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Abstract: Determining the geometric characteristics of even complex cross-sections of steel beams
is not a major challenge nowadays. The problem arises when openings of various shapes and sizes
appear at more or less regular intervals along the length of the beam. Such alternations cause the
beam to have different stiffnesses along its length. It has different bending and shear stiffnesses at
the opening point and in the full section. In this paper, we present a very convenient and easy-to-
implement method of determining the equivalent stiffness of a beam with any cross-section (open or
closed) and with any system of holes along its length. The presented method uses the principles of
the finite element method (FEM), but does not require any formal analysis, i.e., solving the system
of equations. All that is needed is a global stiffness matrix of the representative volumetric element
(RVE) of the 3D representation of a beam modeled with shell finite elements. The proposed shell-to-
beam homogenization procedure is based on the strain energy equivalence, and allows for precise
and quick determination of all equivalent stiffnesses of a beam (flexural and shear). The results of
the numerical homogenization procedure were compared with the existing analytical solution and
experimental results of various sections. It has been shown that the results obtained are comparable
with the reference results.

Keywords: numerical homogenization; thin-walled steel structure; perforation; beam element; shell
element; open cross-section; finite element analysis

1. Introduction

Load-bearing members of structures often require regular perforations/holes or
uniquely placed openings. This requirement may arise from various causes. One reason is
for carrying out installations, such as with electrical wiring or fire sprinkler systems [1].
Going towards more and more smart buildings, the number of wiring systems will increase
in the coming years. Another reason for these features is to fix the mounting to the load
bearing element, which was analyzed, for example, in [2]. The mounting holes may be
localized in specific locations (pre-planned) or in periodic manner (enabling adjustment of
the mounting location in situ). In the former type, the cross-section is weakened in a single
location, while in the latter type the cross-section has variable and reduced stiffness along
its length. Periodic perforations/holes may be also beneficial if the structure mass must be
reduced. If at the same time the load bearing capacity needs to be kept at a certain level,
optimization techniques are often required [3–5].

Computing the properties of the structural member for a constant cross-section is a
typical structural/mechanical engineering problem that is easy to solve. However, if a
structure member with regular holes or uniquely placed openings is used, the common
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approach is not sufficient. For the constant cross-section, even with complicated, multi-
material assembly, the problem may be solved analytically if an elastic range is considered.
The problem is complicated if non-elastic behavior is considered, because in such cases the
cross-section properties are not enough to determine the behavior of the structure. In such
cases, the General Nonlinear Constitutive Law (GNCL) can be used, as for instance in these
works [6–9]. On the other hand, if the cross-section of the beam member is not constant
along its length, additional averaging techniques, section division or individual analytical
solutions (applicable to unique type of cross-sections) are required. An analytical approach
to solve such problems is highly impractical, since for most engineering applications the
solution must be quickly obtained and replicable also to different structures. Additionally,
it is known that analytical approaches are frequently not possible, because the problem
formulation is too complicated, or the time resources spent to find the solution exceed
the benefits. Therefore, the numerical methods, such as the finite element method (FEM)
popular among structural engineers, seem to be the approaches that best address the
problem.

However, for detailed geometries, the classical finite element method is not cost
effective. As an alternative, the extended approach with simple homogenization technique
can offer the benefits of the numerical approach in an engineering practice. Classical FEM
is not effective, because the member with regular holes or unique openings would require
modelling it via solid or at least shell elements [1,2,10]. Such modelling is computationally
costly, mainly due to the need for using detailed meshes, especially when the element
contains regular holes along its length. Additionally, the solid or shell elements must
be available in an in-home or commercial FEM code, which is not straightforward to
implement and not common in typical engineering software. Extending the FEM with
homogenization technique for structural members certainly could simplify the problem.

Homogenization techniques are used to solve complex mechanical problems in struc-
tures for many years. Various approaches have been used, for instance in [11], for lattice
beam-like structures, a direct approach based on the matrix eigenvectors and principal
vectors of the state transfer matrix was utilized. In [12], the periodic beam-like structure
homogenization was presented. The homogenization was obtained by the authors from the
solution of basic cell problems posed on the three-dimensional period of the structure, and
solved using a three-dimensional finite element method. The homogenization of helical
beam-like structures in a two-dimensional model were analyzed in [13] under axial loads
(extension or torsion). This approach was extended in [14], in which the helical beam-like
structures under bending loads were considered. Homogenization in beams enables con-
sideration of the Timoshenko theory, for instance in [15], in which the homogenization of a
3D model of a non-centrosymmetric tetrachiral unit cell was investigated as an example of
architected heterogeneous material.

