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Abstract: Natural fiber-reinforced concrete (NFRC) has the advantages of environmental protection,
energy conservation and regeneration. However, studies conducted to improve the macro mechanical
properties of concrete by pine needle fiber have achieved good results. In this paper, the deformation
and compression damage of pine needle fiber-reinforced concrete (PNFRC) are analyzed by digital
image correlation; a fractal dimension is used to quantify the shape of PNFRC after compression
damage; and the results of scanning electron microscopy confirm the effect of fiber treatment on
deformation and damage of concrete. The results showed that the horizontal strain field of PNFRC
has strain concentration zones in the elastic deformation stage, indicating that the fiber enhances the
deformation ability of concrete. The defined damage factor can reflect the damage of fiber-reinforced
concrete (FRC). The damage curve of natural fiber concrete increases evenly and slowly compared to
ordinary concrete.

Keywords: digital image correlation (DIC); natural fiber-reinforced concrete; pine needle fiber; crack
detection and quantification; damage evolution factor; compression damage process

1. Introduction

Fiber-reinforced concrete has better flexibility and strength than ordinary concrete.
However, natural fiber-reinforced concrete (NFRC) has the advantages of environmental
protection, energy saving and regeneration. In previous studies, natural fiber dramatically
improved the macroscopic mechanical properties of concrete. The researchers observed that
palm fiber [1] reduced the early drying shrinkage of concrete; it is found that the addition
of natural fibers creates a good thermal insulation performance for cement mortar, hemp
shives [2], flax straw, granular cork, and palm fiber [3]. Especially in terms of mechanical
properties, the researchers reported that natural fibers (such as sisal fiber [4], coir [5,6],
coconut [7,8], açaí fiber [9] and human hair fiber [10]) improve the compressive strength
and flexural strength of NFRC. Using sisal fiber could enhance the impact resistance [11,12]
of NFRC. The addition of natural fiber (coconut shell fiber) [13] improves the ductility of
concrete, compared with traditional concrete. The hornification of vegetable fibers [14] has
a good effect on the durability of cement mortar composites. Meanwhile, the mechanical
properties of cement mortar can be significantly improved by the pretreatment of natural
fibers [15,16]. Zhou et al. [17] reported that the mechanical properties of hemp fiber concrete
treated by boiling and alkalization are at least 10% higher than those of plain concrete.
After heat treatment and Na2CO3 treatment on the surface of sisal fiber, the durability of
sisal fiber in concrete improved, as demonstrated by Wei and Meyer [18].

In particular, previous studies found that pine needle fibers [19] significantly improved
the macroscopic mechanical properties of concrete. Wang, Y. and Long, W. [20] found that
the descending section of the stress–strain curve of NFRC was significantly changed by pine
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needle fiber. However, the overall damage and deformation process of NFRC has not been
considered in current research. At the same time, the failure mechanisms and processes
involving concrete are the basis of concrete mechanics research and have important guiding
significance for the treatment and prevention of practical engineering. For this problem,
the whole process of damage and deformation of the NFRC was analyzed by digital image
correlation technique.

Digital image correlation (DIC) technology has the advantage of measuring objects
without contact, which can obtain higher measurement accuracy than the traditional
method [21] and can analyze the deformation information of any time and area during the
loading process. Guo, Q., Wang, H. and Gao, Y. et al. [22] analyzed the effects of three kinds
of mixed fibers on the deformation and strain of an asphalt mixture by DIC technology in
low-temperature and crack resistance tests. The researchers measured the displacement
and deformation of FRC (ultra-high performance fiber-reinforced concrete [23–25] and
fabric-reinforced cement-based mortar [26]) and monitored the evolution of the crack strain
field under direct tensile tests and bending. The changes in the crack number and crack
opening of cement-based composite samples under direct tensile action at different curing
ages [27] were monitored; the crack width distribution of UHPFRC and the stress crack
width relationship during tension were obtained by an inverse calculation [28]. In addition,
using DIC as a fracture mechanics tool, the bonding properties of carbon fiber-reinforced
polymer [29] and fabric-reinforced cement-based mortar (FRCM) sheets [30] to concrete
matrix were studied. Golewski, G.L. [31] proposed an analysis of the fracture process of
type II concrete. Allami, K. and Colombi, P. et al. [32] studied and calculated the tensile
properties of epoxy resin and CFRP sheets and the fracture energy of the CFRP concrete
interface. In particular, Francisco, V. and Moro, C. et al. [33] evaluated the flexural strength,
toughness, and adhesion of recycled polypropylene fiber-reinforced cementitious materials
under high-temperature exposure, mainly using DIC and a scanning electron microscope
(SEM). At the same time, some researchers analyzed the damage performance of concrete
and rocks based on the data acquisition results of DIC [34–38].

