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Abstract: A stable temperature site and the speed of heating the feedstocks play a key role in pyrolysis
processes. In this study, the product distribution arising from pyrolysis of methyl ricinoleate (MR) at
550 ◦C with low and high heating rates was first studied by pyrolysis–gas chromatography/mass
spectrometry (Py-GC/MS). The results show that fast pyrolysis of MR favored the production
of undecylenic acid methyl ester (UAME) and heptanal (HEP). Density functional theory (DFT)
calculations were employed to reveal the UAME and HEP formation process from pyrolysis of MR.
The bond dissociation energies (BDEs) of C–C bonds in MR showed that the C11–C12 bond is the
weakest. This suggests that UAME and HEP are two major products. The process of slow and fast
MR pyrolysis was the dehydration-first and the pyrolysis-first trend, respectively. The calculated
activation energies of MR pyrolysis to UAME and HEP and MR dehydration to 9,12-octadecadienoic
acid methyl ester were 287.72 and 238.29 kJ/mol, respectively. The much higher product yields
obtained in the fast pyrolysis reactors than those from conventional tubular reactors confirmed the
proposed process.

Keywords: methyl ricinoleate; undecylenic acid methyl ester; heptanal; fast pyrolysis reaction
process; Py-GC/MS; DFT

1. Introduction

The availability of biomass has great potential for economic benefits, and pyrolysis
or catalytic pyrolysis is an economically and feasible technology for the utilization of
biomass [1–3]. Undecylenic acid methyl ester (UAME) and heptanal (HEP), pyrolysis
products of methyl ricinoleate (MR), are considered renewable resources for the chemical
industry [4,5]. UAME, owing to its bifunctional nature, can be used in the production
of engineering plastics, e.g., Nylon 11 [6–8]. HEP is a chemical intermediate to produce
fragrance and flavor. Therefore, it is critical to obtain high yields of UAME and HEP from
the MR pyrolysis process.

A stable and uniform temperature field and rapid heating of MR play a key role in
pyrolysis processes, which determine the yields of UAME and HEP. For the conventional
tubular reactors, heat is primarily transferred through conduction, and a temperature
gradient usually exists within the reactor, which would cause deep pyrolysis and hence a
reduction in UAME and HEP yields [9,10]. Our group proposed microwave and inductive
heating coupled with atomization feeding reactors for MR pyrolysis [11–13]. The spray
heat transfer resulted in rapid heating of the MR feedstock and hence an increase in
product yields. However, few studies on the detailed reaction process for MR pyrolysis can
be found.

Pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) combined with den-
sity functional theory (DFT) is an advanced research method for the study of pyrolysis
products’ distribution. This method has been adopted to study the pyrolysis process of inva-
sive plants and high-density polyethylene [14], holocellulose-based monosaccharides [15]
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and lignin [16]. Mishra [17] researched the physicochemical characterization, kinetics
and thermal degradation behaviors of waste switchgrass pyrolysis products through Py-
GC/MS. Wang et al. [18] proposed four possible reaction pathways for cellulose pyrolysis
based on Py-GC/MS results. The activation energy of different reaction pathways was
then calculated by DFT. Adnan et al. [19] characterized polymethylmethacrylate (PMMA)
composites with an inorganic salt of aluminum triiodide (AlI3) through Py-GC/MS. The
analysis results deduced that the PMMA composite produced less toxic and environmen-
tally friendly substances by the influence of AlI3.

The objective of this work was to study the reaction process of MR pyrolysis by
Py-GC/MS experiments combined with DFT calculation. The product distribution from
slow and fast pyrolysis of MR was analyzed through Py-GC/MS. The bond dissociation
energies (BDEs) of C–C bonds in MR, UAME and HEP were calculated by DFT. Moreover,
the activation energies of the main reactions postulated based on the Py-GC/MS results
were determined by DFT. Furthermore, the proposed reaction trend was confirmed by the
experimental results obtained from slow and fast pyrolysis reactors.

2. Materials and Methods
2.1. Materials

MR was firstly prepared by transesterification of castor oil with methanol over potas-
sium hydroxide as the catalyst. This was followed by purification of MR with a purity
of 97% by distillation at the laboratory scale. The main constituents of the other 3% were
ricinoleic acid (approximately 2%), methyl stearate and methyl oleate. Castor oil was pur-
chased from Jiangsu Wuxi Haishuo Biological Co. Ltd., Wuxi, China. Methanol (≥99.5%)
and potassium hydroxide (≥85%) were obtained from Shanghai Titan Technology Co., Ltd.,
Shanghai, China.

