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Abstract: This paper follows up on a reference paper that inspired MDPI’s Topic “Stochastic Ge-
omechanics: From Experimentation to Forward Modeling”, where global and local deformation
effects on sand specimens are fully described from high resolution boundary displacement fields, and
supported by its experimental database, which is open to the scientific community for further study.
This paper introduces the use of spatio-temporal statistics from a subset of such an experimental
database to characterize the specimens’ spatio-temporal displacement fields, populated by repeating
a set of triaxial compression tests on drained, dry, vacuum-consolidated sand specimens, tested
under similar experimentally controlled conditions. A three-dimensional digital image correlation
(3D-DIC) technique was used to measure the specimens’ boundary displacement fields throughout
the course of shearing under axial compression. Spatio-temporal first- and second-order statistics
were computed for different data dimensionality conditions (0D, 0D-T, 1D-T, 3D-T) to identify and
characterize the dominant failure mechanisms across different testing specimens. This allowed us to
quantify localization phenomena’s spatio-temporal uncertainty. Results show that the uncertainty
captured along the deformation process across different dimensionality conditions can be directly
associated with different failure mechanisms, including localization patterns, such as the onset and
evolution of shear, compression, and expansion bands. These spatio-temporal observations show
the dependencies between locally distinctive displacement regions over a specimen’s surface, and
across different times during a specimen’s shearing process. Results of this work provide boundary
spatio-temporal statistics of experimental evidence in sands, which sets the basis for the development
of research on the numerical simulation of sand’s constitutive behavior. Moreover, it allows to
add a new understanding on the effect of uncertainty on the mechanistic interpretation of sands’
kinematic phenomena.

Keywords: statistical analysis; 3D-DIC; spatio-temporal process; localization effects; triaxial compres-
sion test

1. Introduction

Soils in their natural environment have an inherent variability associated with their
geologic origin observed through their specific physical and mechanical properties, and
their stratigraphic spatial distribution. These are associated with a wide range of material
properties. Soils’ variability in particular represents a unique random (space) and stochastic
(time, or space and time) geoscientific and geoengineering challenge, starting with the
quantification of such variability into a metric of uncertainty. For instance, in typical labora-
tory triaxial compression tests of soil specimens, various mechanistic failure modes can
be observed among soils with similar physical characteristics, even if the experimental
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process is conducted under similar controlled conditions [1,2]. The observed variability in
standardized soil tests may be the result of inherent heterogeneity of material, variations
associated with testing apparatus, human-introduced errors, or a combination of these.
Assessing the effect of randomness of soils’ mechanical properties is a challenge, particu-
larly when attempting to identify and characterize their underlying failure mechanisms.
A known limitation to assessing this effect is the cost associated with testing and the lim-
ited knowledge of the effect of geomaterial experimental randomness. For a systematic
characterization of a soil’s mechanical failure process, a statistical description is thus not
only desirable but a necessary complement to conventional laboratory tests, used to define
design parameters, and to investigate the dominant failure mechanisms, including the
uncertainty associated with them when these evolve in space and time.

Soils’ continuum failure begins with local material anomalies as fine as grain scale [3,4].
However, in traditional plane or triaxial compression tests, for instance, materials are
collectively considered “homogeneous”, because failure phenomena between points of
measurement (i.e., load cell and displacement transducer) are in fact averaged material
responses, which produce a “global” identification and characterization of mechanical
failure. To properly characterize the heterogeneous deformation mechanisms of a granular
material, full-field measurements of testing specimens are necessary. The first experimental
measurements of this type can be traced back to as early as the 1960s, when Roscoe [5] used
a 150 kV X-ray apparatus to check the nonuniform behavior of specimens. In the 1980s,
Desrues et al. [6,7] used X-ray tomography to investigate strain localization patterns in
sand, including orientation, thickness, and volumetric behavior. Microstructure and evolv-
ing mechanisms inside of the shear band have been observed as well using a microfocus
X-ray CT system [8–10]. These studies provided a valuable insight into particle interaction
and density variations within a specimen. Nevertheless, limitations in data acquisition
resources have led to most analysis being conducted post-mortem or by capturing data
over wide strain increments; this procedure could lead to misidentification of chronologi-
cally occurring localized strains over each short time period, perhaps resulting in strain
localizations appearing simultaneously in all regions, as noted by Desrues and Viggiani [1].
One significant improvement to overcome this issue is to perform ‘in-situ’ X-ray scanning
during the course of loading [7,10]. More recent studies have even incorporated particle
identification and tracking algorithms to assess the link between grain morphology and
localization effects [11–13].