In this paper, the deformation field and damage characteristics of PNFRC under com-
pression are analyzed by DIC. All samples in this study contained a volume of 0–2% pine
needle fibers treated with tap water soaking, boiling water, and diluted alkali, respectively.
The time-varying evolution law of relative deformation field on the specimen surface, the
initial cracking position of the specimen surface and the influence range of fiber on the
deformation field were studied. Meanwhile, the failure mode and fractal characteristics
of PNFRC were calculated. The influence of pine needle fibers on the deformation and
damage of concrete is validated by the SEM results. Compared with different damage
factor curves, the damage factor Dfa accurately describes the damage of fiber-reinforced
concrete in each stress stage.

2. Experimental Section
2.1. Test Materials and Specimens
2.1.1. Materials and Mix Design

In this study, the coarse aggregate used for raw materials was 5–15 mm of continuously
graded gravel, and natural river sand with fineness modulus of 2.95, conforming to the
Chinese Standard GBT14685-2001 and GBT14684-2001, respectively. The cementitious
material was 42.5 R ordinary Portland cement; The test water met the domestic water
standard GB5749-2006 [39]. The concrete mix proportion created for this experiment was
0.49:1.0:1.615:2.636 (water:cement:sand:stone), and the strength grade was 30 MPa (C30).
After the pine needle fiber was processed into 30 mm, it was pretreated in three different
ways. The treated procedures and effects are shown in more detail in [19].

2.1.2. Specimen Design

All test samples were prepared, poured, and maintained in strict accordance with
GB50081-2019 [40]. The sample size was designed as a cube of 100 × 100 × 100 mm3. The
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fiber contents added to the concrete were 0.5%, 1.0%, 1.5% and 2.0% of the volume of the
test block, respectively. Table 1 shows the grouping information of test samples. In the
table, the ‘T’, ‘B’ and ‘A’ represent three treatment methods (tap water soaking, boiling
water, and alkalinized solution), respectively; the ‘30′ means the fiber length, and the ‘C’
stands for the compressive test. The number after C is the fiber volume content. CC is
plain concrete.

Table 1. Test sample details.

W/B Sample Size Fiber Pretreated Method
Fiber Volume

0% 0.5% 1.0% 1.5% 2.0%

0.49 100 × 100 × 100 mm3
Tap water soaking

CC
T30C05 T30C10 T30C15 T30C20

Boiling water B30C05 B30C10 B30C15 B30C20
Alkalinized solution A30C05 A30C10 A30C15 A30C20

2.2. Test Materials and Specimens

The experimental system for studying the compression deformation and damage
characteristics of pine needle fiber-reinforced concrete included a loading system and DIC
acquisition system.

2.2.1. Digital Image Correlation (DIC)

The DIC acquisition system is shown in Figure 1a. CCD cameras (Manta G-146B/C
with a Sony ICX267 sensor, dpi: 2452 × 2056, Allied Vision, Puchheim, Germany) were
used in this research, which ran at 10 fps(full resolution). The CCD cameras, using DIC
technology, obtained the camera parameters through correction (Figure 1b) and collected
the strain and deformation of speckle samples (Figure 1c) during the experiment. The
strain region of the compressive damage process analysis and statistical damage analysis
is shown in Figure 1d, and the linear strain region of this is displayed in Figure 1e. The
software MATCHID-2D/STEREO Correlated 2018 (University of Leuven, Leuven, BE) was
used to carry out the DIC analyses.
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Figure 1. Test setup (a) MTS pressure testing machine and industrial camera test system (b) Camera
parameter correction (c) Sample speckle (d) Area of surface analysis (e) Area of line analysis.
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2.2.2. Compressive Strength Test of PNFRC

Hydraulic servo universal testing machine (MTS.e64.206, MTS Systems Corporation,
Eden Prairie, MN, USA) was selected for the loading system, as shown in Figure 1a.
According to GB50010-2010, all specimens were tested after 28 days of standard curing.
The loading rate of the pressure testing machine was 0.5 MPa/s, and the data acquisition
frequency of the pressure testing machine was set to 2 Hz.

