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Abstract: This work presents the development of a J-integral estimation procedure for deep and
shallow cracked bend specimens based upon plastic ηpl factors for a butt weld made in an S690 QL
high strength low alloyed steel. Experimental procedures include the characterization of average
material properties by tensile testing and evaluation of base and weld metal resistance to stable tearing
by fracture testing of square SE(B) specimens containing a weld centerline notch. J-integral has been
estimated from plastic work using a single specimen approach and the normalization data reduction
technique. A comprehensive parametric finite element study has been conducted to calibrate plastic
factor ηpl and geometry factor λ for various fixture and weld configurations, while a corresponding
plastic factor γpl was computed on the basis of the former two. The modified ηpl and γpl factors were
then incorporated in the J computation procedure given by the ASTM E1820 standard, for evaluation
of the plastic component of J and its corresponding correction due to crack growth, respectively. Two
kinds of J-R curves were computed on the basis of modified and standard ηpl and γpl factors, where
the latter are given by ASTM E1820. A comparison of produced J-R curves for the base material
revealed that variations in specimen fixtures can lead to ≈10% overestimation of computed fracture
toughness JIc. Furthermore, a comparison of J-R curves for overmatched single-material idealized
welds revealed that the application of standard ηpl and γpl factors can lead to the overestimation of
computed fracture toughness JIc by more than 10%. Similar observations are made for undermatched
single material idealized welds, where fracture toughness JIc is overestimated by ≈5%.

Keywords: metal weld; strength mismatch; fracture; plastic correction factors; fixture rollers; J-R
resistance curve

1. Introduction

The fracture resistance (in the form of a J-R curve) of the weld metal is an essential
input for structural integrity assessments of load bearing welded components according
to various fitness for service (FFS) assessment methods (e.g., BS7910 [1], R6 [2] and FIT-
NET [3,4]). Experimental determination of the J-R curve for welded joints is based on
the testing of small, laboratory fracture specimens according to standardized procedures,
specified by ISO 15,653 [5] and BS 7448-2 [6]. The former is based on the J-evaluation
method for homogeneous metallic materials, included in ASTM E1820 [7], which has been
extended to weldments with yield strength mismatch ratio M in the range 0.5 ≤M ≤ 1.25.
Here, M is defined as:

M =
σyWM

σyBM
, (1)

where σyWM and σyBM are all-weld metal and base metal yield strength, obtained by tensile
testing. In case J-integral is evaluated by a single specimen approach, incremental equations
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are used where elastic and plastic contributions to the strain energy of the cracked specimen
are considered according to standard ASTM E1820 as follows:

J(i) = Jel(i) + Jpl(i), (2)

where J(i) is the total J-integral while Jel(i) and Jpl(i) are elastic and plastic components of
the total J-integral respectively. The present study is focused on the determination of J by
testing of single edge notched bend (SE(B)) specimens. Therefore, J computation equations
for SE(B) specimens will be discussed throughout this paper. The elastic component Jel(i) in
Equation (2) for plane strain is given by:

Jel(i) =
KI(i)

2

E′
=

KI(i)
2(1− ν2)

E
, (3)

where, E′ = E/
(
1− ν2), E is the elastic modulus, ν is Poisson’s ratio and KI is the stress

intensity factor (SIF) for mode I crack opening, that is:

KI(i) =
P(i)S

(BBN)
1/2W3/2

· f
(

a(i)/W
)

, (4)

where P(i) and a(i) are the applied load and crack size in the considered time increment,
W, B and BN denote width, thickness and net thickness (smaller than B if the specimen
is side-grooved, otherwise B = BN) of the SE(B) specimen and S denotes the span length
between the support rollers. The function f (ai/W) is a nondimensional factor that depends
on crack size a(i) normalized by specimen width W, and is given by:

f
(

a(i)/W
)
=

3
( ai

W
)1/2

[
1.99− ai

W
(
1− ai

W
)(

2.15− 3.93
( ai

W
)
+ 2.7

( ai
W
)2
)]

2
(
1 + 2 ai

W
)(

1− ai
W
)3/2 . (5)

The plastic component of the J-integral, Jpl(i), is evaluated by correlation with the
area under the load-plastic displacement curve. An incremental equation for computation
of Jpl(i) was originally proposed by Zhu et al. [8] and is included in ASTM E1820 in the
following form

Jpl(i) =

[
Jpl(i−1) +

(
ηpl(i−1)

b(i−1)

)(Apl(i) − Apl(i−1)

BN

)]
·
[

1− γpl(i−1)

(
a(i) − a(i−1)

b(i−1)

)]
. (6)

Here, b is remaining ligament (b = W − a) and Apl is the area under the load-plastic
displacement curve defined by the incremental trapezoidal integration rule:

Apl(i) = Apl(i−1) +
[

P(i) + P(i−1)

]
·
[
Vpl(i) −Vpl(i−1)

]
/2. (7)

Here, Vpl denotes the plastic component of the measured displacement, which is the
crack mouth opening displacement (CMOD) in this paper. Equations (8) and (9) determine
ηpl and γpl factors, required to calculate the J-integral from the load-CMOD record using
Equation (6). The former relates to the area under the load- plastic CMOD curve while the
latter relates to the incremental plastic work for crack growth. Both factors are functions
that depend on normalized crack size for SE(B) specimens.

ηpl(i−1) = 3.667− 2.199
( a(i−1)

W

)
+ 0.437

( a(i−1)

W

)2
(8)

γpl(i−1) = 0.131 + 2.131
( a(i−1)

W

)
− 1.465

( a(i−1)

W

)2
. (9)
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Notably, in fracture toughness testing, CMOD is normally preferred over load line
displacement (LLD) because a dedicated CMOD gage is simpler to use in an experiment
than a complex LLD gage [9]. Furthermore, a study of Kirk and Dodds [10] provided results
which showed that the LLD based J-integral estimation procedure gives accurate results
for a/W > 0.3, but inaccurate results for a/W < 0.3 due to a high sensitivity of the ηpl factor
to the strain hardening exponent of the material for SE(B) specimens with shallow cracks.
In contrast, the CMOD based ηpl factor is insensitive to the strain hardening for a/W > 0.05
for SE(B) specimens. Fixtures as devices for accurate locating and reliable support during
bending testing should be sized according to the ASTM E1820 standard. According to the
mentioned standard, rollers should be free in order to keep a constant loading arm. Fixed
rollers can have an influence on results, as will be discussed in this paper.

In the past, studies to improve the fracture testing method, based on SE(B) specimens
with W/B = 2 configuration, have introduced improved ηpl factors [10–12]. The solutions
included in ASTM E1820, in the form of expressions (8) and (9) for computation of ηpl
and γpl respectively for SE(B) specimens, were proposed by Zhu et al. [8] based on finite
element results published by Donato and Ruggieri [12]. Both expressions are assumed to
be accurate for a range of crack sizes 0.25 ≤ a/W ≤ 0.7 [12], while the range of validity
is reduced to 0.45 ≤ a/W ≤ 0.7 in ASTM E1820. As discussed, ISO 15653 assumes that
expression (8) is valid for M values in the range 0.5 ≤ M ≤ 1.25. However, M values of
weld joints used for various applications often exceed the limit of 1.25. It is necessary to
adopt appropriate ηpl and γpl equations in terms of strength mismatch M and normalized
crack length a/W, in order to accurately evaluate J-R curves for such joints.

