an
environment. Coatings are used when the mechanical contact of elements is unavoidable.
Notable examples of coating usage are coatings of switches and plugs (in order to provide
good electrical conductivity), tools, bearings, and optical laminas in surfaces subjected to
mechanical contact.

In order to evaluate the mechanical properties of a coating, the stress field in the
considered medium has to be determined. This stress field arises from contact pressure
being applied to its surface. It is crucial to take into account the normal and tangential
loading. The formation of cracks should be expected in places of maximum tensile stress.
In homogeneous coatings, the maximum value of the σ1 occurs on the surface in the
neighbourhood of the edge of the contact area. This can be observed in articles presenting
analytical [1,2] and numerical solutions [3,4] and both ways [5], as well as those describing
numerical solutions confirmed by experiments [6] (similar to homogeneous half-space as
can be seen in articles from several decades ago [7–9]) or the surroundings of the interface
between the coating and the base [4,6,10].

Interlayers are used in order to increase the bonding force between the coating and
base [3,11–14]. The occurrence of these layers may also lead to a reduction in tensile stresses
near the interface. The two-dimensional problem of the loading of inhomogeneous half-
space, composed of two homogeneous layers and a homogeneous body, was considered
in [3]. Calculations were carried out using the finite element method. It was emphasised
that the location of the maximum value of the characteristics of the stress tensor depends
on the relations of Young’s moduli of the components considered half-space, the ratios
of the thickness of the components to the characteristic dimension of the contact area,
and the coefficient of friction. In article [12], the loading of the coating with an interlayer
was considered and the Huber von Mises stresses were calculated using the results of
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FEM calculations. On this basis, the authors concluded about the appearance of cracks.
The axisymmetric problem of loading a body’s surface with double-layer coating was
considered in [13,14]. The shape of the indenter (its radius) and the thickness of the coating
were analyzed in [15] to obtain the Huber von Mises stress distribution in the medium, and
also thus for the moment of initiation of the destruction process.

The scientific research described in the literature was carried out using numerical
methods, particularly the finite element method [3,4,6,12].

An analytical solution to the problem of punch movement on a multi-layer substrate
was presented in [16]. The results concern the influence of punch speed, coefficient of
friction, dimensions and force value on stress distribution. While designing the structure of
coatings, a very important task is to ensure appropriate tribological properties. An equally
important aspect is to determine the stress value that arises as a result of surface loading [6].

In the present work, we obtain an analytical solution of the three-dimensional problem
of elasticity for half-space with a coating composed of two homogeneous layers. The
external surface of the non-homogeneous half-space being considered is put under normal
and tangential load, applied in a circular area. We focused on the first principal stress analysis.

2. Statement of the Problem

The subject matter of the considered problem is a homogeneous half-space with the
coating of thickness, H. The half-space is composed of two homogeneous layers: the
interlayer (thickness H1) and the top layer (thickness H—H1) (Figure 1). The mechanical
properties of the body are described by Young’s modulus E and by Poisson’s ratio, which
is constant in each component of the considered inhomogeneous half-space. Between
components of this medium, the ideal mechanical contact condition was satisfied. The
surface of the considered half-space is under normal load and related with it by the
Amontons–Coulomb’s law tangential load: t = fp, where f —coefficient of friction. Loading
is applied in a circular area Ω (Figure 1) and has elliptical distribution.

p(x, y) = p0

√
1− x2 − y2 (1)

where: x, y, z—Cartesian dimensionless coordinates related to radius a of loading circle.
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3. Mathematical Formulation and Method of Solution

The solution to the problem is based on solving the differential equation:

∆u(i)
x + di

∂θ(i)

∂x
= 0 (2)

∆u(i)
y + di

∂θ(i)

∂y
= 0 (3)

∆u(i)
z + di

∂θ(i)

∂z
= 0 , i = 0, 1, 2 (4)

with satisfying the boundary conditions:

- loading the surface of inhomogeneous half-space

σ
(2)
xz (x, y, z = h) = f p(x, y)H(x, y) (5)

σ
(2)
yz (x, y, z = h) = 0 (6)

σ
(2)
zz (x, y, z = h) = −p(x, y)H(x, y) (7)

- ideal mechanical contact between components of considered half-space

u(i+1)(x, y, z = hi) = u(i)(x, y, z = hi) (8)

σ(i+1)(x, y, z = hi) · n = σ(i)(x, y, z = hi) · n, i = 0, 1 (9)

- decline the value of components of the stress tensor in infinity:

u(i)(x, y, z)→ 0 , x2 + y2 + z2 → ∞, i = 0, 1, 2 (10)