2.2. Py-GC/MS Experiments

The experiments of MR pyrolysis were carried out in a micro-pyrolyzer (EGA/PY-
3030D, Frontier Laboratories, Koriyama, Japan), with the volatiles analyzed by GC/MS
(GCMS-QP 2010 SE, Shimadzu, Japan). For a specific test, a deactivated stainless-steel
sample cup was loaded with about 1 mg of MR. For fast pyrolysis, the loaded cups fell
freely into the preheated furnace by gravity in a very short time period, during which the
sample was heated to the pyrolysis temperature, ensuring fast pyrolysis. The pyrolysis
volatiles were directly swept into the GC/MS for analysis using helium as the carrier gas.
For slow pyrolysis, the temperature increased from 200 to 550 ◦C at two different heating
rates which were 5 ◦C/min and 20 ◦C/min. The pyrolysis volatiles were condensed in
the chromatographic column head and subsequently swept into the GC/MS after the
temperature program.

The chromatographic separation and identification of pyrolysis products were
performed using a mass spectrometer equipped with a capillary column (Rtx-5MS,
30 m × 0.25 mm × 0.25 µm). The GC oven temperature program began with 40 ◦C,
held for 2 min, increased to 320 ◦C at 20 ◦C/min and finally held at 320 ◦C for 13 min.

2.3. DFT Computational Details

All the geometry optimizations and energy calculations in the DFT study were per-
formed using the Gaussian 09 (Gaussian Inc., Wallingford, CT, USA) suite of programs with
the B3LYP/Def2-TZVP basis set. When the optimization results of reactants and products
had no imaginary frequencies, while transition states (TS) had sole imaginary frequencies,
it was considered that the geometry was feasible. Activation energies for reactions were
estimated from the relative energies between the transition state and the reactant.
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3. Results and Discussion
3.1. Product Distribution of MR Pyrolysis at Different Heating Rates

The main product distribution from pyrolysis of MR at different heating rates to 550 ◦C
is shown in Table 1. The area percentage of MR was 56.95% and 42.30% for slow pyrolysis,
much higher than that of 20.23% for fast pyrolysis. Thus, the MR conversion was improved
at a higher heating rate. The area percentages of non-pyrolysis products, i.e., dehydration
products and unreacted MR, were 73.79% and 56.02% at the heating rates of 5 ◦C/min and
20 ◦C/min, respectively. The value was significantly decreased to 32.76% for fast pyrolysis.
This indicated that MR showed a dehydration and evaporation trend during slow pyrolysis.
Overall, the process of slow and fast pyrolysis of MR was the dehydration-first and the
pyrolysis-first trend, respectively. In addition, by pyrolysis of 1 mol of MR, it is possible,
in theory, to obtain 1 mol of HEP and 1 mol of UAME, with the chemical reaction shown
in Figure 1. However, the molar ratio of HEP and UAME in pyrolysis products was not
1:1. This was probably due to the purity of the feedstock not being 100%, where there is
ricinoleic acid in the raw feedstock used for pyrolysis [20].

Table 1. Main products’ distribution obtained from pyrolysis of MR with different heating rates to
550 ◦C (area percentage).

Compound Formula
Area Percentage/%

5 ◦C/min 20 ◦C/min Fast Pyrolysis

2-Ethyl-1-butanol C6H14O 1.29 1.44 —
HEP C7H14O — 2.63 16.12

1-Heptanoic acid C7H14O2 1.72 3.35 —
2-Octanone C8H16O — 0.64 —

(2S)-2-Octanol C8H18O — 0.54 —
6-Heptenoic acid methyl ester C8H14O2 0.24 0.36 1.7

2-Nonenal, (2E)- C9H16O 0.38 1.01 —
2-Octenoic acid, methyl ester, (2E)- C9H16O2 0.23 0.37 0.99

Caprylic acid methyl ester C9H18O2 0.66 1.16 —
Monomethyl suberate C9H16O4 0.45 0.94 —

4-Decanone C10H20O — 0.37 —
Methyl 3-cyclohexylpropanoate C10H18O2 0.76 1.18 —

Methyl 9-oxononanoate C10H18O3 2.03 3.03 1.39
Undecynol C11H20O 0.19 0.68 —

Dimethyl azelate C11H20O4 0.69 0.86 —
Decanoic acid methyl ester C11H22O2 — 1.23 —

UAME C12H22O2 0.54 0.91 42.21
1-Heptadecene C17H34 0.63 — —

9-Hexadecenoic acid, methyl ester, (9Z)- C17H32O2 0.96 0.97 —
Methyl 8-(2-hexylcyclopropyl) octanoate C18H34O2 5.14 5.03 —
9,12-Octadecadienoic acid, methyl ester,