Several researchers provided ηpl and γpl solutions for the evaluation of J in fracture
testing of strength mismatched weld joints. Kim et al. [13] performed detailed finite
element (FE) analyses to obtain ηpl of various specimens (including SE(B)) with a/W = 0.5
for weld joints with strength mismatch M varying between 0.5 and 2.0. The obtained results
demonstrated that values of ηpl increase in case of weld strength undermatching (M < 1)
and decrease in case of weld strength overmatching (M > 1), relative to even matching
welds (M = 1). Furthermore, it was shown that ηpl depends on the weld width. Starting
from a very wide weld, the reduction of the weld width results in an increase of ηpl values
for undermatching welds, reaching a maximum value at geometry ratio (W − a)/HW = 5,
where HW is weld width. The opposite was observed for overmatching welds, where
reduction of the weld width resulted in an decrease of ηpl values, reaching a minimum
value at geometry ratio (W − a)/HW = 2. For very narrow welds with (W − a)/HW < 2,
the effect of the weld geometry was negligible and computed values of ηpl were similar
to the one for pure base metal. Eripret and Hornet [14] performed a parametric FE study
of SE(B) specimens from weld joints with mismatch levels M = 0.2 and M = 2.0 for a wide
range of crack lengths (0.1 ≤ a/W ≤ 0.7). Results demonstrated that ηpl values increase
across the entire range of analysed crack lengths by reducing the mismatch factor M.
Similar observations were made by Donato et al. [15]. Their study showed that scatter of
produced ηpl solutions for analysed levels of M is relatively small if the crack is located at
the central plane of a narrow weld with HW = 5 mm and relatively high in a wider weld
with HW = 20 mm (SE(B) specimens with B = 25.4 mm and W = 2B = 50.8 mm). While
aforementioned studies [13–15] incorporated 2D plane strain conditions in parametric FEM
for SE(B) specimens, Mathias et al. [16] performed parametric 3D FE analyses of SE(B)
specimens with W/B = 1 and W/B = 2 for a wide range of crack lengths (0.1 ≤ a/W ≤ 0.7).
Although the SE(B) samples were from an X80 steel welded joint with M = 1.18 (according
to published yield stresses for base and weld material), ηpl solutions were developed
for homogeneous material with various yield strength levels and hardening properties.
Results revealed that the produced ηpl solution for SE(B) specimens with W/B = 2 is in
close agreement with the one obtained by Donato [12], while the ηpl solution for SE(B)
specimens with W/B = 1 was considerably lower (approx. 11% for shallow cracks and 25%
for deep cracks).
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The above mentioned reported effects of SE(B) sample geometry, weld size and weld
strength mismatch on the J evaluation procedure are the main motivation for this research.
The work focuses on the development of npl solutions for SE(B) specimens, extracted from
S690 QL steel weld joints with various mismatch levels M. Welding procedures, determina-
tion of weld and base material mechanical properties, fracture testing and the calibration of
ηpl and γpl functions by parametric FEM are presented in the following paragraphs.

2. Experimental Procedures
2.1. Materials and Welding

Two types of welded plates, as shown in Figures 1 and 2, were fabricated, joining
25 mm thick high strength low alloyed (HSLA) steel S690 QL plates with 500 mm length
and 200 mm width, by metal active gas (MAG) welding, with the purpose of extracting
specimens for fracture testing and tensile testing. Parent plates during welding were not
fixed. For the first type, the weld groove had been machined to a double V configuration
with a bevel angle of 60◦ and root gap of 2 mm; a commonly used weld configuration in
practice. For the second type, the weld groove had been machined to a wide V configuration
with bevel angle of 20◦ and weld root gap of 20 mm. In this case, a 10 mm thick backing
strip had been attached to both base metal plates to be joined beneath the weld groove in
order to fabricate the weld. Such weld configuration meets the requirements of standard
ISO 15792-1 [17] for tensile testing of weld consumables and extraction of corresponding
tensile test specimens. Weld consumables Mn4Ni2CrMo (with commercial designation
MIG 90) and G4Si1 (with commercial designation VAC 65) have been applied in order
to fabricate overmatched (OM) welds with M > 1 and undermatched (UM) welds with
M < 1 respectively.

Figure 1. Drawing of the fabricated welded plate for extraction of SE(B) specimens. Weld geometry
and layout of the SE(B) specimens is the same for overmatched and undermatched weld.

Figure 2. Drawing of the fabricated welded plate for extraction of tensile specimens. Weld geometry
and layout of the tensile specimens is the same for overmatched and undermatched weld.

2.2. Tensile Testing

Tensile testing of base and all-weld metals was performed in conformance with ASTM
E8/E8M [18], utilizing round bar tensile specimens with neck diameter D = 6 mm and
gauge length G = 5D = 30 mm. Tensile specimens were tested on a multipurpose testing
machine INSTRON 1255 by applying displacement-controlled loading with a crosshead
displacement rate of 0.2 mm/min at room temperature. Three tensile tests were performed
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for each material. The obtained average tensile properties are presented in Table 1, where
E is the elastic modulus, σYS and σUTS are yield strength and ultimate tensile strength
respectively and M is the mismatch factor defined by Equation (1). The obtained average
engineering stress-strain (S-e) curves are presented in Figure 3.

Table 1. Tensile properties of tested materials.

Material E
(GPa)

σYS
(MPa)

σUTS
(MPa)

M
(-)

Base material (S690 QL) 201 683 791 1
OM weld material

(Mn4Ni2CrMo) 215 894 950 1.309

UM weld material (G4Si1) 210 532 587 0.779

Figure 3. Engineering stress-strain curves of tested materials.

Furthermore, fictitious stress–strain curves were computed by offsetting the S-e curves
for OM and UM welded joints along the slope of the linear elastic part in order to achieve
mismatch factors M = 1.5 and M = 0.5 respectively. Experimental and fictitious S-e curves
were then implemented in FEM in order to investigate the influence of mismatching on
solutions for the J computation factors ηpl, λ and γpl.

2.3. Fracture Toughness Testing

Fracture toughness testing of base material and welds was performed by the single
specimen test method according to ASTM E1820 [7]. SE(B) specimens with thickness and
width B = W = 20 mm have been tested as shown in Figure 4. Three sets of SE(B) specimens
were extracted from sample plates with the double V weld configuration for fracture
toughness testing of base material, OM weld and UM weld, as shown in Figure 1. Side
surfaces of extracted SE(B) specimens containing a weld were first ground and then etched
with a 4 % nitric acid alcohol solution in order to determine the position of the weld center
line and the weld fusion lines. Finally, notches and aligned knife edges were fabricated
at the weld center by wire electrical discharge machining. Weld SE(B) specimens were
notched in the direction of the plate thickness (i.e., obtaining surface cracked welded SE(B)
specimens). Such notch configuration proved to be less demanding for fatigue precracking,
as surface cracked welded SE(B) specimens (with dimensions B = W) normally do not
exhibit a non-uniform fatigue crack front [19] (maximum relative deviations from computed
average fatigue crack length a0 are reported in Table 2). Therefore, no adapted precracking
procedure for modification of residual stresses is required. Sharp cracks were introduced in
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SE(B) specimens through fatigue precracking with load ratio R = 0.1 and applied maximum
SIF to elastic modulus ratio Kmax/E ≤ 1.1 × 10−4 m1/2.

