
����������
�������

Citation: Razaq, A.; Bibi, F.; Zheng,

X.; Papadakis, R.; Jafri, S.H.M.; Li, H.

Review on Graphene-, Graphene

Oxide-, Reduced Graphene

Oxide-Based Flexible Composites:

From Fabrication to Applications.

Materials 2022, 15, 1012. https://

doi.org/10.3390/ma15031012

Academic Editors: Victoria

Samanidou and Eleni Deliyanni

Received: 6 January 2022

Accepted: 25 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Review

Review on Graphene-, Graphene Oxide-, Reduced Graphene
Oxide-Based Flexible Composites: From Fabrication
to Applications
Aamir Razaq 1,* , Faiza Bibi 1, Xiaoxiao Zheng 2, Raffaello Papadakis 3,4 , Syed Hassan Mujtaba Jafri 5

and Hu Li 2,6,*

1 Department of Physics, COMSATS University Islamabad, Lahore Campus 54000, Pakistan;
faiza4563@gmail.com

2 Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics,
Shandong University, Jinan 250101, China; 202120353@mail.sdu.edu.cn

3 TdB Labs AB, Uppsala Business Park, 75450 Uppsala, Sweden; rafpapadakis@gmail.com
4 Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden
5 Department of Electrical Engineering, Mirpur University of Science and Technology (MUST),

Mirpur Azad Jammu and Kashmir 10250, Pakistan; hassan.jafri@must.edu.pk
6 Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University,

75121 Uppsala, Sweden
* Correspondence: Aamirrazaq@cuilahore.edu.pk (A.R.); Hu.Li@sdu.edu.cn (H.L.)

Abstract: In the new era of modern flexible and bendable technology, graphene-based materials have
attracted great attention. The excellent electrical, mechanical, and optical properties of graphene as
well as the ease of functionalization of its derivates have enabled graphene to become an attractive
candidate for the construction of flexible devices. This paper provides a comprehensive review about
the most recent progress in the synthesis and applications of graphene-based composites. Composite
materials based on graphene, graphene oxide (GO), and reduced graphene oxide (rGO), as well as
conducting polymers, metal matrices, carbon–carbon matrices, and natural fibers have potential
application in energy-harvesting systems, clean-energy storage devices, and wearable and portable
electronics owing to their superior mechanical strength, conductivity, and extraordinary thermal
stability. Additionally, the difficulties and challenges in the current development of graphene are
summarized and indicated. This review provides a comprehensive and useful database for further
innovation of graphene-based composite materials.

Keywords: graphene; flexible devices; composite; graphene oxide; reduced graphene oxide

1. Introduction

It is well known that materials play an important role in the development of science
and technology, because the realization of a new technology often requires the support
of novel materials. Therefore, exploring materials with excellent properties has always
been an important subject of scientific research. A remarkable material, graphene, has
attracted widespread attention since it was first exfoliated from graphite by Andre Geim
and Konstantin Novoselov in 2004. As a result of its prominent performances, graphene
can be used in various fields, such as energy storage, biosensing, optoelectronics, flexible
electronics, electrochemical sensing, robotics, textile industry, and so on [1–4]. The discovery
of graphene marked the beginning of a new era in material science research [5].

Graphene with a thickness of a single carbon atom is arranged in a honeycomb lattice.
It is very solid and can be fashioned into 0D, 1D, 3D forms (Figure 1) [6]. In addition, it is
extraordinary transparent and possesses high crystallite as well as outstanding electronic
properties. Although graphene has many excellent properties, there is no bandgap in
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graphene, and it has poor water solubility, which greatly limits its application in some ar-
eas [7]. An effective way to overcome these limitations and expand the range of application
of graphene is to prepare graphene derivatives. For example, treating graphite with strong
oxidants will add epoxy groups, hydroxyl groups, and carboxyl group on the basal plan of
graphite layers, thus producing graphene oxide (GO). These polar oxygen-containing func-
tional groups make GO highly hydrophilic. This allows GO to have excellent dispersibility
in many solvents, especially in water. In addition, the oxygen-containing functional groups
can provide reactive sites for chemical modification or functionalization of GO, which in
turn can be used to develop GO-based materials. Although the oxygen-containing groups
can obviate some disadvantages of graphene, they also cause some problems. For example,
they make GO electrically insulating. Nevertheless, the chemical reduction of GO can
restore its conductivity to some extent. The obtained reduced GO (rGO) still carries some
functional groups, which results in a good dispersion of rGO in many solvents. Most
importantly, it is relatively easy to control the electrical performance and solubility of
rGO by controlling the number of the remaining functional groups. The properties of this
chemically reduced graphene approximately resemble those of pristine graphene [6,8]. The
transformation of graphite to graphite oxide, GO and graphene is shown in Figure 2.
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Graphene and its derivatives have their own unique advantages and can be used
in many domains applying different techniques, such as thermal chemical vapor deposi-
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tion (CVD), self-assembly technique, spin coating, vacuum filtration, thermal decompo-
sition, solution dispersion technique, and chemical decomposition polymer processing
technique [8,10–15]. This review comprises of synthesis of composite material based on
graphene and its derivatives along with chemical properties, and mainly focus on the
potential applications of these materials.