Among other scientists who have recently made their contribution to the development
of homogenization techniques, one should mention [8,16–18]. In [16], the plate homog-
enization of a shell structure to a single shell element was proposed, as an extension of
Biancolini’s approach [19]. In [17], the civil engineering structures of prefabricated compos-
ite floor-slabs, the so-called “Filigree” slabs, were considered, in which homogenization was
also used to determine floor-slab material properties, but also their deflections. Other types
of structures were also considered, for instance, composite steel and concrete “I” beams [6]
or steel frames [7]. In [18], the method of determining the stiffness properties of perforated
corrugated cardboard was shown, using the homogenization technique proposed earlier by
Garbowski & Gajewski in [16]. In all of these cases, the homogenization technique was a
useful tool to speed up numerical estimation, determine the structure properties or simplify
the FEM model.

When applying homogenization techniques, one eliminates the analytical and classical
FEM drawbacks, i.e., nonexisting solutions, overcomplex problems or costly solutions.
Homogenization techniques enable the modelling of very detailed geometries, for in-
stance with regular holes along the member [20,21]. It should be underlined that often
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the structures are successfully considered as full-shell finite element (FE) models with
elaborate geometric complexity; for instance, see [2,22,23]. However, applying homoge-
nization techniques enable speeding up of the computations, for instance in optimization
processes [21,24]. Optimization using homogenization may be used to determine the pa-
rameters of the structure, both material [25,26] or geometric [27,28], or its topology [24,29].
The homogenization technique presented in the forthcoming section may be used in all such
optimization problems. In this paper, computing the structural and material properties
of steel members with regular holes was shown as the example of the application of the
homogenization techniques proposed.

The paper’s main objective is to present a novel shell-to-beam numerical homogeniza-
tion method based on deformation energy equivalence. The derivation and application
of a numerical homogenization technique are demonstrated in thin-walled beams with
periodic openings. The Materials and Methods chapter consists of two sections. In the first
section, the numerical models used are described, while in the second the mathematical
details of the homogenization method are explained. The Results chapter contains mainly
a comparison with the analytical approach and nominal numerical examples of the homog-
enization technique. In the first section of this chapter, Z and C profiles without any holes
were considered, while in the second section, more elaborate cases were used, i.e., one with
the holes in the web and rounding in the corners. In the Discussion chapter, the results
obtained are comment upon in detail, and the references to the experimental results from
the literature were also investigated. Good agreement of the results with the reference data
was obtained in all examples presented.

2. Materials and Methods
2.1. Beams—Numerical Models

The thin-walled cold-formed profiles of Z, C and square tube are the numerical exam-
ples considered in this paper. Thin-walled cold-formed profiles are cost-effective modern
building members used in light structures. Apart from economics, their main advantage is
quick and effective forming of wall and roof purlins in such facilities as industrial buildings,
warehouses, commercial buildings, livestock structures and production halls. However,
these kinds of members are vulnerable to initial imperfections and local instability [30,31].
As already noted in previous section, the openings are often necessary for use in roof ele-
ments, especially to carry out installations. However, these kinds of members are beneficial
in a structure, because they may be designed for an optimal distribution of weight and
geometry of cross-section to attain particular strength and load-carrying capacity. Their
lightness greatly facilitates assembly in situ.

The numerical examples of the Z, C and square tube profiles considered here may be
divided into three categories: (i) no corner-rounding and no holes, (ii) corner-rounding
and no holes, and (iii) both corner-rounding and periodic holes. The examples from the
(iii) category are presented in Figures 1–3, with all cross-sections and out-of-plane di-
mensions of representative volume element (RVE) used in the later computations. In the
(ii) category, the holes in the web are not considered. In the (i) category, the four rounding
of the corners are not defined (i.e., the corners are exactly 90 degrees). For each example of
the Z or C profiles, the stiffeners are assumed and included in computations.

In order to build the full stiffness matrix, Ke, of the RVE of selected examples, the
Abaqus FEA code was used [32].
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Figure 1. Considered Z profile with regular stadium hole in the web (units in mm): (a) cross-section
and (b) side view on representative volume element.