Figure 4. Example of tested weld joint SE(B) specimen with a surface notch at the weld center plane.
Missing dimensions LW, HW and a0 are listed in Table 2.

Table 2. List of tested SE(B) fracture specimens with corresponding materials and crack lengths.

Specimen Material a0
[mm]

a0/W
[-]

af
[mm]

∆a
[mm]

LW
[mm]

LW/W
[mm]

SE(B)-02 Base material
(S690 QL)

10.645
(7.5%) * 0.533 11.785 1.140 - -

SE(B)-38
OM weld
material

(Mn4Ni2CrMo)

8.579
(7.2%) * 0.431 9.888 1.309 7.200 0.360

SE(B)-40
UM weld
material
(G4Si1)

9.015
(4.2%) * 0.448 9.995 0.980 8.300 0.415

Remarks: *—Maximum relative deviation of 9 measured crack lengths from the average computed crack length
(acceptable as specified in ASTM E1820).

The tests were performed on a multipurpose testing machine INSTRON 1255 under
crosshead displacement control at displacement rate 1 mm/min and room temperature.
A fixture system with fixed support and load rollers with diameter of 25 mm was used.
CMOD was measured with a dedicated clip gauge mounted onto the specimen surface.
Stable crack extension in SE(B) specimens was quantified by combining post-mortem crack
measurements using the nine-point method and the normalization data reduction (NDR)
method as specified in ASTM E1820. Although the NDR method is normally used for
stable crack extension estimation in homogeneous metallic materials [20], a recent study
conducted by Tang et al. [21] showed that it can be applied to welds as well. An average
difference of less than 10% between the J-R resistance curves provided by the NDR method
and unloading compliance method was reported in the listed study. The overview of tested
specimens is provided in Table 2. Fracture testing results are presented as load-CMOD
curves in Figure 5. Material resistance to fracture in form of J-R curves are presented and
discussed in detail in Section 6, which includes the effect of various iterations of ηpl and γpl
functions on the computed J-integral.
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Figure 5. Example of tested weld joint SE(B) specimen with a surface notch at the weld center plane.
Missing dimensions LW, HW and a0 are listed in Table 2.

3. Numerical Procedures
3.1. Weld Geometry Simplification Procedure

Current fracture assessment procedures adopt an idealized weld geometry with
straight fusion lines to represent more complex weld configurations found in engineering
applications. A systematic methodology for simplification of an actual V-groove weld
with a centerline crack to an idealized weld has been proposed by Hertelé et al. [22,23].
This methodology has been developed for single edge tension (SE(T)) specimens and is
based on the analysis of slip-line patterns. Research conducted by Souza et al. [24] showed
that the weld simplification methodology proposed by Hertelé et al. [22] is adequate for
V-grooved welds with straight fusion lines for various weld strength mismatch levels.
However, the proposed methodology fails to produce accurate results in the presence of
high levels of weld strength undermatch as the deformation pattern near the crack tip
changes significantly. Considering this, the double-V weld was in the scope of this research
simplified to have bi-linear fusion lines rather than a square weld cross section geometry
consisting of perfectly straight fusion lines (Figure 6).

Figure 6. Approach to derive a simplified weld from an irregularly shaped weld.

The geometry of overmatched and undermatched welds was modelled symmetrically
with respect to the central vertical plane of the SE(B) specimen. Simplification of the double-
V weld geometry has been done through post-processing of digital macrographs of actual
welds using the following procedure. First, four distinctive fusion lines were recognized
with respect to the position of the weld root; upper right, upper left, lower right and lower
left fusion line. Points were then marked along each of the four fusion lines and coordinates
of the marked points were extracted. Next, straight fusion lines were fitted to the extracted
coordinates using linear regression. Average slopes of upper and lower fusion lines have
been computed in order to create a symmetrical simplified geometry of the weld. The
width of the weld root has been measured in order to accurately adjust the minimum width
of the idealized weld in FEM. Finally, the side surfaces of actual SE(B) specimens have been
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etched and the vertical position of the weld root was measured prior to fracture testing.
The position of the weld root was later transferred to the idealized weld in FEM. This way,
an idealized weld for each parametric FEM series was adjusted to match a corresponding
SE(B) specimen that underwent fracture testing. The simplified weld geometry is shown in
Figure 6, while corresponding dimensions are presented in Table 3.

Table 3. Computed dimensions of simplified welds.

Weld α
[◦]

β
[◦]

HW
[mm]

LW
[mm]

OM weld material
(Mn4Ni2CrMo) 48.3 62.7 5.17 7.2

UM weld material (G4Si1) 42.9 51.7 3.47 8.3

3.2. Numerical Models of Tested Specimens

Detailed nonlinear finite element analyses have been performed using ABAQUS 2018.
Plane strain finite element models have been created for a wide range of SE(B) specimens
with width W = 20 mm, width to thickness ratio W/B = 1 and span length S = 4W = 80 mm.
The analysis matrix shown in Table 4 includes seven distinctive FEM series of SE(B) spec-
imens containing base material and idealized overmatched and undermatched welds in
combination with three different support and load roller setups.

Table 4. The analysis matrix with FEM series distinctive features.

FEM Series Material Support and Load Rollers Diameters and Degrees
of Freedom

Modelled Normalized a0/W
Crack Lengths

1a
base material

dS = 10 mm (free in horizontal plane)
dL = 8 mm (applied displacement in vertical plane)

0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.71b dS = 10 mm (free in horizontal plane)
dL = 25 mm (applied displacement in vertical plane)

1c dS = 25 mm (fixed)
dL = 25 mm (applied displacement in vertical plane)

2a OM weld M = 1.302
(L0/W = 0.36) dS = 25 mm (fixed)

dL = 25 mm (applied displacement in vertical plane) 0.1, 0.15, 0.2, 0.25, 0.3, 0.36, 0.4, 0.5, 0.6, 0.7
2b OM weld M = 1.5

(L0/W = 0.36)

3a UM weld M = 0.779
(L0/W = 0.415) dS = 25 mm (fixed)

dL = 25 mm (applied displacement in vertical plane) 0.1, 0.15, 0.2, 0.25, 0.3, 0.415, 0.5, 0.6, 0.7
3c UM weld M = 0.5

(L0/W = 0.415)

Figure 7a,b show examples of plane strain FEM models for SE(B) specimens with
a0/W = 0.5 consisting of base metal and containing a welded joint (similar geometry
for overmatched and undermatched welds). All other models have similar features. A
conventional mesh configuration having a focused ring of finite elements surrounding a
stationary crack with a blunted tip. According to SIMULIA documentation [25], contour
integral (that is J in this paper) should be accurately evaluated if radius of blunted crack
tip is ρ0 ≈ 10−3rp. Here, rp is size of plastic zone ahead of the crack tip that is determined
according to Irwin [26] as:

rp =
1

2π

(
KI
σYS

)2
, (10)

where KI is SIF that is obtained by post-processing of recorded P-CMOD curves (Figure 5)
using 95% secant method as specified in ASTM E399 [27]. Size of plastic zone has been
estimated for each tested material using Equation (10). Results presented in Table 5 suggest
that average crack tip radius ≈1.5 µm could be modelled in all FEM in order to minimize
the influence of geometry and mesh on computed results. However, blunt crack tip radius
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ρ0 = 2.5 µm was implemented in analyzed FEM as published studies reported that such
stationary crack configuration produces sufficiently accurate results [12,15].
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Figure 7. Examples of finite element models of SE(B) specimens: (a) containing only base metal and
(b) containing weld.