2. Synthesis of Graphene and Its Derivatives
2.1. GO

There are many reports about the synthesis of GO, and the structures of the obtained
products are slightly different (Figure 3). One of the most classical methods was proposed
by Williams Hummers JR and Richard Offeman in 1958. The general process was as follows.
Graphite was first mixed with concentrated sulfuric acid and oxidizers such as sodium
nitrate, then potassium permanganate was added under a precise temperature control, fol-
lowed by the addition of reducing and reaction stopping agents such as hydrogen peroxide
at the end of the process [16]. This method supplies a high yield of colloidal suspension and
powdery product [17]. Later, numerous research groups made further improvements of the
preparation method focusing on three main parameters, i.e., precursors ratio, time, and
temperature [18]. For example, Marcano et al. synthesized GO by using the Tours method
and obtained high-quality GO by adding phosphoric acid as a key precursor and removing
sodium nitrate with the product. This method is better than previous methods due to its
simplicity and outstanding product quality [19]. In addition to these three parameters,
the size of graphite particle also has a great effect on the quality of the final products [20].
According to the demands of different applications, various physical forms of GO such
as suspension, powder, and flexible sheet can be prepared. The corresponding photos are
shown in Figure 4.
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carbon sheet [27]. GO prepared by the conventional Hummer’s method acts as a precursor
for the preparation of graphene sheets when intercalated with sulphuric acid. The process 
involves the reduction and expansion of sulphuric acid-intercalated graphite oxide for the
large-scale production of graphene. As shown in Figure 5, when the slurry obtained by
Hummer’s method is placed in a box furnace, graphite oxide can be expanded into 
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2.2. Graphene

Several attempts have been adopted to study the synthesis methods of carbon-based
materials. The very first attempt dates back to 1962. Boehm et al. prepared soot composed
of thin-layer graphite-intercalated compounds by the reduction and combustion of graphite
oxide. In 1944, these products were named as graphene platelets and had a single carbon
layer [22]. In 2004, Novoselov et al. obtained graphene by the scotch tape method and
won the Noble Prize in 2010 [23]. Till now, the preparation methods of graphene include
top-down and bottom-up techniques. Top-down methods include scotch tape exfoliation,
liquid-phase exfoliation, and chemical synthesis. Bottom-up methods mainly comprise
CVD and molecular beam epitaxy [24–26]. In this section, typical methods of graphene
synthesis will be introduced.

2.2.1. Exfoliation and Cleavage

Micromechanical cleavage is a process in which the bonds in graphite crystal are
broken by mechanical energy so that graphene sheets are peeled from a silicon substrate.
Exfoliation can be done in solution by intercalating graphite and exfoliating to a single
carbon sheet [27]. GO prepared by the conventional Hummer’s method acts as a precursor
for the preparation of graphene sheets when intercalated with sulphuric acid. The process
involves the reduction and expansion of sulphuric acid-intercalated graphite oxide for
the large-scale production of graphene. As shown in Figure 5, when the slurry obtained
by Hummer’s method is placed in a box furnace, graphite oxide can be expanded into
graphene [28].
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2.2.2. Thermal CVD Techniques

The CVD technique is another common method used to synthesize graphene. Certain
carrier gases and carbon-based precursors like camphor and methane are injected into a
CVD chamber at a specific temperature. Then, the carbon precursor is decomposed to
form graphene on transition metal sheets such as a nickel foam (Figure 6). In addition to
exfoliation and the CVD method, there are many other methods that can be used to prepare
graphene, such as thermal decomposition of SiC [10] and others.
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2.3. rGO