Figure 2. Considered C profile with regular stadium hole in the web (units in mm): (a) cross-section
and (b) side view on representative volume element.

Figure 3. Considered square tube with regular mounting holes in the web (units in mm): (a) cross-
section and (b) side view on representative volume element.
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In Figure 4, the selected meshes of RVEs are presented for the numerical examples
considered. The red nodes denote the external nodes for static condensation; for details, see
Section 2.2. The element type used for forming a full stiffness matrix K for RVE was a 4-node
general-purpose shell element (named S4 according to Abaqus FEA Documentation [32]).
In all numerical examples, the mesh size varied from 2.5 mm to 15 mm. Therefore, for the
Z profile without holes, no corner-rounding and elongation depth equal to 100 mm, the
number of nodes (elements) was 15,520 (3880) for 2.5 mm seed and 476 (119) for 15 mm
seed. For the C profile with a length of 100 mm belonging to the (i) category example, the
number of nodes (elements) was 14,240 (3560) for 2.5 mm seeds and 420 (105) for 15 mm
seeds. Profiles from the (ii) and (iii) categories were computed only for the 5 mm seed size.
Such discretization gives 824 elements (3296 nodes) for the Z profile with holes (Figure 4a),
781 elements (3124 nodes) for the C profile with holes (Figure 4b) and 1541 elements
(6164 nodes) for the square tube with holes (Figure 4c). The isotropic linear elasticity was
used to describe the mechanical behavior of steel. The following material parameters were
assumed: the Young’s modulus equal to E = 210 GPa and the Poisson’s ratio equal to
ν = 0.3 [–].

Figure 4. Computational examples of representative volume elements with nodes selected, to which
the entire stiffness is statically condensed: (a) C profile; (b) Z profile and (c) square tube.

In this work, for computing the reference results used in the verification section (see
Section 3.1), the typical engineering approach for simple cross-sections from the (i) category
examples were used to compute the profile’s stiffnesses analytically. This means that the
reference models used for the verification of the method did not contain holes and had a
simplified geometry (the rounding of the corners were neglected) so that it was possible
to easily determine their geometric characteristics (i.e., moments of inertia). The basic
analytical formulas, which can be found in the strength of materials textbooks, were used
to calculate the stiffness of the cross-sections selected, for instance EIx = E

∫ ∫
A y2dA and

EIy = E
∫ ∫

A x2dA. The geometric properties, such as widths, heights and eccentricity from
the neutral axis of the cross-sections used in the study are presented in the Figures 1–3.

2.2. Shell-to-Beam Numerical Homogenization

Homogenization is often used for a significant simplification of the computational
model, which in turn saves computational time for the given problem. This is especially
important in the case of 3D models that contain inclusions, cavities, pores or dispersed
reinforcement. Modeling of such structures requires the use of advanced meshing tech-
niques as well as careful and laborious partitioning techniques in order to properly assign
the appropriate mechanical features to different parts of the model.
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In the case of beam structures, which can be modeled as structural elements, it is
usually assumed that the cross-section is made of one type of material, and the element
itself does not contain any local weaknesses along its length. Therefore, for the correct
geometric description of structural elements, the moments of inertia in relation to two
mutually perpendicular axes (i.e., x and y axis) and the cross-sectional area as well as
material data are sufficient (see Figure 5a).

Figure 5. (a) Cross-section of structural beam model and (b) 3D shell model.

If the cross-section of the beam is complex, for example consisting of multiple materials
or with any longitudinal openings, the numerical model usually consists of 3D finite
elements—both shell and/or solid (see Figure 5b). This type of modeling gives more
accurate results, but makes the analysis much longer. A tool that can be used to shorten the
analysis and at the same time maintain the accuracy of the results is the aforementioned
homogenization [16–18].

In the case of thin-walled beam structures, the material from which they are built
is usually homogeneous, and the cross-section itself is not composed of many different
materials. However, the appearance of holes along the beam may quickly turn a simple
analysis into a complex task. Thus, in order to avoid complicated modeling, numerical ho-
mogenization can be used [16–19,33]. The homogenization method proposed in this paper
is an adaptation of an existing technique based on deformation energy equivalence [19].
This method was previously used for layered shell sections [16,18] as well as for concrete
slabs reinforced with spatial trusses [17].