Table 5. The analysis matrix with FEM series distinctive features.

Material
KJIc

[MPa·m1/2]
rp

[mm]

Base material (S690 QL) 69 1.6 × 10−3

OM weld material
(Mn4Ni2CrMo) 65 0.9 × 10−3

UM weld material (G4Si1) 61 2.1 × 10−3

The finite element mesh consisted of CPE8R eight node general purpose plane strain
elements with reduced integration. In total, the mesh of the analyzed SE(B) models con-
sisted of 10,580 to 10,810 finite elements, depending on crack length a0/W and weld joint
configuration. Symmetry conditions were not implemented so that the FEM models allow
the replication of asymmetrical weld positions in future work.

Support and load rollers have been modelled as analytical rigid wire parts in the 2D
plane strain finite element model. Boundary conditions have been prescribed in reference
points at the center of each roller. Parametric studies included three different setups of
support and load rollers, which are shown in Figure 8a–c. The first setup, which replicated
the standard setup according to ASTM E1820, included support and load rollers with
diameters of dL = 10 mm and dS = 8 mm, respectively. Support rollers are free to move in
the horizontal direction and are fixed in the vertical direction. The second setup served as a
control to investigate the influence of load roller diameter on computed J-integral values.
It included the same support rollers as the previous setup but the load roller diameter
increased to dL = 25 mm. The third setup replicated the actual setup of support and load
rollers used in fracture testing of SE(B) specimens. All rollers had diameter dL = dS = 25 mm
and support rollers were fixed in vertical and horizontal directions. In all finite element
models, the load was introduced in displacement control with a prescribed displacement
of magnitude 2 mm to the load roller. Rotations of rollers were fixed in all three setups.
Contacts have been established between rigid rollers and the deformable SE(B) specimen
with a prescribed coefficient of friction µ = 0.1.
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Figure 8. Overview of the investigated load and support rollers setups; (a) replica of standardized
rollers setup according to ASTM E1820 standard, (b) control rollers setup and (c) replica of actual
rollers setup used in fracture testing.

An elastic-plastic material model, which adopts J2 flow theory with conventional von
Mises plasticity, has been used to describe the material behavior under imposed loads.
Material models of base, OM weld and UM weld metals have been determined on the basis
of the experimental and offset stress–strain curves presented in Section 2. Plastic properties
of listed materials have been implemented in FEM in form of true stress-true plastic strain
curves which consisted of up to 21 data points. Finally, small strain assumptions have been
implemented in order to enhance the J-integral convergence.

4. Evaluation of ηpl and γpl Factors

Calibration of the ηpl factor is based on a parametric plane strain elastic-plastic fi-
nite element analysis of SE(B) specimens with a stationary crack of various lengths. A
method established by Donato et al. [15] is implemented in this work and it consists of the
following steps:

1. From the results of FEA, extract applied load P(i), J-integral J(i), CMOD(i) and LLD(i) for
each simulation increment. Here, J-integral is determined by a contour
integral method.

2. Compute the area under the P(i)-Vpl(i) curve using Equation (7), where Vpl(i) denotes
plastic component of CMOD(i).

3. Compute the elastic component of the J-integral Jel(i) using Equations (3)–(5).
4. Compute the plastic component of the J-integral Jpl(i) using Equation (2). Here, J(i) is

the J-integral extracted from the FEA results.
5. Compute the normalized area A′pl(i) under the P(i)-Vpl(i) curve by the following equation:

A′pl(i) =
Apl(i)

b2BσYS
. (11)

6. Compute the normalized plastic component J′pl of the J-integral by the following
equation:

J′pl(i) =
Jpl(i)

bσYS
(12)
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7. Create a plot of J′pl(i) as a function of A′pl(i). Compute the ηpl factor for the analysed
SE(B) specimen as the slope of the J′pl(i)(A′pl(i)) plot by linear regression.

Once ηpl values are computed for SE(B) specimens with distinct normalized crack
lengths a/W (in range 0.1 ≤ a/W ≤ 0.7 in this work), the function ηpl(a/W) can be deter-
mined by polynomial curve fitting of the results of ηpl as a function of a/W.

In the next step, γpl factor is evaluated, based on the framework established in the
study of Zhu et al. [8], where functions ηpl and γpl of a/W are related as follows:

γpl(a/W) = ληpl − 1− b
W

(
λ′

λ
+

η′pl

ηpl

)
. (13)

Here, λ denotes a geometry function λ(a/W), while λ′ denotes the derivative
dλ(a/W)/d(a/W). Similarly, components ηpl and η′pl denote the function ηpl(a/W) and its
derivative defined as dηpl(a/W)/d(a/W), respectively. The function λ(a/W) is defined as
the following ratio:

λ(a/W) =
Vpl

∆pl
, (14)

where Vpl and ∆pl denote the plastic components of the CMOD and the LLD, respec-
tively. The procedure for the evaluation of γpl has been established on the basis of
Equations (15) and (16) and contains the following steps:

1. For each analyzed SE(B) specimen with distinct normalized crack length a/W, create
a linear plot in which the plastic component of the LLD ∆pl(i) is plotted as function
of plastic component of the CMOD Vpl(i). Compute the geometrical factor λ(i) as the
slope of the ∆pl(i) (Vpl(i)) plot by linear regression method.

2. Determine the function λ(a/W) by curve fitting of the FEA results of λ as a function
of a/W in polynomial form.

3. Compute derivatives of λ(a/W) and ηpl(a/W) functions by differentiating them by the
normalized crack length a/W:

λ′(a/W) =
dλ(a/W)

d(a/W)
(15)

η′pl

( a
W

)
=

dηpl
( a

W
)

d
( a

W
) . (16)

4. Compute values of ηpl, η′pl, λ and λ′ functions for each analyzed SE(B) specimen and
insert them in Equation (12) in order to compute γpl.