Over the last two decades, the 3D digital image correlation (3D-DIC) technique coupled
with experimental testing of geomaterials has proved to be an effective method to quantify
high-resolution (space), high-frequency (time) grain-scale displacement fields in a spatio-
temporal continuum representation of the specimen’s boundary. The result of 3D-DIC
analysis shows micro- to meso-scale boundary displacement fields, which allows for the
identification of deformation characteristics of particle to groups of soil particles. The
relatively convenient implementation and nearly spatio-temporal continuous description
of the kinematics of this technique make it increasingly popular for studying geomaterial
mechanistic failure mechanisms [14–16]. For example, Rechenmacher [17] used DIC to
quantify the triggering of the formation of persistent local effects such as shear bands
in 2D, and to investigate kinematic properties within shear bands of sand specimens
undergoing plane strain deformation. Furthermore, Rechenmacher et al. [3,18,19] evaluated
shear, rotational, and volumetric strains; build-up and collapse of force chains; and vortex
structures on a series of deformed soil samples, in a spatio-temporal manner (2D-T).

In spite of rapid proliferation of experimental techniques and processing methods to
account for boundary and full-body continuum material characterization, proven research
technologies have not yet been standardized. At the field scale, spatial variability of
soil properties has been modeled by the use of random field theory through the scale
of fluctuation [20,21]. However, at the laboratory specimen scale, material heterogeneity
is not commonly accounted for to calibrate constitutive models and to better reproduce
failure mechanisms. It is accounted for even less often to systematically assimilate a
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statistical characterization of soil spatio-temporal deformation patterns after testing the
same geomaterial under the same experimental conditions, to better predict “not-sampled
but likely” failure mechanisms.

A focus on local material behavior is an inherent acknowledgment of random or
heterogenous effects, which naturally lead to variable failure mechanisms, contrary to the
homogeneous geomaterial assumption made for most constitutive models. Additionally,
a good example of investigation should follow a multi-level inspection of a deformation
process across different scales [22], which indicates that multi-scale statistical investiga-
tion can help improve our current understanding of failure mechanisms of soil across
different spatio-temporal scales. We hypothesize that such an approach will contribute
to a better definition of soil constitutive models and a better assessment of the impact
of soils’ uncertainty characterization on geoscientific and geoengineering processes and
structural designs.

This paper introduces a subset from a comprehensive database that provides evidence
about the effect of localization on sands’ constitutive behavior, derived from the use of
the 3D-DIC technique [2,23,24]. In Section 2, we present the data sampling process: a data
ensemble of spatio-temporal displacement fields populated from repeating a set of triaxial
compression tests of drained, dry, vacuum-consolidated heterogenous sand specimens
tested under similar experimentally controlled conditions. In Section 3, the statistical
characterizations are presented in different dimensionality modes following an inductive
approach: (a) the 0D-0T data ensemble represents the sand tests’ “global” mechanical
properties, (b) the 0D-T data ensemble represents the sand tests’ axial stress–strain and
the axial strain–volumetric strain curves, (c) the 1D-T data ensemble represents the sand
tests’ boundary vertical and radial displacement curves, and (d) the 3D-T data ensemble
represents the sands tests’ boundary 3D displacement fields’ surfaces.

For each dimensionality condition defined above, a standard descriptive-statistics
analysis was formulated, consisting of first- (mean and standard deviation analysis) and
second-order (correlation structural analysis) statistics, as applicable to that condition’s
spatio-temporal nature. The purpose of these statistics is to produce a new set of inferences
focused on failure mechanisms and their corresponding local effects as they evolve in space
and time. The results provide unique statistical insights into spatio-temporal displacement
fields and localization effects for the same reconstituted sand, tested under the same
laboratory-controlled triaxial compression conditions. When this new set of inferences
(1D-T and 3D-T) is added to the standard interpretation of triaxial tests (0D-0T and 0D-T),
a new set of interpretations and knowledge is produced that can serve as the basis for
developing statistical “virtual” simulations statistically consistent with the “real” laboratory
experimental data, which can further reveal the impact of material heterogeneity on soils’
constitutive behaviors.