In Equations (2)–(10), we introduce the following denotations: θ((i) = div u(i)(x, y, z),
i = 0, 1, 2; u(i)—dimensionless displacement vector referred to parameter a; σ (i)—stress
tensor; indexes i = 0, i = 1, i = 2 describe parameters and functions of the state in the base,
interlayer and top layer, respectively; di = 1/(1–2νi); H(x, y)—Heaviside step function
(H(x, y) = 1, when (x, y) ∈ Ω and H(x, y) = 0, when (x, y) /∈ Ω); n = (0, 0, 1); ∆ = ∂2/∂x2

+ ∂2/∂y2 + ∂2/∂z2—Laplace operator; h = h1 + h2—z coordinate of the external surface of
inhomogeneous half-space; h0 = 0—coordinate of the interface between base and interlayer;
h1 = H1/a.

4. Method of the Solution

Elasticity Equations (2)–(4) were solved using a two-dimensional Fourier integral
transform.

f̃ (ξ, η, z) = F( f (x, y, z), x → ξ, y→ η) =
1

2π

∞∫
−∞

∞∫
−∞

f (x, y, z) exp(−ixξ − iyη)dxdy (11)

The generally solution of Equations (2)–(4), which satisfied boundary conditions (5)–(10),
took the form:

s2ũ(i)
x = −iξθ̃

(i)
1 − iηχ̃(i), i = 0, 1, 2 (12)

s2ũ(i)
y = −iηθ̃

(i)
1 + iξχ̃(i), i = 0, 1, 2 (13)

2ũ(0)
z (ξ, η, z) = (d0za−1(ξ, η) + 2a0(ξ, η)) exp(sz) (14)
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ũ(i)
z (ξ, η, z) =

4

∑
j=1

a4(i−1)+j(ξ, η)ψ
(i)
j (s, z), i = 1, 2 (15)

where:
χ̃(0)(ξ, η, z) = b0(ξ, η) exp(sz) (16)

2θ̃
(0)
1 (ξ, η, z) = −((2 + d0)a−1(ξ, η) + d0sza−1(ξ, η) + 2a0(ξ, η)s) exp(sz) (17)

χ̃(i)(ξ, η, z) =
2

∑
j=1

b2(i−1)+j(ξ, η)χ
(i)
j (s, z), i = 1, 2 (18)

θ̃
(i)
1 (ξ, η, z) =

4

∑
j=1

a4(i−1)+j(ξ, η)sφ
(i)
j (s, z), i = 1, 2 (19)

Functions from Equations (12)–(19) are defined by the formulas:

χ
(i)
1 (s, z) = sinh(s(hi − z)), χ

(i)
2 (s, z) = cosh(s(hi − z)) (20)

2sφ
(i)
1 (s, z) = (2 + di)sinh(s(hi − z)) + dis(hi − z)cosh(s(hi − z))

2sφ
(i)
2 (s, z) = (2 + di)cosh(s(hi − z)) + dis(hi − z)sinh(s(hi − z)) (21)

φ
(i)
3 (s, z) = cosh(s(hi − z)), φ

(i)
4 (s, z) = sinh(s(hi − z))

2ψ
(i)
1 (s, z) = di(hi − z)sinh(s(hi − z))

2ψ
(i)
2 (s, z) = di(hi − z)cosh(s(hi − z)) (22)

ψ
(i)
3 (s, z) = sinh(s(hi − z)), ψ

(i)
4 (s, z) = cosh(s(hi − z))

i = 1, 2; s2 = ξ2 + η2; h2 = h; aj(ξ, η), j = −1, . . . , 8; bj(ξ, η), j = 0, . . . , 4—unknown
functions of the parameters of integral transforms, which we determine to satisfy boundary
conditions in Equations (5)–(9), written in transform space. Given that a similar conversion
was described in [17], we give only several remarks.

Inserting Equations (12)–(19) into Equations (5)–(9), we obtain two independent sys-
tems of linear equations to determine functions aj(ξ, η) and bj(ξ, η). These systems contain
10 and 5 equations, respectively. After solving them and calculating the aj(ξ, η) and bj(ξ,
η) functions, we use the inverse Fourier transform. As a result, we obtained stress tensor
components in two-dimensional integral form. Integration was carried out using polar
coordinates which were introduced in the integral transform plane. Integrals along the
angular coordinate were calculated analytically. Integrals along the radial coordinate in
internal points of considered half-space were calculated numerically using the Gaussian
quadrature. When calculating the integrals which described stresses at the surface of
considered inhomogeneous half-space (z = h), we consider the asymptotic behaviour of the
integrand while s→∞.