5. Determine γpl(a/W) by polynomial curve fitting of the computed results of γpl as a
function of a/W.

5. Numerical Results of Plastic ηpl and γpl Factors
5.1. Verification of FEM and ηpl and γpl Factors for Base Material

Values of ηpl were obtained from the results of numerical simulations using the proce-
dure described in Section 4. Values of J-integral for contours at 0.5 mm and 2.0 mm ahead
of the crack tip (further referred as 0.5 mm contour and 2.0 mm contour respectively) were
selected for the computation of the ηpl factors. The size of the 0.5 mm contour is relatively
small and is suitable for the computation of J-integral in narrow double V welds, as the
contour must be located in homogeneous material at the vicinity of the crack tip. The
2.0 mm contour has been used as the reference contour, since it provides converged values
of the J-integral and does not interact with concentrated deformation due to load roller
contact at a high load level in case of deep cracks with a/W > 0.6. Convergence analysis of
the J contour integral was performed for the plane strain model of the base material SE(B)
specimen with a/W = 0.5 and standard configuration of rollers at different load levels. The
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load levels are (normalized by the limit load Fy): F/Fy = 0.53, F/Fy = 1 and F/Fy = 1.21; the
results are shown in Figure 9a–c respectively. The analyses showed that contours close to
the crack tip (y < 0.1 mm) present inconsistent values of J-integral due to severe crack tip
blunting and thus deformation of finite elements closest to the crack tip. Values of J integral
fully converge at a distance 2.0 mm ahead of the crack tip with exception of high load levels
exceeding F/Fy = 1.21. However, the relative deviation of J values for distant contours
with respect to the 2.0 mm contour is less than 2%. Further comparison of J values for
0.5 mm and 2.0 mm contours showed the deviation between both to be less than 3.2% for
all load levels, as presented in Figure 9d. Here, J values for the 2.0 mm contour represented
reference values for computation of the relative deviation.

Figure 9. Results of J-integral convergence analyses at load levels (a) F/Fy = 0.53, (b) F/Fy = 1,
(c) F/Fy = 1.21 and (d) comparison of obtained J-integral values for 0.5mm and 2.0 mm contours for
monotonically loaded FEM of base material SE(B) with a/W = 0.5.

Verification of the developed finite element model has been conducted for SE(B)
geometries consisting of base material only and implementing the standard configuration
of load and support rollers (FEM series 1a). Obtained values of the ηpl factors for various
crack lengths in the range 0.1 ≤ a/W ≤ 0.7 were compared to values were published by
Wu et al. [28], Kirk and Dodds [10], Nevalainen and Dodds [29], Kim and Schwalbe [11],
Kim et al. [30], Donato and Ruggieri [12] and Zhu et al. [8]. Zhu et al. compared solutions
proposed by the other listed references and provided solutions for ηpl, λ and γpl, that
were eventually included in ASTM E1820, by curve fitting of the compared results. In
this study, two sets of ηpl values, computed from the J values obtained from FEM along
0.5 mm and 2.0 mm contours, were included in the comparison. As demonstrated in
Figure 9, both sets of ηpl values closely match the existing solutions. The former showed
slightly increased deviations for cracks with normalized length a/W < 0.3 and a/W > 0.5,
while the latter showed excellent agreement along the entire normalized crack length
range 0.1 < a/W < 0.7. This is due to the fact that convergence of J values improves with
increasingly distant contours from the crack tip. The relative deviation from ηpl values
included in standard ASTM E1820 is less than 5% in both cases. Additionally, it is important
to emphasize that ηpl values produced in scope of this research do not exhibit increased
variation for cracks with normalized length a/W < 0.2 as is the case for the solution obtained
by Donato and Ruggieri [12], shown in Figure 10. The reason is that ηpl values in this
paper were computed as slope of function J′pl(i) (A′pl(i)) given by Equations (11) and (12)
(presented in Section 4). In contrary, Donato and Ruggieri [12] computed ηpl values as an
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average of function ηpl(CMOD) values that exceeded rigid exclusion condition Apl(i) ≥ A(i),
where A(i) is area under P-CMOD curve. As a result, ηpl values that did not fully converge
can be included in the computation of the average ηpl value for the given crack length, as
shown in Figure 11b,c. Support of this discussion is shown in Figure 11a, where ηpl values
computed from the created FEM by method of Donato and Ruggieri [12] follow the existing
solution provided by Donato and Ruggieri. Based on the above stated arguments, it is
assumed that the created FEM has passed the verification process and produces results that
are in line with solutions from published researches and the standard ASTM E1820.

Figure 10. Comparison of ηpl values obtained from the developed FEM framework with the values
published in the literature and standard ASTM E1820.

Figure 11. Comparison of (a) the current ηpl values computed by method described in Section 4
(denoted as method 1) and method developed by Donato and Ruggieri [12] (denoted as method 2)
with the existing solutions. Influence of exclusion criterion on computation of ηpl according to
the reference method is demonstrated for SE(B) specimens with crack length (b) a/W = 0.15 and
(c) a/W = 0.5.

Following the FEM verification, remaining configurations of rollers 1b (standard setup,
including oversized rollers with diameter dS = dL = 25 mm) and 1c (fixed oversized rollers
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with diameter dS = dL = 25 mm) were included in the investigation. Values of ηpl, computed
from J-integral that was extracted from 0.5 mm and 2.0 mm contours, are presented in
Figure 12. Here, the influence of the boundary conditions, that is, roller setup, on ηpl can
be recognized.

Figure 12. Comparison of ηpl values computed for base material using FEM with standard solution
according to ASTM E1820. The former has been computed for numerical models of SE(B) specimens
with various fixture and contour configurations.

First, if the standard diameter of the load roller dL = 10 mm, implemented in FEM
series 1a, is increased to dL = 25 mm, control FEM series 1b, then the ηpl decreases at
maximum 3.1% with respect to the standard solution (ASTM E1820) and 5.4% with respect
to the baseline solution 1a, when J from the 2.0 mm contour is considered. However,
both stated solutions seem to be in close agreement when the normalized crack length is
a/W ≥ 0.6.

Second, ηpl further decreases at maximum 12.0% with respect to the standard solution
(ASTM E1820) and 13.3% with respect to the reference solution 1a in case of fixed load
and support rollers with diameter dS = dL = 25 mm, implemented in FEM series 1c. Again,
comparison of both solutions is based on the J-integral from the 2.0 mm contour.

Third, ηpl values computed on basis of J, extracted from the 0.5 mm contour, deviate
from the values computed on basis of J that was obtained from 2.0 mm contour due to J not
being fully converged. The former values deviate from the latter by 2.9%, 3.6% and 2.6 % at
most for FEM series 1a, 1b and 1c, respectively.

Eventually, ηpl functions were developed by polynomial least squares curve fitting of
the computational results. Proposed solutions are presented in Tables 6 and 7 for 0.5 mm
and 2.0 mm contours, respectively.

Table 6. Proposed ηpl functions for SE(B) specimens of base material, valid for J, extracted from
0.5 mm contour.

Figure ηpl Functions for 0.5 mm Contour in Range 0.1 ≤ a/W ≤ 0.7 R2

[-]

1a ηpl = 4.711
( a

W
)3 − 4.339

( a
W
)2 − 1.236

( a
W
)
+ 3.729 0.999

1b ηpl = −1.121
( a

W
)3

+ 3.300
( a

W
)2 − 3.789

( a
W
)
+ 3.774 0.999

1c ηpl = 0.296
( a

W
)3

+ 1.556
( a

W
)2 − 3.094

( a
W
)
+ 3.437 0.998
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Table 7. Proposed ηpl functions for SE(B) specimens of base material, valid for J, extracted from
2.0 mm contour.