2. Soil Experiments
2.1. Triaxial Compression Test

The data ensemble introduced in this work is a subset of an experimental database
that includes a series of drained, vacuum-consolidated triaxial compression tests made
fully available in a preceding paper by Medina-Cetina et al. [24]. Included are tests using
construction sand graded as SP, selected to reconstitute sand specimens because it had
a color spectrum appropriate for pattern recognition during DIC analysis. Table 1 gives
sample characteristics of 17 nominally similar tests in terms of aspect ratio, initial density,
relative density, friction angle, and stress ratio at peak state. Most specimens were consti-
tuted through vibratory compaction in three uniformly compacting layers, and four were
prepared using dry pluviation with controlled drop-height to reach a similar initial density.
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Table 1. Summary of sample characteristics.

Test Name Aspect Ratio Initial Density
(kg/m3)

Relative Density
(%)

Friction Angle
(Deg)

Peak
(σ
′
1/σ

′
3) Sample Preparation

092903b 2.18 1710.95 91.09 49.51 7.35 Vibratory
compaction

093003b 2.19 1696.00 85.96 47.98 6.78 Vibratory
compaction

100103a 2.21 1702.22 88.10 48.66 7.03 Vibratory
compaction

100103b 2.19 1717.13 93.18 47.96 6.77 Vibratory
compaction

100103d 2.18 1702.41 88.17 47.37 6.57 Vibratory
compaction

100203a 2.20 1715.32 92.57 48.90 7.12 Vibratory
compaction

100203b 2.17 1711.91 91.41 47.96 6.77 Vibratory
compaction

100303b 2.22 1718.70 93.71 48.56 6.98 Vibratory
compaction

120604c 2.25 1717.48 93.30 48.89 7.11 Vibratory
compaction

120904b 2.25 1720.40 94.28 48.76 5.86 Vibratory
compaction

120904c 2.25 1713.13 91.83 48.77 5.86 Vibratory
compaction

120904d 2.24 1707.89 90.04 47.68 5.44 Vibratory
compaction

120904e 2.25 1718.70 93.71 47.79 5.51 Vibratory
compaction

101204a 2.24 1708.03 90.09 48.03 6.89 Dry pluviation
120604a 2.23 1721.06 94.50 49.46 7.33 Dry pluviation
120604b 2.25 1715.13 92.50 48.54 6.98 Dry pluviation
121304a 2.24 1721.73 94.73 49.30 7.27 Dry pluviation
First-order statistics of experimental data ensemble
Mean 2.22 1712.83 91.72 48.48 6.68 -
Standard
deviation 0.03 7.20 2.45 0.62 0.61 -

The triaxial frame setting was similar to that of the conventional system except that the
Plexiglas cell was removed to avoid light reflection during stereo-image capture of the shear-
ing. The testing layout was presented in Figure 1 of the paper by Medina-Cetina et al. [24].
All specimens were vacuum consolidated at 40 KPa and compressed under a strain control
rate of 0.2%/min. Figure 1 presents the global stress–strain and volumetric strain responses
for the 17 tests considered for this paper’s ensemble. It shows how variability grows as soon
as the compression starts, indicating a heteroscedastic behavior up to the stress peak. In the
post-peak regime, data variability seems homoscedastic, in general (Figure 1a), although
with some continued scattering for the volumetric strain (Figure 1b). Because of the triaxial
compression setting used for testing, the volumetric strain curves were computed based on
3D-DIC boundary measurements. Details about the method used to compute these curves
are discussed in [2,24]. Further investigation of the specimen’s boundary local effects
associated with likely failure mechanisms would require a high-resolution description of
the full-field spatio-temporal displacement fields, along with its spatio-temporal statistical
analysis. This type of analysis is presented in following sections, from the lowest to the
highest dimensionality possible, allowing the relationship between the variability of the
material response and the observed boundary local deformation effects to be explored.