GO prepared by Hummer’s method consists of a-few-layer carbon platelets decorated
with oxygen containing functional groups. The removal of some oxygen-based groups
by reducing agents or thermal treatment can yield rGO (Figure 7). The main process is as
follows. GO is exfoliated via ultrasonication and then reduced by hydrazine hydrate, a
strong reducing agent, for 2 h. Since hydrazine is toxic, alternative reagents such as NaBH4,
ascorbic acid, and HI can be used. Among these, ascorbic acid is essential for the scalable
production of rGO. The chemical procedure to obtain rGO using ascorbic acid as a reducing
agent is shown in Figure 8. This reaction does not produce toxic gases [29]. rGO has been
proven to be a good candidate for various applications such as field effect transistors (FET),
solar cells, energy applications, and production of composite paper-like materials [30] due
to its abundant atomic defects.
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Figure 8. Consecutive steps in the chemical synthesis of rGO using ascorbic acid as a reducing agent.
(a) Oxidation and exfoliation of graphite using Hummer’s method. (b) Reduction and conversion
of Mn (VII) ions to soluble Mn (II) ions by the addition of ascorbic acid. (c) Color transition of the
exfoliated graphite oxide from greenish yellow to black in the early stage of reduction. (d) Loss
of hydrophilicity of GO when stirring is paused. (e) Precipitation of rGO after completion of the
reduction stage and cooling down to room temperature. (f) Filtration of rGO using cellulose filter
paper. (g) rGO powder after freeze-drying. (Reproduced with permission from ref. [31]. Copyright
2015 Springer Nature Publications).
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3. Flexible Graphene Composites: From Fabrication to Applications

With the evolution of science and technology, more and more novel materials with
fascinating properties have been discovered and can be applied in many domains. Among
these novel materials, graphene has received a lot of attention because of its excellent
properties, such as high mechanical strength, stability, charge storage capacity, etc. Further-
more, graphene has very good flexibility and shows excellent application prospects in some
flexible composite materials. For instance, a flexible composite consisting of polyethylene–
ioxythiophene–graphene was fabricated by the following method. First, PtCl4 was added
to an NaOH solution under stirring followed by heating at 160 ◦C for 3 h. Next, the solution
was treated with 2 M sulphuric acid and ethyl glycol and then was electrochemically de-
posited on a graphene-filtrated carbon cloth/graphene paper substrate. It is worth noting
that this flexible composite material is expected to be used in energy storage, because the
square shape of the corresponding electrochemical graph indicates excellent capacitive
properties [32]. Likewise, when polyaniline (PANI), a conducting polymer with good
stability, was mixed with graphene in the form of nanofibers by the vacuum filtration
method, the obtained composite film showed not only excellent flexibility but also good
electrochemical stability [33].

Many additional related reports on the preparation and application of other flexible
graphene-based composites have been published [34]. For example, by regulating the
ratio of each components, poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PE-
DOT/PSS)/graphene composites can be fabricated; they show great potential applications
in energy-harvesting systems such as thermoelectric devices and solar cells [35]. Besides, a
flexible composite was prepared by simple coating MnO2 on Zn2SnO4 (ZTO) nanowires
grown on carbon microfibers. This material can be used in supercapacitor electrodes, whose
composite analysis suggests a long cycle life [36]. A typical rectangular voltammogram can
be seen for carbon cloth and graphene-coated carbon cloth with electrodeposited PEDOT.
This result indicates that graphene-based materials have excellent electrical performance
and can be excellent electrode materials in energy storage devices. A simple spin coating
technique used at ambient conditions for the fabrication of graphene-based transparent elec-
trodes was proposed. In this method, a graphene slurry was added to dimethyl sulfoxide
(DMSO) and then to a pure PEDOT/PSS aqueous solution. Then, a spin coater was used to
spin the coating, and the product was left to rest at room temperature [37]. Graphene/MnO2
combined with light-weight carbon nanotubes (CNTs) formed an ultra-flexible thin-film
composite, which has been used for various energy storage devices as a robust electrode, as
it holds extraordinary mechanical properties with superb electrochemical activities when
fabricated by the chemical co-precipitation method [38].