(9Z,12Z)- C19H34O2 3.30 0.90 —

9,15-Octadecadienoic acid, methyl ester, (9E,15E)- C19H34O2 0.47 0.85 9.86
6-Octadecenoic acid, methyl ester, (6Z)- C19H36O2 1.07 1.47 —
6-Octadecenoic acid, methyl ester, (6E)- C19H36O2 0.83 1.34 —

11-Octadecenoic acid, methyl ester, (11Z)- C19H36O2 6.37 4.50 2.67
11-Octadecenoic acid, methyl ester, (11E)- C19H36O2 3.40 2.31 —
9-Octadecenoic acid, methyl ester, (9Z)- C19H36O2 0.28 0.31 —
9-Octadecenoic acid, methyl ester, (9E)- C19H36O2 1.12 2.04 —

MR C19H36O3 56.95 42.30 20.23
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As listed in Table 1, the most prominent products in fast pyrolysis were UAME and
HEP, with the area percentages being 42.21% and 16.21%, respectively. The values for these
two target products in MR pyrolysis were obviously higher than those obtained at the
heating rates of 5 ◦C/min and 20 ◦C/min. This was primarily due to the temperature
distribution of MR being uniform, and the energy being rapidly transferred to MR for
pyrolysis [21]. Rapid heating of MR contributes to transferring the pyrolysis volatiles from
the high-temperature site, and avoiding the second pyrolysis. In addition, the residence
time of MR was extended with slow pyrolysis, resulting in distinct pyrolysis stages and
more secondary pyrolysis of products [22,23].

3.2. Product Distribution of Fast MR Pyrolysis at Different Temperatures

The product distribution of fast MR pyrolysis at different temperatures is shown
in Table 2. The MR conversion increased with the increasing temperature from 400 to
600 ◦C. The relative area percentages of pyrolysis products were 2.86%, 28.8% and 95.51%
at the pyrolysis temperatures of 400 ◦C, 500 ◦C and 600 ◦C, respectively. The significant
increase in the number of pyrolysis products at higher temperatures was mainly due to the
increasing cleavage of the C–C bond of MR. In addition, smaller molecules, e.g., ethanol,
1,3-butadien, 2-pentene, propenoic acid methyl ester and pentenoic acid methyl ester, were
detected at 600 ◦C. This indicated that secondary thermal cracking of UAME and HEP was
enhanced at higher temperatures.

Table 2. Main products’ distribution obtained from fast pyrolysis of MR with different temperatures
(area percentage).

Compound Formula
Area Percentage/%

400 ◦C 500 ◦C 600 ◦C

Ethanol C2H6O — — 3.43
1,3-Butadiene C4H6 — — 8.24

2-Propenoic acid methyl ester C4H6O2 — — 4.75
2-Pentene (Z)- C5H10 — — 4.76

1-Hexene C6H12 — — 4.14
4-Pentenoic acid methyl ester C6H10O2 — — 1.10

Benzene C6H6 — — 4.44
1,3-Cyclohexadiene C6H8 — — 2.03

Toluene C7H8 — — 2.59
HEP C7H14O 2.25 8.83 9.50

5-Hexenoic acid methyl ester C7H12O2 — — 1.81
1-Octene C8H16 — — 1.36

6-Heptenoic acid methyl ester C8H14O2 — 0.58 3.34
4-Octenoic acid methyl ester (Z)- C9H16O2 — — 2.66

Methyl 9-oxononanoate C10H18O3 — 1.45 —
UAME C12H22O2 0.61 19.39 41.37

9,12-Octadecadienoic acid, methyl ester, (9E,12E)- C19H34O2 — 2.36 —
9,11-Octadecadienoic acid, methyl ester, (9Z,11Z)- C19H34O2 — 2.47 —
9,12-Octadecadienoic acid, methyl ester, (9Z,12Z)- C19H34O2 — 1.43 —

6-Octadecenoic acid, methyl ester, (6Z)- C19H36O2 — 2.66 —
9-Octadecenoic acid, methyl ester, (9E)- C19H36O2 — 0.64 —