The main step in this approach is to construct a deformation–displacement relationship
in order to apply elastic strain energy equivalence between the full 3D model (homogenized)
and the model reduced to a structural element (see Figure 6).

Figure 6. Shell-to-beam transformation.
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In order to compare both models (i.e., the full 3D and the structural model), the first
step is to condense the stiffness of the full model to the nodes, in which the kinematic
boundary conditions are applied. For this purpose, the global stiffness matrix is subject
to static condensation (i.e., the overall RVE stiffness is condensed to selected nodes, see
Figure 4).

The nodes to which the stiffness of the entire RVE is condensed are located at the
front and rear of the cross-section (see Figure 4). The condensed stiffness matrix can be
computed from the standard formula:

Ke = Kee −Kei Kii
−1 Kie, (1)

where the subarrays are related to the external (subscript e) and internal (subscript i) nodes:

K u = F →
[

Kee Kei
Kie Kii

][
ue
ui

]
=

[
Fe
0

]
. (2)

The total elastic strain energy can be expressed as the work of external forces on the
corresponding nodal displacements:

E =
1
2

uT
e Fe. (3)

Substituting nodal forces vector with classical FE formulation (2) the strain energy can
be expressed by the following formula:

E =
1
2

uT
e Keue. (4)

By introducing the strain-displacement transformation matrix, He, which links strains
with translations and rotations in all external nodes:

ue = Heεe, (5)

the strain energy reads:

E =
1
2
εT

e HT
e KeHeεe, (6)

which can be finally simplified to:

E =
1
2
εT

e Hk εe{length}, (7)

where Hk is a matrix consisting of all sought compression, bending and shearing stiffnesses:

Hk =
HT

e Ke He

{length} =


A33 B31 B32 0 0
B13 D11 0 0 0
B23 0 D22 0 0
0 0 0 R44 0
0 0 0 0 R55

, (8)

where A33 is the tensile/compression stiffness along z axis, D11 and D22 are the bending
stiffnesses with respect to the axes 1 and 2 (i.e., x and y axis), R44 and R55 are the shear
stiffnesses of RVE, while B13 = B31 and B23 = B32 are the compressive-bending terms. If
B13 and/or B23 are present in the Hk matrix, it means that the homogenized RVE was not
aligned with the natural axes. In such case, in order to determine the bending stiffness D∗ii
in the neutral axes, one should use the simple relationship to replace D11:

D∗11 = D11 −
B2

13
A33

, (9)
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and D22:

D∗22 = D22 −
B2

23
A33

. (10)

The heart of the method is the transformation matrix Hi determined for each node
(xi = x, yi = y, zi = z), which defines the relationship between nodal displacements and
the nodal state of deformation responsible for unit elongation, bending or shearing:

ui = Hi εi, (11)

or: 
ux
uy
uz
θx
θy


i

=


0 0 −z2/2 z/2 0
0 −z2/2 0 0 z/2
z yz xz x/2 y/2
0 0 −z 0 0
0 −z 0 0 0


i


εz
κx
κy
γxz
γyz


i

. (12)

Thus, the complete shell-to-beam homogenization procedure consists of the following
steps:

1. Build a full stiffness matrix K;
2. Static condensation of the stiffness matrix to the outer nodes (e), in which the boundary

conditions are applied—computing Ke from Equation (1);
3. Determination of a transformation matrix Hi for each outer node from Equation (12);
4. Assemble the matrix He;
5. Determination of the matrix Hk containing the searched RVE stiffnesses reduced to

the structural element.

It is worth noting that in the above procedure, no formal FEM analysis is carried out,
i.e., solving the system of equations, only simple matrix operations are required that lead
to designated stiffnesses in a single step. In the traditional homogenization approach, all
deformation states are applied in a sequence of steps in order to obtain all sought effective
stiffnesses.

3. Results
3.1. Verification of Numerical Homogenization with an Analytical Approach

This section presents the results obtained from numerical analyses (numerical ho-
mogenization) and an analytical approach for profiles from the (i) category example. The
calculations were made for the C and Z profile without holes and no corner-rounding,
depending on the elongation depth and mesh seed size. Table 1 shows the stiffness for the
Z profile with constant mesh size equal to 5 mm, due to the variable elongation depth of
this model. The elongation depth ranged from 5 mm to 400 mm. The last row in the table
presents the analytically determined stiffnesses.