Beside flexibility, the light weight and the efficiency of a device are also very important.
To meet the current energy demand and increase the performance of energy devices, paper-
based electrodes of graphene/PANI composite have been reported. They were prepared
by the electropolymerization of PANI on graphene paper [39]. As shown in Figure 9a,b,
graphene/PANI paper retains the origin flexibility of graphene paper. Graphene/PANI
paper as a supercapacitor electrode exbibits a high specific capacitance and excellent cycling
stability due to the uniform growth of PANI on graphene (Figure 9c–f); it has great potential
for application in the construction of portable energy devices. Light-weight and flexible
graphene/polypyrrole (PPy) fibers were fabricated by spinning GO and pyrrole in a FeCl3
solution, which helped to control the diameter of fiber, finally obtaining graphene/PPy
fibers [40]. MnO2 can also be used for the fabrication of this composite due to its high
specific capacitance. A 3D graphene/MnO2 composite foam to be used as a negative
electrode for asymmetric supercapacitors was fabricated by the solution casting method.
GO was reduced on Ni foam and then subjected to electrodeposition of MnO2 to obtain an
asymmetric supercapacitor, showing excellent cyclic stability (Figure 10) [41].
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Figure 9. (a) Flexible graphene paper with the size of 8 × 5 cm. (b) Graphene/PANI pa-
per (3 cm × 1.5 cm), electrochemical deposition time of 10 min. (c,d) SEM images of the sur-
face of graphene/PANI paper at different magnifications. (e,f) SEM images of cross sections of
graphene/PANI paper at different magnifications. (g) Graphene/PANI composite papers with differ-
ent electropolymerization times (From left to right: 2, 5, 10, 15 min). (Reproduced with permission
from ref. [39]. Copyright 2013 RSC Publications).
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The incorporation of graphene-based composites provides an innovative way for
wearable electronics and energy storage devices. Various techniques have been used for
the synthesis of these composites. For example, a hydrothermal approach can be applied to
fabricate a textile-base graphene composite as an electrode. First, graphene is transferred
onto a polyester fabric, and then the graphene/polyester/MnO2 composite is placed in
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an autoclave at 140 ◦C. Finally, the product is washed with deionized water and dried in
an oven. The composite reveals good electrochemical performance with high mechanical
stability [42]. TiO2 is also another promising electro-active metal oxide. For instance, it
was used to fabricate the material for a supercapacitor electrode. The fabrication process
of the TiO2/graphene/PPy composite for energy applications is as follows. At different
temperatures, titian as a starting precursor, was mixed with chemically modified graphene.
After drying, electrodeposition of PPy was carried out. As illustrated in Figure 11, the
composite revealed increased capacitance and cycling stability [43].
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Figure 11. Electrochemical performances of TiO2/graphene/PPy with different TiO2 content: (a) CV
curves; (b) galvanostatic charge–discharge curves; (c) cycle stability. (Reproduced with permission
from ref. [43]. Copyright 2015 ACS Publications).

Multiple graphene-based composites including epoxy/graphene, polystyrene/graphene,
polyaniline/graphene, nafion/graphene, poly(3,4-ethyldioxythiophene)/graphene, polyethy-
lene terephthalate/graphene, and polycarbonate/graphene nanocomposites have been fab-
ricated through in situ intercalative polymerization, solution intercalation, as well as melt
intercalation [44,45]. In addition, a flexible graphene/MnO2 composite for paper electrodes
was prepared by three steps, during which the GO/MnO2 composite was obtained by disper-
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sion. Composite paper was obtained by vacuum filtration followed by thermal reduction [46].
Beside physical synthesis routes, CVD is also a good approach for the fabrication of materials.
Therefore, a graphene composite with porous carbon was fabricated via CVD on a Ni gauze
substrate, which had excellent compatibility because of the porosity of the composite [47].
Likewise, the hydrothermal method is commonly used on account of its simplicity. For ex-
ample, ZnFe2O4 nanoparticles treated with nitrogen-doped reduced graphene were reported
as suitable in energy application, specifically for supercapacitors [48]. To attain maximum
charge storage and long cycle durability, another composite of 3D graphene/NiOOH/Ni3S2
was fabricated in two steps. First, 3D graphene was prepared on the surface of nickel foam
by the CVD method. Second, the composite was generated by the hydrothermal method [49].