MR C19H36O3 86.40 54.45 —

3.3. DFT Studies on MR Pyrolysis

Based on the Py-GC/MS results of MR pyrolysis, the dehydration-first trend and the
pyrolysis-first trend were proposed. To verify the trend, DFT studies were carried out to
analyze the BDEs and reaction pathways. The bond dissociation order of C–C bonds in
MR, UAME and HEP during the pyrolysis process can be predicted by the BDEs. The
results of BDEs and the calculated activation energy for different reaction pathways are
shown in Figure 2. The BDE of the C11–C12 bond is the lowest in MR, and the BDE
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of the C7–C8 bond is slightly higher than that of the C11–C12 bond. This suggests that
UAME and HEP are two major products during MR pyrolysis, with heptenoic acid methyl
ester and 1,3-butadiene as the by-products. The BDE results are in agreement with the
experimental results of MR pyrolysis. In addition, Botton et al. [22] reported that undesired
products can be produced through the secondary pyrolysis of MR, forming methyl ester
with 7–11 carbons in the chain, and also the presence of other methyl esters such as methyl
palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. This
is also in agreement with the calculated BDE results. The calculated activation energy of
MR pyrolysis to UAME and HEP was 287.27 kJ/mol, and the calculated activation energy
of MR dehydration to 9,12-octadecadienoic acid methyl ester was 238.29 kJ/mol. Both
MR pyrolysis and dehydration belong to endothermic reactions, with the reaction heat
being 80.52 and 23.82 kJ/mol, respectively. Thus, MR dehydration could occur at lower
temperatures, yet the pyrolysis reaction would be more enhanced at higher temperatures.
Fast pyrolysis favored the selectivity of UAME and HEP.

Materials 2022, 15, x FOR PEER REVIEW 5 of 7 
 

 

9,12-Octadecadienoic acid, methyl ester, (9Z,12Z)- C19H34O2 — 1.43 — 
6-Octadecenoic acid, methyl ester, (6Z)- C19H36O2 — 2.66 — 
9-Octadecenoic acid, methyl ester, (9E)- C19H36O2 — 0.64 — 

MR C19H36O3 86.40 54.45 — 

3.3. DFT Studies on MR Pyrolysis 
Based on the Py-GC/MS results of MR pyrolysis, the dehydration-first trend and the 

pyrolysis-first trend were proposed. To verify the trend, DFT studies were carried out to 
analyze the BDEs and reaction pathways. The bond dissociation order of C–C bonds in 
MR, UAME and HEP during the pyrolysis process can be predicted by the BDEs. The 
results of BDEs and the calculated activation energy for different reaction pathways are 
shown in Figure 2. The BDE of the C11–C12 bond is the lowest in MR, and the BDE of the 
C7–C8 bond is slightly higher than that of the C11–C12 bond. This suggests that UAME 
and HEP are two major products during MR pyrolysis, with heptenoic acid methyl ester 
and 1,3-butadiene as the by-products. The BDE results are in agreement with the ex-
perimental results of MR pyrolysis. In addition, Botton et al. [22] reported that undesired 
products can be produced through the secondary pyrolysis of MR, forming methyl ester 
with 7–11 carbons in the chain, and also the presence of other methyl esters such as me-
thyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. 
This is also in agreement with the calculated BDE results. The calculated activation en-
ergy of MR pyrolysis to UAME and HEP was 287.27 kJ/mol, and the calculated activation 
energy of MR dehydration to 9,12-octadecadienoic acid methyl ester was 238.29 kJ/mol. 
Both MR pyrolysis and dehydration belong to endothermic reactions, with the reaction 
heat being 80.52 and 23.82 kJ/mol, respectively. Thus, MR dehydration could occur at 
lower temperatures, yet the pyrolysis reaction would be more enhanced at higher tem-
peratures. Fast pyrolysis favored the selectivity of UAME and HEP. 

 
Figure 2. The C–C bond dissociation energy and potential energy profile in main products and re-
action. 

The reactors reported for MR pyrolysis include tubular reactors [9,10], microwave 
heated reactors [13] and inductively heated reactors [11]. Among these, microwave 
heated and inductively heated reactors were adopted to achieve fast pyrolysis of MR 
with atomization feeding. The comparison of UAME and HEP yields obtained from dif-
ferent reactors is displayed in Figure 3. The product yields for the fast pyrolysis reactors 

Figure 2. The C–C bond dissociation energy and potential energy profile in main products and reaction.

The reactors reported for MR pyrolysis include tubular reactors [9,10], microwave
heated reactors [13] and inductively heated reactors [11]. Among these, microwave heated
and inductively heated reactors were adopted to achieve fast pyrolysis of MR with atom-
ization feeding. The comparison of UAME and HEP yields obtained from different reactors
is displayed in Figure 3. The product yields for the fast pyrolysis reactors were obviously
higher than those from the conventional tubular reactors. Therefore, the fast pyrolysis
favored MR pyrolysis to UAME and HEP, which verified the proposed reaction trend from
the Py-GC/MS coupled with DFT studies.
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