FEM Series ηpl Functions for 2.0 mm Contour in Range 0.1 ≤ a/W ≤ 0.7 R2

[-]

1a ηpl = 5.025
( a

W
)3 − 5.738

( a
W
)2 − 0.061

( a
W
)
+ 3.552 0.999

1b ηpl = 1.226
( a

W
)3 − 0.684

( a
W
)2 − 1.751

( a
W
)
+ 3.519 0.998

1c ηpl = 2.483
( a

W
)3 − 2.181

( a
W
)2 − 1.183

( a
W
)
+ 3.206 0.998

The geometry factor λ has been determined on the basis of LLD and CMOD according
to Equation (14). Figure 13 presents obtained values of the geometry factor λ as a function
of a/W. Figure 13 demonstrates that λ values, computed for FEM series 1a (standard roller
setup) are in close agreement with solution included in ASTM E1820 for a/W ≥ 0.25. In case
of shallower cracks with a/W < 0.25, computed results deviate from the standard solution.
The reason is that Zhu et al. [8] produced the solution for λ by curve fitting of the existing
results in the range 0.25 ≤ a/W ≤ 0.7. Further inspection of computed results shows that
values of λ increase by 8.1% at maximum with respect to the reference solution for FEM
series 1a if the load roller diameter is increased from 8 mm to 25 mm (FEM series 1b).
However, increasing the support rollers diameter from 10 mm to 25 mm and constraining
their degrees of freedom has little effect on λ values in case of FEM series 1c as computed
values deviate 10.9% at maximum with respect to the reference solution for FEM series 1a.
Finally, λ functions were developed by polynomial curve fitting of the computed results,
using the least squares method. Proposed solutions are presented in Table 8.

Figure 13. Comparison of λ values computed by FEM for base material with standard solution
according to ASTM E1820 that was originally proposed by Zhu [8].

Table 8. Proposed λ functions for SE(B) specimens of base material.

FEM Series λ Functions in Range 0.1 ≤ a/W ≤ 0.7 R2

[-]

1a λ = 2.278
( a

W
)3 − 3.273

( a
W
)2

+ 2.008
( a

W
)
+ 0.236 0.998

1b λ = 2.806
( a

W
)3 − 4.001

( a
W
)2

+ 2.249
( a

W
)
+ 0.252 0.998

1c λ = 2.603
( a

W
)3 − 3.707

( a
W
)2

+ 2.113
( a

W
)
+ 0.274 0.997

The crack growth correction factor γ has been determined from computed solutions for
ηpl and λ functions and their derivatives according to Equation (14). A significant deviation
of the computed γ value functions from the standard solution is observed (Figure 14).
Solutions obtained from FEM series 1c and 1a deviate from the standard solution by a
factor of 6.1 to 7.7 at most respectively, where J was evaluated from the 2.0 mm contour.
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Similarly, solutions based on J, evaluated from the 0.5 mm contour, deviated from the
standard solution by a factor of 7.2 to 8.4 at most. In both cases, solutions obtained from
FEM series 1b deviated from the standard solution within the specified ranges. Revision
of post-processing procedures revealed that such deviations are due to the combination
of ηpl, ηpl

′, λ and λ′ values in Equation (14). The obtained solutions are presented in
Tables 9 and 10 for J evaluated from 0.5 mm and 2.0 mm contours.

Figure 14. Comparison of the crack growth correction factor γ computed for base material using
FEM with standard solution according to ASTM E1820. The former has been computed for numerical
models of SE(B) specimens with various fixture and contour configurations.

Table 9. Proposed γ functions for SE(B) specimens of base material, valid for J extracted from
0.5 mm contour.

FEM
Series γ Functions for 0.5 mm Contour in Range 0.1 ≤ a/W ≤ 0.7 R2

[-]

1a γpl = −65.073
( a

W
)4

+ 152.019
( a

W
)3 − 132.906

( a
W
)2

+ 50.489
( a

W
)
− 6.048 1.000

1b γpl = −77.924
( a

W
)4

+ 170.124
( a

W
)3 − 137.863

( a
W
)2

+ 48.739
( a

W
)
− 5.440 0.999

1c γpl = −63.999
( a

W
)4

+ 144.314
( a

W
)3 − 120.653

( a
W
)2

+ 43.576
( a

W
)
− 4.955 0.999

Table 10. Proposed γ functions for SE(B) specimens of base material, valid for J extracted from
2.0 mm contour.

FEM
Series γ Functions for 2.0 mm Contour in Range 0.1 ≤ a/W ≤ 0.7 R2

[-]

1a γpl = −65.574
( a

W
)4

+ 152.247
( a

W
)3 − 133.564

( a
W
)2

+ 51.641
( a

W
)
− 6.420 1.000

1b γpl = −73.362
( a

W
)4

+ 164.154
( a

W
)3 − 137.889

( a
W
)2

+ 51.007
( a

W
)
− 6.032 1.000

1c γpl = −60.373
( a

W
)4

+ 139.811
( a

W
)3 − 121.465

( a
W
)2

+ 46.027
( a

W
)
− 5.563 1.000

5.2. ηpl and γpl Factors for OM and UM Welds

A postprocessing procedure similar to the one described in the previous paragraph
has been applied to results of finite element analyses of welded SE(B) specimens. The FEM
model of the welded SE(B) specimens is described in detail in Section 3.2. It is important
to emphasize that in this case values of J integral were obtained from the 0.5 mm contour
only. This compact contour can be entirely located in weld material when the crack tip is
located in a narrow weld root, thus meeting the requirements of material homogeneity for
computation of the J contour integral. One disadvantage is that values of J-integral are not
fully converged at a distance 0.5 mm ahead of the crack tip. However, they deviate less
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than 3.2% in comparison with J values obtained from the 2.0 mm contour, as reported in
previous paragraph, which is considered acceptable for the following.

Additionally, the effect of weld yield strength mismatch variation on fracture behavior
of the analyzed SE(B) specimens has been investigated. The actual produced OM and UM
weld materials have mismatch ratio M = 1.31 and M = 0.78 with respect to the base material
S690 QL, respectively. Additional mismatch ratios M = 1.5 and M = 0.5 were investigated
by implementing material models of the OM and UM weld materials that were obtained
by offsetting true tress-strain curves, as described in Section 2.2.

Again, values of ηpl were computed by the Eta-method described in Section 2.2 and
are represented in Figure 15. All simulations implemented a fixed roller setup, which
replicated the boundary conditions of the actual performed fracture toughness tests. The
computed solution for the base material is plotted as the reference; several observations
can be made on basis of the plotted results.

Figure 15. Comparison of ηpl values computed for weld material using FEM with standard solution
according to ASTM E1820. The former has been computed for weld materials with various mismatch
factors M. Solution, obtained for base material, has been plotted as a reference.

First, the influence of the weld geometry and its mechanical properties on ηpl is clearly
demonstrated. Values of ηpl decrease significantly when the crack length a/W is similar to
the distance to the weld root LW/W = 0.36 in case of the OM weld material. The opposite
can be observed for UM weld material, where LW/W = 0.42.