5. Results Analysis

Analysis of the obtained relationship indicated that the analytical solution depends
on eight dimensionless parameters: E1/E0, E2/E0, ν0, ν1, ν2, h, h1, f. Analysing interlayer
influence, we consider cases in which: (1) E1 < E0; (2) E0 < E1 < E2; (3) E1 > E2. During the
calculations we take, respectively: E1 = E0/2; E1 = (E0 + E2)/2; E1 = 2E2. Participation of
the interlayer’s thickness in the thickness of the whole coating is in the range h1/h = 0.05
÷ 0.25. The other parameters take the following values: E2/E0 = 2 or E2/E0 = 4; h = 0.4
or h = 0.8; f = 0; 0.1; 0.25; 0.5; ν0 = ν1 = ν2 = 1/3. In the presented paper, we focus on
the tensile stresses applied on the surface of inhomogeneous half-space and the interfaces
between its components.
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Figures 2–5 shows the dimensionless parameter σ1/σ1
S in the function of the relative

thickness of interlayer h1/h, where: σ1—maximum tensile stress on the surface of con-
sidered half-space, and σ1

S—maximum tensile stress in an adequate problem in which
the coating does not contain an interlayer. The maximum increase in the tensile stress
occurs when the Young modulus of the interlayer is less than the Young modulus of the
base (E1/E0 = 0.5). This stress increases simultaneously with the parameter h1/h. The
interlayer described by the Young modulus E1 = (E0 + E2)/2 causes an insignificant in-
crease in σ1 stress on the surface. Only introducing the interlayer described by the Young
modulus E1 > E2 causes a negligible decrease in the tensile stress on the surface. The
difference between σ1 and σ1

S stresses decreases simultaneously when the coefficient of
friction increases.
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Tensile stresses may occur in a medium with a homogeneous coating on the interlayer
between the coating and base [4,5,10]. Figure 6 shows the correlation between maximum
tensile stress on the surface and analogous stress on the interface between coating and
base in a medium with a homogeneous coating in terms of thickness. Tensile stress on the
interface takes significant values relative to the corresponding stresses on the surface at a rel-
atively small coefficient of friction and parameter h > 0.5 (Figure 6). That is why we analyse
the influence of the interlayer to stress distribution near the interface for these parameters
(Figure 7). This figure shows the ratio of the stresses σ1/σ1

I in the function of the thickness
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of interlayer h1/h (σ1—maximum tensile stress on the interfaces between components of
the considered medium with double-layered coatings, σ1

I—maximum tensile stress on
the interface between coating and base in the medium with the homogeneous coating
(Figure 6)). If the σ1 stress take larger values on the interface between base and interlayer,
then the graph is a continuous line; when larger values occur on the top layer-interlayer
interface, the line is dashed. Introducing the interlayer, which is described by a Young
modulus lower than base E1 < E0 (E1 = E0/2) and larger than top layers modulus E1 > E2
(E1 = 2E2), results in the increase in stresses on the interface relative to corresponding
stresses in the medium with homogeneous coating. A decrease in the stresses occurs when
the Young modulus of the interlayer has a value between the top coat and base moduli:
E0 < E1 < E2 (E1 = (E0 + E2)/2).
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(e): f = 0.25.
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6. Conclusions

In the presented work, the analytical solution to the three-dimensional problem of
elasticity was considered. The research object is the half-space whose surface is under
normal and tangential load. The half-space comprises a homogeneous body and coating,
including the top layer and interlayer.

Based on the stress analysis, introducing an interlayer with a Young modulus of
E1 < E0 causes a significant increase in the σ1 stress on the surface of the inhomogeneous
half-space. When E1 > E2, the tension stresses on the interface increase. Therefore, the
choice of interlayer in which Young modulus is in range (E0, E2) seems to be optimal.
Introducing this layer may considerably reduce the tensile stresses near the interface
between components of the considered medium. The increase in the stresses on the surface
is insignificant. The test results can help in the selection of the composition of the cover in
terms of minimizing the occurrence of tensile stress in it.

Author Contributions: A.S.B.: Conceptualisation, methodology, software, formal analysis, inves-
tigation, resources, data curation, writing—original draft preparation, visualisation, supervision,
project administration, funding acquisition; R.G.: software, validation, investigation, data curation,
writing—review and editing, visualisation, supervision, project administration, funding acquisition;
J.G.: validation, investigation, visualization; K.B.: validation, investigation, visualization. All authors
have read and agreed to the published version of the manuscript.
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