Table 1. Stiffness of Z profile (without holes and no corner-rounding) with 5 mm mesh depending on
the elongation depth (beam axis).

Depth
(mm)

EA(
107 MPa mm2) EIy(

1010 MPa mm4) EIx(
1010 MPa mm4) GzyA(

107 MPa mm2) GzxA(
107 MPa mm2)

400 7.725 5.412 16.540 0.226 0.585
200 7.765 5.334 16.502 0.483 0.950
100 7.850 5.315 16.563 0.804 1.207
50 8.000 5.345 16.770 1.032 1.386
25 8.175 5.428 17.161 1.147 1.537
5 8.446 5.746 17.933 1.594 1.978

Analytically 7.686 5.231 16.323 1.236 1.375
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Figure 7 shows the normalized stiffness of the Z profile without holes and no corner-
rounding, depending on the elongation depth (beam axis). The normalized values were
calculated by dividing the numerical values of stiffnesses via their analytical counterparts.

Figure 7. Plots of normalized stiffness of Z profile (without holes and no corner-rounding) with
5 mm mesh, depending on the elongation depth (beam axis): (a) bending and tensile/compression
stiffnesses; (b) shear stiffness.

The change in stiffness due to mesh seed for the Z profile belonging to the (i) category
example with constant elongation depth of 100 mm is presented in Table 2. The mesh seed
was assumed to vary from 2.5 mm to 15 mm. Figure 8 shows the normalized values of
stiffness calculated on the basis of Table 2.

Table 2. Stiffness of Z profile (without holes and no corner-rounding) with constant elongation depth
of 100 mm, depending on mesh seed.

Seed
(mm)

EA(
107 MPa mm2) EIy(

1010 MPa mm4) EIx(
1010 MPa mm4) GzyA(

107 MPa mm2) GzxA(
107 MPa mm2)

15.0 7.87 5.32 16.59 0.818 1.217
12.5 7.86 5.32 16.58 0.815 1.215
10.0 7.86 5.31 16.57 0.812 1.212
7.5 7.85 5.32 16.57 0.806 1.209
5.0 7.85 5.32 16.56 0.804 1.207
2.5 7.85 5.31 16.55 0.802 1.206

Analytically 7.67 5.23 16.32 1.236 1.375

Figure 8. Plots of normalized stiffness of Z profile (without holes and no corner-rounding) with
constant elongation depth of 100 mm, depending on mesh seed: (a) bending and tensile/compression
stiffnesses; (b) shear stiffness.
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Tables 3 and 4 show the comparison of the stiffness of the C profile without holes and
no corner-rounding obtained from the numerical homogenization and analytical approach.
The values of stiffness for the profile with 5 mm mesh seed and variable elongation depth
are presented in Table 3.

Table 3. Stiffness of C profile (without holes and no corner-rounding) with 5 mm mesh, depending
on the elongation depth.

Depth
(mm)

EA(
107 MPa mm2) EIy(

1010 MPa mm4) EIx(
1010 MPa mm4) GzyA(

107 MPa mm2) GzxA(
107 MPa mm2)

400 9.54 3.77 15.6 0.215 0.596
200 9.58 3.63 15.5 0.566 1.029
100 9.67 3.57 15.5 0.989 1.376
50 9.84 3.58 15.7 1.283 1.639
25 10.1 3.62 16.0 1.438 1.859
5 10.4 3.80 16.8 1.988 2.423

Analytically 9.49 3.46 15.3 1.551 1.583

Table 4. Stiffness of C profile (without holes and no corner-rounding) with constant elongation depth
of 100 mm, depending on mesh seed.

Seed
(mm)

EA(
107 MPa mm2) EIy(

1010 MPa mm4) EIx(
1010 MPa mm4) GzyA(

107 MPa mm2) GzxA(
107 MPa mm2)

15.0 9.69 3.576 15.54 1.01 1.39
12.5 9.68 3.576 15.53 1.00 1.39
10.0 9.68 3.578 15.53 0.996 1.38
7.5 9.67 3.575 15.52 0.994 1.38
5.0 9.67 3.570 15.51 0.989 1.38
2.5 9.66 3.555 15.49 0.987 1.37

Analytically 9.49 3.459 15.27 1.55 1.58

Figure 9 presents the normalized stiffness of the C profile for different elongation
depths from 5 mm to 400 mm and mesh seed equal to 5 mm.