Although the material choice for certain application remains crucial, the choice of
the substrate has a great effect on flexibility. Textile fibers, carbon cloth, and paper pulp
have evolved as excellent substrate choices for various graphene-based composites. For
example, a graphene-based carbon cloth composite fabricated by the simple brush coating
technique showed great properties as an electrode material [50]. Light weight, ultrathin,
and flexible electrodes with outstanding mechanical and electrochemical properties are
needed of today. As shown in Figure 12, a cellulose fiber-based graphene paper composite
was obtained by the dipping and drying method via the hydrothermal route, and possesses
environment-friendly and cost-effective features [51].
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Figure 12. (a) Schematic diagram of the preparation of PANI-rGO/cellulose fiber composite paper.
Optical images of (b) pure cellulose fiber paper and (c,d) nanostructured rGO/cellulose fiber compos-
ite paper. SEM images of (e,f) rGO-coated cellulose fiber paper, (g,h) nanostructured rGO/cellulose
fiber composite paper, and (i,j) PANI-rGO/cellulose fiber composite paper. (Reproduced with
permission from ref. [51]. Copyright 2014 Wiley Publications).

The composite of vanadium oxide with graphene paper is binder-free and shows
versatility. The fabrication follows an alkaline deoxygenation process, which is more
suitable than the chemical reduction of GO to graphene. This flexible composite paper
membrane possesses remarkable advantages for double-layered and pseudocapacitive
electrodes [52]. In order to avoid toxicity effects, dimethylformamide was utilized instead
of hydrazine for the reduction of GO, obtaining outstanding efficiency along with flexibility.
Graphene nanosheets were combined with carbon nanofibers to form a composite with
enhanced properties via electrospinning, which is favorable for energy applications [53]. In
addition to the capacitive properties of carbon-based materials, the mechanical and thermal
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properties of flexible composite materials obtained from conductive graphene/poly(vinyl
chloride) (graphene/PVC) films have also been studied. PVC and graphene sheets were
mixed together by liquid dispersion and dripped onto cells, followed by drying in an
oven. The acquired composite possesses good thermal stability [54]. Additionally, the
properties of conductive polymers like PANI are remarkably enhanced by the addition of
graphene-based composites. The formation of a graphene/polyaniline flexible composite
can be obtained via in situ anodic electro polymerization. Graphene paper (Figure 13)
was directly used as a working electrode in PANI electrolyte, washed, and dried after the
complete process, recording a high capacitance [55].
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Moreover, combing graphene with some common substances in nature can lead to com-
posites with outstanding performances. As shown in Figure 14, lignocellulose/graphene
conductive paper composite, which worked as a good active electrode, was fabricated
through a simple and time-efficient technique by the one-pot method [56].
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Figure 14. Supercapacitor derived from a conductive paper consisting of a lignocellulose/rGO
(LRGO) composite. (Reproduced with permission from ref. [56]. Copyright 2018 Springer Nature
Publications).

A nano nickel oxide/graphene PANI composite with enhanced cyclic stability and a
high specific capacitance of 92% after 2500 charge–discharge cycles can be applied in the
fabrication of energy storage devices [57]. Consequently, graphene-based polymer/metal
oxide composite paper electrodes show enhanced electrochemical performance and great
potential for application in portable electronics industry.