Materials 2022, 15, 2189 5 of 23
Materials 2022, 15, x FOR PEER REVIEW 5 of 24 
 

 

 

Figure 1. Triaxial stress–strain curves of the 17-test ensemble (a) and axial strain–volumetric strain 

curves of the 17-test ensemble (b). 

2.2. 3D-DIC 

This work is based on the use of the 3D-DIC technique to measure high-resolution 

boundary displacement fields during the shearing of all sand specimens. The 3D imaging 

system consisted of two digital cameras set up in front of a soil specimen that had under-

gone a triaxial compression test. During the process of shearing, these two cameras took 

synchronous images every 15 s (0.05% of axial strain), producing a set of stereo digitized 

images using the software VIC-Snap by Correlated Solutions Inc. (Irmo, SC, USA) [25]. To 

assimilate graphical information into full-field displacements, subsets of pixels between 

two digital images were identified and correlated through the DIC algorithm to produce 

high-resolution spatio-temporal displacement fields [26]. The resulting dataset after this 

step is a set of incremental (Eulerian) DIC displacement data, which had to be “pieced 

together” [2,24] to produce displacement fields covering approximately one-fourth of the 

cylindrical sector. 

Figure 2 is an example of 3D-DIC displacement fields superimposed over a speci-

men’s deformed boundary shape (test 092903b) at 7% of axial strain. The first row (a) is a 

“snapshot” of the spatio-temporal 3D displacement fields under the Cartesian coordinate 

system. Displacement fields, from left to right, are u, v, and w (i.e., projection of Cartesian 

vector components, in millimeters), which represent local displacements in the horizontal, 

vertical, and out-of-plane directions, respectively. Displacement component u shows neg-

ative and positive displacements, indicating horizontal motion in the left and right direc-

tions. Displacement component v shows vertical motion of the specimen, which is evident 

at the bottom because of the upward loading method, and close to zero displacements at 

the top because of the fixed boundary at the specimen’s top. Displacement component w 

shows significant out-of-plane motion at the middle of the specimen, which can be asso-

ciated with the specimen’s bulging effects during shearing. The second row (b) of Figure 

2 is a similar “snapshot” of the 3D displacement field as in the first row (a) but using 

cylindrical coordinates. Displacement components r, t, and v represent, from left to right, 

projection of the displacement vector along radial, tangential, and vertical directions (i.e., 

projection of cylindrical vector components, in millimeters), respectively. Radial displace-

ments are positive, representing the specimen’s radial expansion, which is maximum in 

the middle and close to zero at the bottom and top of the specimen because of the friction 

Figure 1. Triaxial stress–strain curves of the 17-test ensemble (a) and axial strain–volumetric strain
curves of the 17-test ensemble (b).

2.2. 3D-DIC

This work is based on the use of the 3D-DIC technique to measure high-resolution
boundary displacement fields during the shearing of all sand specimens. The 3D imaging
system consisted of two digital cameras set up in front of a soil specimen that had under-
gone a triaxial compression test. During the process of shearing, these two cameras took
synchronous images every 15 s (0.05% of axial strain), producing a set of stereo digitized
images using the software VIC-Snap by Correlated Solutions Inc. (Irmo, SC, USA) [25]. To
assimilate graphical information into full-field displacements, subsets of pixels between
two digital images were identified and correlated through the DIC algorithm to produce
high-resolution spatio-temporal displacement fields [26]. The resulting dataset after this
step is a set of incremental (Eulerian) DIC displacement data, which had to be “pieced
together” [2,24] to produce displacement fields covering approximately one-fourth of the
cylindrical sector.