Figure 9. Plots of normalized stiffness of C profile (without holes and no corner-rounding) with
5 mm mesh, depending on the elongation depth: (a) bending and tensile/compression stiffnesses;
(b) shear stiffness.
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Table 4 lists the stiffness due to the mesh size (2.5–15 mm) for the C profile with
no corner-rounding and without holes. The elongation depth was constant and equal to
100 mm.

In addition, the normalized stiffness for this case are presented in Figure 10.

Figure 10. Plots of normalized stiffness of C profile (without holes and no corner-rounding) with
constant elongation depth of 100 mm, depending on mesh seed: (a) bending and tensile/compression
stiffnesses; (b) shear stiffness.

3.2. Numerical Homogenization

In the next step, the numerical homogenization was used to compute profiles from
examples of the (ii) and (iii) categories i.e., Z profile, C profile and square tube with
rounding, were considered. The comparison of stiffnesses obtained from those profiles
with hole and without hole is presented in Table 5.

Table 5. Comparison of stiffnesses obtained from homogenization technique between full and
with-hole profiles of Z, C profile and square tube.

EA(
107 MPa mm2) EIy(

1010 MPa mm4) EIx(
1010 MPa mm4) GzyA(

107 MPa mm2) GzxA(
107 MPa mm2)

Z profile 7.43 4.74 15.1 0.77 1.19
Z profile with hole 5.96 4.71 14.8 0.77 0.52

C profile 9.09 3.17 14.0 0.95 1.35
C profile with hole 7.68 2.71 13.9 0.95 0.75

Square tube 24.2 37.3 37.2 3.74 3.74
Square tube with
hole 20.9 33.4 33.4 2.35 2.34

Figure 11 shows the stiffness reductions calculated by the numerical homogenization
for profiles with rounding, in which periodic holes were assumed in comparison to the
cases without the holes. Z profile (Figure 11a), C profile (Figure 11b) and square tube
(Figure 11c) with hole and without hole were investigated.
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Figure 11. Stiffnesses reductions computed by homogenization technique for: (a) Z profile, (b) C
profile and (c) square tube without and with holes.

4. Discussion

The conducted analyses allowed to obtain information what is the influence of the
RVE depth and mesh size on the stiffness of a thin-walled beam for the cross-sections
considered. Additionally, the influence of holes on the stiffness was studied. Tables 1–4
show the stiffness of C and Z profile without hole and no corner rounding obtained from
numerical homogenization and analytical formulas. The change in the stiffness depending
on different elongation depth and constant mesh size are presented in Tables 1 and 3. The
estimation error of the tensile/compression stiffnesses are the smaller, the greater is the
elongation depth. The estimation error reaches about −0.5% for an elongation of 400 mm.
The bending stiffnesses have the lowest error values for RVE depth approximately 100 mm.
In the whole range of elongations considered it varied from −10% up to −2%. Therefore,
the elongation depth equal to 100 mm was assumed in Section 3.2. Moreover, it can be
observed that the greatest difference in stiffnesses occurred for the shear stiffness with
relation to elongation change, i.e., from−53% up to 86%. The optimal position (lowest value
of error) was obtained for the RVE depth between 25 and 50 mm. The results presented in
Tables 2 and 4 show the stiffness profile (i) category example due to the various mesh size.
Based on these data, it can be seen that the change of normalized stiffness depending on
the seed achieved a maximum at about 0.5 % (see Figures 8 and 10). The normalized value
of stiffness reached a value of several percent for tensile or bending stiffness, dozen percent
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for shear stiffness in the web plane and several dozen (about 37%) for shear stiffness in the
plane of the shelf.

Based on results presented in Section 3.1, it can be observed that the choice of the
elongation depth had a much greater impact on the error of stiffness estimation than the
adopted mesh size. Therefore, it is advised to perform preliminary mesh dependence study
in order to avoid elevated error, while using the homogenization technique presented.