4. Flexible Composites and Applications of GO/rGO

The designed flexible composites should have not only excellent flexibility but also a
certain strength which would enable the composites to withstand external environmen-
tal factors. Recently, a layered composite of GO/PVC with large mechanical strength
fabricated by the vacuum filtration method was reported [58]. These flexible composites
composed of GO and rGO are useful in multiple applications including energy storage, wa-
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ter purification, textiles, and robotics. Polymerization was used to prepare PANI nanowires
on a GO sheet composite. The obtained products showed excellent performance when used
as supercapacitor electrodes [59,60]. Water purification has become another issue in the
past few decades. Ongoing research has tackled this problem. For example, a GO-based
TiO2 composite membrane could be used as a filtration membrane for the removal of water
impurities. The composite was fabricated by vacuum filtration and allowed a moderate
water purification [61]. Although chemically modified graphene or rGO itself is not very
appealing in terms of its properties, these properties can be enhanced in forming com-
posite materials with conductive polymers. For instance, an rGO/polypyrrole nanowires
composite fabricated in situ showed better performances than rGO and can be used in the
fabrication of portable electronic devices [62]. Yarns were used to produce an electronic
textile fabric by coating rGO through electrostatic self-assembly in the presence of adhesive
bovine serum albumin. The preparation of the material is shown in Figure 15 [63].
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E-textile has revolutionized the whole flexible and portable device industry with the
introduction of additional properties. In addition, a pressed composite of rGO–MnFe2O4
and polyvinylidene fluoride fabricated by a simple sonication method turned out to be a
good absorber of harmful microwaves in the electromagnetic spectrum [64]. Within energy
applications, flexible composites of V2O5/polyindole and activated carbon cloth were used
as cathodic and anodic electrodes of an asymmetric supercapacitor. V2O5 nanostructures
were constructed on a carbon cloth by in situ polymerization and showed good cyclic
stability on testing (Figure 16) [65].
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Paper electrodes for energy application are receiving great attention. A GO solution
was prepared by Hummer’s method. Then, GO-based paper electrodes which can act as
flexible substrates, actuators, supercapacitor electrodes etc., were fabricated through the
steps of vacuum infiltration, spin coating, and drop casting.

A composite of nickel cobalt oxide/GO was tested as a supercapacitor electrode and re-
vealed a large capacitance of 1211 Fg-1. Its fabrication was achieved by coprecipitation using
sodium dodecyl sulfate as the template and ammonia as the precipitant [66]. rGO obtained
from GO by the hydrothermal route and titanium carbide obtained by selective etching of
aluminum were combined by ultra-sonication and filtration, yielding the rGO/titanium
carbide composite. CV, GCD, and EIS analysis proved it to be outstanding for electro-
chemical performance in supercapacitors [67]. Additionally, other carbon-based materials
like CNT are extraordinary products due to several characteristics when hybridized with
conducting polymers such as MnOx and rGO composites developed by spray coating and
electrodeposition. They show a high capacitive behavior and improve the cyclic stability
for supercapacitors [68]. Notably, graphene and its derivatives are analogous to other
carbon-based materials, providing new perspectives to research. The fabrication techniques
are also being modified. Recently, the metal-organic framework template-assisted method
was utilized on a large scale and showed great potential for energy applications. In this
regard, as shown in Figure 17, rGO/MoO3 was reported to be an excellent composite for
energy storage in supercapacitors as an electrode [69].
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Organic substrates have been widely used in recent studies, but metallic substrates
remain an important choice. Copper metallic foil acted as a substrate for the growth of
rGO/Cu2O through the hydrothermal technique and showed moderate advantages as
an electrode in supercapacitors [70]. However, the sol–gel approach is also simple and
has been used for the fabrication of rGO-based composites. rGO paper was obtained
by a modified Hummer’s method followed by evaporation drying. ZnO was deposited
in the form of layers on rGO paper by using a stabilizer through a synthesis process.
The composite ZnO/rGO/ZnO has been utilized for supercapacitor electrodes [71]. The
choice of the material for positive or negative electrodes plays a vital role in energy de-
vices. A compatible negative electrode material in a supercapacitor for Fe2O3 nanoparticle
clusters/rGO paper was investigated. The composite was synthesized through the hy-
drothermal technique [72]. Chong et al. [73] prepared an MnO2/rGO nanocomposite by a
facial one-step electrochemical method. MnO2 nanoparticles were uniformly distributed
on rGO nanosheets and acted as spacers to prevent rGO nanosheets from restacking. This
unique structure provided MnO2/rGO with high specific capacitance. Furthermore, the
MnO2/rGO composite also showed high conductivity and excellent potential cycling sta-
bility, and has potential as electrode material for highly stable supercapacitors. In addition
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to MnO2, tungsten oxide (WOx) is widely studied as electrode material for supercapac-
itors. Recently, a W18O49 nanowires (NWs)/rGO nanocomposite, which can act as the
negative electrode in asymmetric supercapacitor devices, was prepared from the precursors
WCl6 and GO by the solvothermal method [74]. The asymmetric supercapacitor W18O49
NWs-rGO//rGO showed high specific capacitance and excellent cycling stability. For the
fabrication of paper-based electrode, the incorporation of celluloses and pulps is desirable
to attain flexibility and stability. GO-based nanocomposite of nanocrystalline cellulose
acetate fabricated via stirring and a solvent casting method showed high thermal stability
and good mechanical strength [75]. Likewise, cotton pulp was mixed with LiCl in addition
with anhydrous DMAc by stirring. Further addition of a GO suspension to cotton pulp
resulted in the formation of a cellulose-based composite useful for energy and memory
storage [76]. An outstanding anodic electrode material was designed by fabricating a
composite of GO and TiO2, whereas further reduction of the composite to rGO/TiO2 was
obtained by stirring and drying. Anatase TiO2 exhibits higher power and energy density
than other conventional metal oxides [77]. In comparison with cellulose, the residual paper
pulp is more stable. As a consequence, it can be used in the fabrication of rGO-based
flexible composites. First, the paper pulp was stirred in stable solvent and then it was
mixed with GO. Next, the suspension was infiltrated with and reduced by hydrazine
vapors at a certain temperature via the drop casting technique. The obtained composite
possessed better performance compared with cellulous-based composites when applied in
flexible electrodes [78]. Altogether, natural fiber-based GO/rGO paper composites have
been proven to have excellent performance in multiple applications, especially in energy
storage and conversion devices in the modern portable device industry.