3. Results and Analysis
3.1. Cracking Mode and Fractal Characteristics of PNFRC Samples

Figure 2 illustrates the main cracks of the PNFRC samples after peak loading, and
the blue color indicates the main cracks and the concrete shedding part of the concrete.
Clearly, the PNFRC treated with alkali show many small cracks after rupture, which
prove that the deformation of concrete is restrained and has a bridging effect between
the concrete and pine needle fibers; the tap-water-treated pine needle fiber-reinforced
concrete show mainly block shedding after damage, which indicates the inhibiting effect of
tap-water-treated fibers on the cement hydration of concrete; however, the damage pattern
of boiling-water-treated pine needle fiber-reinforced concrete is between the alkali-treated
and tap-water-treated PNFRC.
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The fractal dimension is used to evaluate the failure morphology of concrete with three
treatments. Figure 3 shows the fractal dimension of cracks of pine needle fiber-reinforced
concrete specimens. In general, the fractal dimension of alkali-treated PNFRC is slighter
than that of the CC specimen, while the fractal dimension of boiling-water-treated and
tap-water-treated fiber concrete is much greater than that of the plain concrete, which is
consistent with the macro results of a damaged morphology.
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3.2. Micro-Analysis of SEM

From the micro-level, the effects of different treatments of pine needle fibers on the
deformation of concrete are demonstrated by SEM, as shown in Figure 4. In general,
there are varying degrees of cement mortar on the fiber surface compared to the original
pine needle fiber (Figure 4a). In particular, the surface of the fiber treated by dilute alkali
is wrapped with the most cement mortar (Figure 4b), and the fiber adhere well to the
cement matrix, cracking the cement matrix after destruction and particularly influencing
the deformation and damage of the concrete.
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Figure 4. The morphology of fiber surface: (a) primitive fiber, (b) alkali-treated fiber, (c) boiling-
water-treated fiber, and (d) tap-water-soaked fiber schemes follow the same formatting.

3.3. The Compressive Damage Process Analysis

Figure 5 displays the load-displacement curves of all samples. Clearly, the content and
treatment of pine needle fibers have a direct influence on the macro mechanical properties
and deformability of concrete. The effect of pine needle fibers treated with boiling water
and diluted alkali on concrete is greater than PNFRC treated with tap water in strength,
deformation peak value, and elastic modulus. Therefore, the horizontal strain field of
pine needle fiber concrete treated with boiling water and dilute alkali was selected for
analysis. The horizontal strain field corresponding to point A–E of the load-displacement
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curve of concrete samples was mainly analyzed. Point A–E is the corresponding load value
of 10%, 50%, 70%, 90% and 100% of the peak value (Pmax ), respectively, as shown in
Figures 6 and 7.
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Figure 5. Load-displacement curves of all samples. (a) Alkalinized solution, (b) Boiling water, and
(c) Tap water.
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Figure 6. The load-displacement curve and horizontal strain field of ordinary concrete (CC) sample.

At the early phase of loading (before A), the coordinated deformation of the corner
part of the specimen and the indenter resulted in local breakage, causing a weak strain
concentration. In the early loading stage A–C, the strain field of the CC sample is relatively
uniform, as the samples are in the linear stage of the load-displacement curve under
compression. However, the strain fields on the surface of the PNFRC specimen present an
uneven shape. At the elastic stage, the relative deformation fields of PNFRC were formed,
and fiber and concrete bear forces together.
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Figure 7. Evolution of horizontal strain field of PNFRC specimens.

In the C–D stage, there are strain concentration areas on the surface of the specimens
in the nonlinear part of the load-displacement curve, and the strain field shows the clear
heterogeneity of zoning. Especially for the specimens containing 0.5–1.5%, the impact
range of the fibers on the relative deformation field of concrete increases, and a large strain
concentration area appears on the sample surface.