Figure 2 is an example of 3D-DIC displacement fields superimposed over a specimen’s
deformed boundary shape (test 092903b) at 7% of axial strain. The first row (a) is a “snap-
shot” of the spatio-temporal 3D displacement fields under the Cartesian coordinate system.
Displacement fields, from left to right, are u, v, and w (i.e., projection of Cartesian vector
components, in millimeters), which represent local displacements in the horizontal, verti-
cal, and out-of-plane directions, respectively. Displacement component u shows negative
and positive displacements, indicating horizontal motion in the left and right directions.
Displacement component v shows vertical motion of the specimen, which is evident at the
bottom because of the upward loading method, and close to zero displacements at the top
because of the fixed boundary at the specimen’s top. Displacement component w shows
significant out-of-plane motion at the middle of the specimen, which can be associated
with the specimen’s bulging effects during shearing. The second row (b) of Figure 2 is a
similar “snapshot” of the 3D displacement field as in the first row (a) but using cylindrical
coordinates. Displacement components r, t, and v represent, from left to right, projection
of the displacement vector along radial, tangential, and vertical directions (i.e., projection
of cylindrical vector components, in millimeters), respectively. Radial displacements are
positive, representing the specimen’s radial expansion, which is maximum in the middle
and close to zero at the bottom and top of the specimen because of the friction effect at
each end. The tangential displacement field ranges from negative to positive, representing
the displacement component tangential to the boundary of the specimen. The vertical
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displacement component shows positive displacements only, as in the same projection of
vector component v in the Cartesian representation (middle figure on row a).
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axial directions.

3. Statistical Characterization of Spatio-Temporal Boundary Displacement Fields
3.1. “0D-0T” Data Ensemble

This section introduces a summary of the statistical characterization of the main
mechanical parameters computed from the material stress–strain and volumetric strain
responses. Conventional constitutive parameters, including Young’s modulus E, Poisson’s
ratio ν, friction angle ϕ, and dilation angle ψ, were estimated for each specimen from
the global stress–strain and volumetric strain curves presented in Figure 1. Table 2 is a
summary of these parameters’ first-order statistics (there is no characterization of space
or time in these parameters). Figure 3 presents the empirical cumulative density function
(eCDF) of each of these parameters, together with Gaussian and lognormal fitting curves
(using statistics from Table 2), for descriptive comparison purposes only (probabilistic
modeling of each parameter is out of the scope of this paper).



Materials 2022, 15, 2189 7 of 23

Table 2. First-order statistics of mechanical constitutive parameters.

Statistics Young’s Modulus
(MPa) Poisson’s Ratio Friction Angle

(Deg)
Dilation Angle

(Deg)

Mean 25.70 0.25 43.89 21.23
Standard
deviation 5.70 0.16 1.19 2.60

Minimum 20.67 0.07 41.74 12.94
Maximum 40.68 0.49 47.14 24.55
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and lognormal model fits (as descriptive reference only): Young’s modulus (a), Poisson’s ratio
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3.2. “0D-T” Data Ensemble

The “0D-T” data ensemble represents the axial stress–strain and axial strain–volumetric
strain curves ensemble shown in Figure 1, from which the first-order statistics (mean and
standard deviation) were calculated. First-order statistics of the global deviatoric stress
and volumetric strain as a function of axial strain for all tests are depicted in Figure 4a,b,
respectively. The axial strain ranges from 0 to 9.6%, which was determined according
to the extent of sampled DIC data available for all tests. Figure 4a shows the averaged
stress response reaches its peak at close to 3.2% of the axial strain, with mean and standard
deviation equal to 237.89 and 8.92 kPa, respectively. After the peak stress, the softening
of stress–strain material responses shows a nominally constant variation (homoscedastic)
through the last shearing stage (axial strain of 9.6%). Figure 4b shows that volumetric
dilation starts developing during the elastic phase. Intersection of the compression and
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dilation linear trends happens before 1% of the axial strain, whereas the critical state seems
to be reached around 8% of the axial strain, as indicated by the intersection of the linear fits.
Variability of the volumetric strain seems to grow as the test progresses, as indicated by the
standard deviation band plotted around the mean (heteroscedastic); it is hypothesized that
variability is associated with the development of competing triggering failure mechanisms,
as discussed in subsequent sections.
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In addition to mean and standard deviation, correlation analysis (second-order statis-
tics) was performed on the same data ensembles (axial stress–strain and axial strain–
volumetric strain curves) in order to characterize the correlation structure of global material
responses. It was proposed to use the classical linear Pearson correlation coefficient to
estimate the degree of association between vectors of deviatoric stresses or volumetric
strains at different loading levels (i.e., axial strains). To calculate the correlation coefficient,
for instance, of any given two random variables—Si(εa,i) and Sj

(
εa,j

)
—which represent

two deviatoric stress vectors defined at axial strain levels εa,i and εa,j, respectively, the
covariance between Si and Sj can be defined as:

cov(Si, Sj) = E[(Si − E(Si)(Sj − E(Sj)] (1)

The covariance can be normalized to produce the correlation coefficient,

ρ(Si, Sj) =
cov(Si, Sj)

σ(Si)σ(Sj)
(2)

where σ(Si) and σ
(
Sj
)

represent the standard deviation of deviatoric stress data from
random variables Si and Sj, respectively.