The analyzes presented in the Section 3.2 concern profiles with rounded corners and
both with and without a hole. In all cases analyzed, considering the holes essentially
decreases the tensile/compression stiffnesses, from 14% for square tube up to 20% for Z
profile (see Figure 11). The bending stiffness of Z profile with hole did not differ from that
of full cross-section because the hole is close to the center of gravity (Figure 11a). In C
profile, the decrease of bending stiffness is severe since the web has meaningful eccentricity
from the neutral axis. In square tube, the decrease of bending stiffness in both directions is
exactly the same, this outcome was expected since the profile has a double symmetry of the
cross-section. Moreover, the drop in shear stiffness for this profile was the same in both
planes and amounted to 37%. On the other hand, shear stiffness in the plane of the shelf for
C and Z profiles with hole did not change because the hole is located in the web. Therefore,
the shear stiffness in this plane decreases by 57% for Z profile and 44% for C profile. In
addition, the stiffness was influenced by the size of the hole.

The homogenization method presented was also verified with the experimental results
from the literature, namely, with the study of Nawar et al. [34]. In the study, the static
resistance of castellated steel I beams with hexagonal web openings were considered.
Load-deflection relationships for two types of specimens (labelled as CB-01 and CB-04)
from bending by applying two concentrated forces were reported. The initial part of
the experimental plots, i.e., an elastic range, were used by us to compute the bending
stiffnesses of those samples, which were equal to EIx = 1.6× 1012 MPa mm4 for CB-01
and EIx = 2.7× 1012 MPa mm4 for CB-04. The bending stiffnesses from homogenization
techniques presented in this study were equal to EIx = 1.05× 1012 MPa mm4 for CB-01
and EIx = 3.2× 1012 MPa mm4 for CB-04. It is worth noting, that due to poor resolution of
the plot, in which our region of interest is a few percent of the whole horizontal axis, the
digitalized data may be burdened with error. Moreover, the test replicates the portal frame
structure, thus, the end of the beams tested are not exactly the fixed ends, therefore the
deflection registered may be disturbed. Taking into account the above considerations, it
can be concluded that the results are in good agreement.

The authors are aware of a few limitations of the work. Namely, nonlinear material
properties cannot be taken into account, and therefore only the elastic response of the beam
can be determined (plasticity or failure in the material response cannot be considered).
Moreover, a discretization of the FE model used is crucial to receive trustworthy results
of the numerical homogenization technique proposed. In addition, the periodicity of the
beam enforces the RVE depth in beam axial direction, which may not allow finding the
optimal FE mesh for reliable results.

The homogenization method derived can be also used in the different engineering
disciplines for example to find optimal cross-sections for particular load-bearing elements.
This technique may be used e.g., in computer aided design of optimal purlins or trusses in
structural engineering, road crush barriers in civil engineering or light mounting rails in
environmental engineering, etc. Using homogenization technique proposed can greatly
reduce the computational time which is always crucial in such optimization problems.
In academia, the method has the potential to be still developed by adding more peculiar
conditions, such as periodic boundary conditions, or including nonlinear effects (i.e.,
plasticity, damage) and many others. According to the best knowledge of the authors, the
homogenization method used (both in this article but also in the previous ones [16–18])
is the first to use a condensed computational approach that does not require systematic
reconstruction of all deformation states of the analyzed element, and thus does not require
formal FEM analyzes such as tension, compression, shear and bending of the RVE.
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5. Conclusions

In the paper, the shell-to-beam homogenization technique was developed and pre-
sented. The homogenization technique proposed has been adapted from the already
existing technique based on elastic deformation energy equivalence. The proposed ex-
tension of the homogenization method allows to compute effective stiffnesses of the 3D
thin-walled beam with periodic openings along its length, which drastically simplifies
computations. The main idea utilizes constructing a deformation-displacement relationship
which represents an elastic strain energy equivalence of the full 3D model (homogenized)
by the simplified model (reduced to a structural element).

The effectiveness of the technique proposed was confirmed by three numerical exam-
ples of thin-wall cold-formed Z and C profiles, as well as square tube by the comparison of
the numerical outcomes of the homogenization with their analytical counterparts. One of
the main advantage of the homogenization technique proposed is evidenced in perforated
beam sections, which are costly to be modelled via traditional finite element models or
too complex to get a solution analytically. In the paper, it was proved by the numerical
examples that the technique is adequate to be used in perforated beams with local or
regular holes/openings in the thin-wall profiles, but is not limited to such. The technique
may be extended to be used in other types of structural members, such as hot rolled sec-
tions, wooden elements or encased sections. Future work would be devoted to including
imperfections in the homogenization technique with fuzzy probability.
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