3.4. Statistical Analysis of PNFRC Damage

DIC is an important tool for quantifying sample damage. S.P. Ma [37] proposed to use
the standard deviation of the horizontal strain field to represent strain field damage degree
factor Dfa, as shown in Equations (1)–(2). Similarly, Y.R. Zhao et al. [35] and H. Zhang
et al. [38] proposed the deviation of the strain field to calculate the damage degree factor.
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According to a horizontal strain field analysis of compressive damage, five kinds of concrete
samples with good modification effects were selected for statistical damage analysis. The
damage factors, Dfm and Dfl; in line strain region; and plane strain region (as shown in
Figure 1d,e) were calculated by combining Equations (1) and (2). At the same time, the
damage factor Dfa was defined in the linear strain region as shown in Equation (3).

Df,j =
Sj

Smax
(1)

Sj =

√
1

n− 1

n

∑
i=1

(εi − ε )2 (2)

Dfa,j =
n

∑
i=1

εi/
n

∑
i=1

εmax (3)

where n is the number of strain points in every DIC horizontal strain field analysis region;
εi stands for the strain at any point in the j-th horizontal strain field; ε indicates the strain
mean of the j-th horizontal strain field; and εmax means the strain value in the strain field
analysis region at the peak load.

Figure 8 lists the damage evolution curve of PNFRC samples with the changes in
displacement. It is evident that the change of all damage factors (Dfl, Dfm and Dfa) of
ordinary concrete samples almost coincide. In general, the changes of Dfl and Dfa are more
sensitive than those of Dfm and can better reflect the details of the damage and deformation
of samples. The Dfl and Dfa are not smooth in the whole change stage, which indicates that
the damage of pine needle fiber-reinforced concrete is clearly affected. The Dfl and Dfa of
the B30C05 samples also have a mutation at the point of load mutation.
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Figure 8. Damage evolution curve of PNFRC samples. (a) CC, (b) A30C05, (c) A30C10, (d) A30C15,
(e) B30C05, and (f) B30C10.

Under a 10% load at the initial loading phase, the above three damage factors keep
changing synchronously. Under the same deformation conditions, the more fiber content,
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the earlier the damage occurs to pine needle fiber-reinforced concrete specimens. The
damage degree of diluted-alkali-treated samples is less than that of the boiling-water-
treated sample when the load is in the elastic stage. The increase in the damage of PNFRC
is relatively gentle compared to ordinary concrete.

4. Conclusions

In this study, DIC technology was used to study the compressive damage characteris-
tics of PNFRC, and three damage evaluation methods were compared. The conclusions
were as follows:

(1) The fractal dimension of fiber-reinforced concrete treated with tap water soaking,
boiling water, and an alkali solution is consistent with the macroscopic results of
damaged morphology. At the same time, it is proved that pine needle fiber can
promote the deformation and damage of concrete from the micro point of view. The
SEM results show that the surface of the alkali-treated fiber is wrapped with cement
mortar, which produces cracks after the concrete is damaged.

(2) At 50% of the peak load, the strain concentration zone of the 0.5–1.5% PNFRC appears,
and the strain concentration zone develops to the maximum at 90% of the peak load.
The “X” type strain concentration zone of other samples is irregular at the peak load,
compared with ordinary concrete and 2% pine needle fiber concrete.

(3) Adding natural fiber can change the damage growth rate of concrete and make
the damage curve grow evenly and slowly. The samples A30C10 show the best
deformation and damage performance. The damage degree of the samples treated
with boiling water is greater than that of the samples treated with dilute alkali in the
elastic deformation stage.

(4) The damage factor Dfa could accurately reflect the compression damage of PNFRC. In
the process of compression deformation, the defined damage factor can characterize
the details of the damage and deformation of each specimen.

Therefore, it can be concluded that the damage of NFRC is different from that of
ordinary concrete, and the damage factor evaluation method proposed in this study can ac-
curately recognize the evolution mechanism of the plant fiber concrete instability precursor
response crisis, and realize the damage evaluation of concrete. As a new type of natural
reinforced composite material applied in buildings, PNFRC still needs further research.
PNFRC can also be used to control the degree of damage by manual intervention.
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