Second, altered material models produce ηpl values with pronounced minimum and
maximum values when a/W is similar to LW/W in case of yield strength mismatch M = 0.5
and M = 1.5 respectively. Computed ηpl values are 12.2% higher at a/W = 0.36 if an altered
material model with M = 0.5 is implemented in FEM instead of the actual UM material.
Moreover, computed ηpl values are 6.9% lower at a/W = 0.415 if an altered material model
with M = 1.5 is implemented in FEM instead of the actual OM material.

Functions of ηpl were obtained by polynomial least squares curve fitting of the com-
puted results. The degree of fitted polynomial functions has been carefully selected in
order to improve the coefficient of regression R2 while avoiding excessive variations that
are characteristic for higher degree polynomials. The proposed solutions are presented
in Table 11.
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Table 11. Proposed ηpl functions for investigated actual and altered weld material SE(B) specimens.

FEM Series ηpl Functions for 0.5 mm Contour in Range 0.1 ≤ a/W ≤ 0.7 R2

[-]

2a ηpl = 92.933
( a

W
)5 − 269.918

( a
W
)4

+ 264.133
( a

W
)3 − 104.146

( a
W
)2

+ 13.094
( a

W
)
+ 2.569 0.979

2b ηpl = 97.960
( a

W
)5 − 316.782

( a
W
)4

+ 326.940
( a

W
)3 − 132.696

( a
W
)2

+ 17.477
( a

W
)
+ 2.339 0.957

3a ηpl = −380.531
( a

W
)5

+ 877.582
( a

W
)4 − 739.216

( a
W
)3

+ 274.115
( a

W
)2 − 43.820

( a
W
)
+ 5.321 0.934

3b ηpl = −715.044
( a

W
)5

+ 1647.962
( a

W
)4 − 1395.160

( a
W
)3

+ 522.880
( a

W
)2 − 83.327

( a
W
)
+ 7.365 0.880

Following the analysis of ηpl, the geometry factor λ has been computed by inserting
CMOD and LLD from FEM results into Equation (14). Figure 16 presents computed
solutions, which are in close agreement for deep cracked SE(B) specimens with a/W ≥ 0.5.
Furthermore, the influence of material properties is demonstrated for shallower cracks.
Here, values of λ are lower for welded joints in comparison with all-base metal specimens,
while OM weld configurations produce higher values of λ in comparison with UM weld
configurations. Computed values of λ for OM and UM weld configurations deviate from
the one of the base material by 13.5% and 19.1% at most, respectively. However, welds
with altered yield strength mismatch M = 1.5 and M = 0.5 exhibit lower values of λ in
comparison to the OM weld with M = 1.31 by 11.5% and the UM weld with M = 0.779
by 10.9% at most, respectively. Finally, λ functions that are presented in Table 12, were
developed by the least squares method on the basis of the aforementioned results.

Figure 16. Comparison of λ values computed by FEM for weld material with standard solution
according to ASTM E1820 that was originally proposed by Zhu [8]. The former has been computed
for welds with various mismatch factors M. Solution obtained for base material has been plotted as
a reference.

Table 12. Proposed λl functions for investigated actual and altered weld material SE(B) specimens.

FEM
Series λ Functions for 0.5 mm Contour J-Integral in Range 0.1 ≤ a/W ≤ 0.7 R2

[-]

2a λ = 3.000
( a

W
)3 − 4.333

( a
W
)2

+ 2.442
( a

W
)
+ 0.220 0.997

2b λ = 3.547
( a

W
)3 − 5.285

( a
W
)2

+ 2.972
( a

W
)
+ 0.127 0.998

3a λ = 2.229
( a

W
)3 − 3.505

( a
W
)2

+ 2.254
( a

W
)
+ 0.203 1.000

3b λ = −0.469
( a

W
)3 − 0.141

( a
W
)2

+ 1.135
( a

W
)
+ 0.256 0.998

Finally, solutions for the crack growth correction factor γ have been obtained by
Equation (13) and are presented in Figure 17, where the solution for the base material
is plotted as a reference. Here, the γ factors for OM and UM weld configurations vary
significantly throughout the range 0.1 ≤ a/W ≤ 0.7. The analysis of ηpl and λ factors
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and their derivatives reveal that, in the case of welds, the shape of the ηpl function has a
significant impact on the variation of the γ function. The computed γ functions for OM
and UM weld configurations deviate from the base material solution by a factor of 10 and
5.6 at most, respectively. Furthermore, the γ factor for welds with altered yield strength
mismatch M = 1.5 and M = 0.5 deviate in comparison with the OM weld configuration with
M = 1.31 by a factor of 9.0 and the UM weld configuration with M = 0.779 by a factor of 17.5
at most, respectively. Finally, γpl functions that are presented in Table 13 were developed
by the least squares method on the basis of the aforementioned results.

Figure 17. Comparison of the crack growth correction factor γ computed for weld material using
FEM with standard solution according to ASTM E1820. The former has been computed for welds with
various mismatch factors M. Solution obtained for the base material has been plotted as a reference.

Table 13. Proposed γpl functions for investigated actual and altered weld material SE(B) specimens.

FEM
Series γpl Functions for 0.5 mm Contour in Range 0.1 ≤ a/W ≤ 0.7 R2

[-]

2a γpl = −350.776
( a

W
)4

+ 691.443
( a

W
)3 − 476.044

( a
W
)2

+ 133.556
( a

W
)
− 12.237 1.000

2b γpl = −501.441
( a

W
)4

+ 992.155
( a

W
)3 − 683.944

( a
W
)2

+ 191.723
( a

W
)
− 17.844 1.000

3a γpl = −451.632
( a

W
)5

+ 1422.106
( a

W
)4 − 1562.720

( a
W
)3

+ 734.779
( a

W
)2 − 136.680

( a
W
)
+ 6.601 1.000

3b γpl = −1503.250
( a

W
)5

+ 4096.377
( a

W
)4 − 4175.130

( a
W
)3

+ 1940.616
( a

W
)2 − 391.926

( a
W
)
+ 25.285 0.999

6. Application to Fracture Toughness Testing

Fracture toughness tests using the single specimen method according to standard
ASTM E1820 were performed as described in Section 2.3. J-integral resistance (i.e., J-R)
curves for base material, OM weld and UM weld have been computed using the equations
for factors ηpl, and γpl, numerically evaluated in the scope of this research (Section 5).
For the purpose of comparison, equations for factors ηpl, and γpl, included in standard
ASTM E1820 were used to produce reference J-R solutions for the base material and both
weld configurations. Computed J-R curves and relative errors with respect to standard
J-R solutions are shown in Figures 18–21. Values of the J-integral at crack growth onset JIc
were determined at the intersection of the J-R curves with the 0.2 mm blunting line and are
presented in Tables 14–16.
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Figure 18. Evaluated J-R curves for base material, where ηpl and γpl functions, evaluated on the basis
of numerical results, obtained from the 0.5 mm contour, were implemented. J-R curves, computed by
ASTM E1820 are plotted as a reference.

Figure 19. Evaluated J-R curves for base material, where ηpl and γpl functions, evaluated on the basis
of numerical results, obtained from the 2.0 mm contour, were implemented. J-R curves, computed by
ASTM E1820 are plotted as a reference.