5. Conclusions and Perspective

With the fast development of portable, wearable, and lightweight electronic devices,
highly efficient and flexible energy strategies are urgently needed. In order to achieve this
goal, it is crucial to explore novel materials. Graphene has attracted tremendous attention
in the field of material science due to its outstanding properties since it was first exfoliated
in 2004. This review aimed to outline the different fabrication methods and applications
of graphene-based materials, especially for flexible, portable, environment-friendly, and
cost-effective energy storage and conversion devices. Some representative methods used
to prepare the composites based on graphene and the corresponding applications are
listed in Table 1. The outstanding performances of these composites are due to the special
structure and excellent properties of graphene, as well as the ease of functionalization
of GO and rGO. Graphene-based materials show great application potential in flexible
devices. In addition, they further promote the miniaturization and portability of devices
and have a huge effect on human life. For example, integrating graphene-based energy
storage into wearable devices is promising for human health monitoring. Graphene-based
composite membranes also show potential applications in water purification and can be
used to remove dyes molecules in water. The progress in flexible composites based on
graphene and its derivatives is rapid, and some achievements have been made in recent
years. However, to realize graphene‘s practical applications, there are still many challenges
to solve. For example, the large-scale production of graphene with high quality and uniform
structure is still a big challenge. There are many techniques that can be used to prepare
graphene, such as exfoliation from graphite and CVD techniques, but they are cumbersome,
time-consuming, and expensive. Furthermore, the complicate transfer process further
limits the wide application of graphene. Chemical oxidation of graphite is the most widely
used method way to prepare graphene derivatives. However, the synthesis and purification
procedures of the oxidation of graphite are complex and risky. It is hard to precisely control
the compositions and sizes of graphene sheets, which heavily affects the performance of
the composites. In addition, in order to synthesize composites with excellent performances,
interfacial interactions between graphene or its derivatives and other functional materials
need to be systematically studied. Although difficulties and challenges still exist, with the
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development of science and technology, more and more technically feasible strategies will
be explored. We believe that flexible graphene-based devices and systems will emerge as
essential instruments in our daily lives.

Table 1. Preparation and application of graphene-based composites.

Carbon-Based Material Composites Preparation Methods Applications

graphene

poly ethylenedioxythiophene-
graphene electrochemically deposition energy storage devices [32]

(PEDOT:PSS)/graphene in situ polymerization energy harvesting systems [35]

graphene/MnO2/CNTs chemical co-precipitation
method

energy storage devices as a robust
electrode [38]

graphene/PANI electropolymerization paper electrode [39]
graphene/MnO2 electrodeposition asymmetric supercapacitor [41]
TiO2/graphene/PPy electrodeposition supercapacitor [43].

GO/rGO

PANI/GO polymerization supercapacitor electrodes [59,60]
GO based TiO2 composite
membrane vacuum filtration water purification system [61]

nickel cobalt oxide/GO coprecipitation supercaps electrode [66]
rGO/polypyrrole nanowires
composite in situ route portable electronic devices [62]

rGO/Cu2O hydrothermal technique supercaps [70]
paper pulp/rGO drop casting technique flexible electrode [78]
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