Figure 20. Evaluated J-R curves for the OM weld. ηpl and γpl functions, evaluated on the basis
of numerical results, obtained from the 0.5 mm contour, were implemented. J-R curves that were
computed by ASTM E1820 are plotted as a reference.
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Figure 21. Evaluated J-R curves for the UM weld. ηpl and γpl functions, evaluated on basis of
numerical results, obtained from the 0.5 mm contour, were implemented. J-R curves that were
computed by ASTM E1820 are plotted as a reference.

Table 14. Computed results of fracture toughness testing of the base material.

Basic Specimen Data Computation Case, Contour JIc
[kJ/m2]

KJIc

[MPa·m1/2]

Designation: SE(B)-02
Material: base material (S690 QL)

a0 = 10.645 mm a0/W = 0.533
af = 11.785 mm ∆a = 1.140 mm

ASTM E1820 448 313
1a, 0.5 mm 437 309
1a, 2.0 mm 456 315
1b, 0.5 mm 421 303
1b, 2.0 mm 430 306
1c, 0.5 mm 400 295
1c, 2.0 mm 408 298

Table 15. Computed results of fracture toughness testing of the overmatched weld material.

Basic Specimen Data Computation Case, Contour JIc
[kJ/m2]

KJIc

[MPa·m1/2]

Designation: SE(B)-38
Material: OM weld material

(Mn4Ni2CrMo)
a0 = 8.579 mm a0/W = 0.431

af = 9.888 mm ∆a = 1.309 mm

ASTM E1820 193 224

2a, 0.5 mm 173 212

Table 16. Computed results of fracture toughness testing of the undermatched weld material.

Basic Specimen Data Computation Case, Contour JIc
[kJ/m2]

KJIc

[MPa·m1/2]

Designation: SE(B)-40
Material: UM weld material

(G4Si1)
a0 = 9.015 mm a0/W =0.448

af = 9.995 mm ∆a = 0.980 mm

ASTM E1820 336 294

1a, 0.5 mm 318 285

It should be noted that J-R curves for the base material (Figures 18 and 19), computed
with ηpl and γpl that were calibrated on basis of FEM series 1a results, are in agreement with
standard J-R solutions. Here, deviations are less than 4% for the 0.5 mm contour (Figure 18)
and less than 2% for the 2.0 mm contour (Figure 19). Similarly, values of JIc deviate up to
2.5% and 1.8% with respect to standard solutions for J-integral computed by 0.5 mm and
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2.0 mm contours, respectively. This indicates that the FEM framework has been properly
constructed. Moreover, various boundary conditions (i.e., load and support rollers setup)
have an effect on J-R solutions. If the diameter of the load roller is increased from 8 mm to
25 mm as in computation case 1b, then the following observations can be made. Values
of the J integral throughout the total crack extension ∆a are comparable to solution 1a if
ηpl and γpl, valid for the 0.5 mm contour J-integral are implemented. In contrast, values of
J decrease up to 4% with respect to standard J-R solution in case of ηpl and γpl, valid for
the 2.0 mm contour. Finally, if support rollers are constrained and have diameter increased
from 10 mm to 25 mm as in computation case 1c, values of J-integral throughout the total
crack extension ∆a decrease up to 15% and 14% with respect to the standard J-R solution if
ηpl and γpl, valid for 0.5 mm and 2.0 mm contours are implemented respectively. Moreover,
JIc is decreased by 10.7% and 8.9% with respect to the standard solution for the 0.5 mm and
2.0 mm contours respectively. All in all, J is overestimated if the standard computational
procedure is utilized to postprocess results of a fracture toughness test where the modified
roller setup has been implemented.

Similar observations can be made for fracture toughness test results of OM and UM
welds, shown in Figures 20 and 21 respectively. Here, the presented J-R curves were
computed for load and fully constrained support rollers with diameter of 25 mm, while ηpl
and γpl functions, calibrated on the basis of the results of FEM series 2a and 3a for the 0.5 mm
contour, have been implemented in the computation. Comparison of J-R curves based on
numerical results with the standard J-R solutions reveals that J values throughout the total
crack extension ∆a are decreased up to 20% for the OM weld (Figure 20) and up to 10% for
the UM weld (Figure 21). Moreover, the corresponding JIc values, listed in Tables 15 and 16,
indicate a reduction by 10.4% and 5.4% for OM and UM welds, respectively. Again, J values
are overestimated if the standard computational procedure is used for the postprocessing
of results of the fracture toughness test with the utilized modified roller setup.

7. Conclusions

This work addresses the effect of weld strength mismatch and configuration of fixtures
on J estimation formulas to determine fracture toughness from laboratory measurements
using the load-CMOD data of SE(B) specimens. The investigation included fracture tough-
ness testing of standard base material SE(B) specimens and surface cracked SE(B) specimens
containing an overmatching or undermatching weld, where the notch and welded joint
were aligned with the central plane. A new set of ηpl, λ and γpl factors for computing J from
experimental results has been developed for a wide range of crack sizes (0.1 ≤ a/W ≤ 0.7),
levels of weld yield strength mismatch and fixture configurations. Aforementioned factors
were developed on the basis of computational results, provided by parametric 2D plane
strain finite element analyses. The major conclusions of this study can be summarized
as follows:

• Varying the configuration of fixtures has an effect on ηpl, λ and γpl factors as demon-
strated by parametric plane strain analyses of the base material SE(B) specimen. Val-
ues of ηpl decrease by 6.4% if the load roller diameter is increased from dL = 8 mm to
dS = 25 mm and by 14.2% if load and support rollers diameter is set to dL = dS = 25 mm,
while the latter are fully constrained. Values of λ increase throughout the given range
of crack lengths for both fixture modifications. Therefore, it is assumed that CMOD
increases for the same LLD, while less work of the applied load manifests in the crack
driving force if the fixture is modified.

• Weld geometry in conjunction with weld material properties has a direct effect on ηpl
values. A distinctive decrease of ηpl values can be observed if the crack tip is near
the weld root in case of an overmatching weld with M = 1.31, while the opposite
can be observed in the case of an undermatching weld with M = 0.78. Modifying
the mismatch to M = 1.50 (overmatching weld) and M = 0.50 (undermatching weld)
further enhances the deviation of ηpl near the weld root. Moreover, weld material
properties affect the λ factor, where all values are in close agreement when a/W > 0.35
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with the exception of λ for modified undermatching weld material with M = 0.50.
For a/W < 0.35 the λ factors for overmatching and undermatching (original and
modified) weld material decrease in comparison with the λ for the base material. As a
consequence of distinctive shapes of the ηpl and λ functions, the γ functions oscillate
with respect to the standard solution.

• The computed resistances to stable tearing of the tested SE(B) specimens, expressed
in terms of J-R curves, are highly impacted by the ηpl, λ and γpl factors. Values of J
throughout the total crack extension ∆a reduce with respect to the standard solution
by 15% for the base material, by 11% for the undermatching weld and by 18% for the
overmatching weld when the set of correction factors calibrated for the utilized fixture
(dL = dS = 25 mm, constrained support rollers) is used. This indicates that fracture
toughness can be overestimated if the standard ηpl, λ and γpl factors are applied to
the postprocessing of results obtained by fracture toughness testing, where a modified
fixture has been utilized.
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