Figure 5 shows correlation coefficients computed from the axial stress–strain data
ensemble and axial strain–volumetric strain data ensemble, respectively. X axes in Figure 5
represent lags of axial strain, δεa . When δεa = 0, it corresponds to auto-correlations of
vectors of data corresponding to 48 different axial strain levels (i.e., from 0.2 to 9.6% with
an increment step of 0.2); thus, 48 correlation coefficients are calculated. On the other
hand, when δεa = 9.4, only one correlation coefficient can be calculated that corresponds to
vectors of data corresponding to axial strain at 0.2 and 9.6%, respectively.
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strain–volumetric strain data ensemble (b).

3.3. “1D-T” Data Ensemble
3.3.1. “1D-T” Vertical Displacement Field

The first dimensional spatio-temporal representation of the 3D-DIC data ensemble is
its 1D-T data ensemble representation. This ensemble consists of the averaged vertical and
radial displacement fields at the same height of the specimen, and across the vertical profile
of each specimen. This averaged representation is produced in order to better interpret
the occurrence of local deformation effects on the specimen’s boundary, as if data could be
collected in 1D-T only. Vertical profiles presented here represent data interpolated from
each test taken at every 0.04 of normalized specimen height. At the top of the specimen,
data are incomplete because retrieving data is difficult close to the boundary of the sand
specimen and the porous stone for some tests, which defined the maximum height of data
available for the full ensemble (maximum height for which data are available for all of the
data ensemble). The range of axial strain for this analysis is 0.0 to 9.6%, with 0.2% (1 min)
incremental steps. Figure 6a presents 1D averaged vertical-displacement data ensemble
profiles, where the specimen height was normalized based on initial sample geometry, at
four loading stages: 0.8%, 3.2%, 7.0%, and 9.6% of axial strain (representing compression
stages of elastic, peak, softening, and critical state, respectively). Figure 6b,c present the
spatio-temporal first-order statistics of datasets introduced in Figure 6a. These figures
show that after the peak stress (εa = 3.2%), the bottom part, representing nearly 20% of
specimen height, exhibits approximately homogeneous upward displacement (Figure 6b).
This homogeneous deformation can be associated with relatively higher density at the
lower part of the specimen (observed particularly in samples prepared using the vibratory-
compaction method). Above the normalized height of 0.2, deformation patterns show
a linear trend, which is gradually reduced to zero at the top of the specimen (see axial
strain profiles at 7.0 and 9.6% of axial strain). The profile of the standard deviation of the
averaged vertical displacement is presented in Figure 6c, and shows how randomness
of the averaged vertical displacement is nonuniform and reaches its peak consistently at
ynorm = 0.75, indicating a perturbation that can be associated with a local deformation
effect (e.g., shear or compression band). All testing specimens were fixed at the top and
loaded from the bottom with the same loading rate, which explains the consistent low
uncertainty at zero height.
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Figure 6. (a) Averaged vertical data ensembles calculated from 17 tests at four loading stages—0.8%,
3.2%, 7.0%, and 9.6% of axial strain—for 1D-T data ensembles. The vertical displacement at each
specimen height is estimated through averaged vertical displacements that are captured by 3D-DIC.
(b) Mean profiles of data ensembles of averaged vertical displacements shown in (a). (c) Standard-
deviation profiles of data ensembles of averaged vertical displacements shown in (a).

To calculate the cross-correlation for the 1D-T data ensemble, for instance, we used two
random variables, Vi(ynrom,i, ti) and Vj

(
ynrom,j, tj

)
, representing two 1D-T displacement

vectors defined at normalized locations ynrom,i and ynrom,j and specific loading times ti and
tj, respectively. The covariance given to Vi and Vj can be defined as:

cov(Vi, Vj) = E[(Vi − E(Vi)(Vj − E(Vj)] (3)

The covariance can be normalized to produce the correlation coefficient:

ρ(Vi, Vj) =
cov(Vi, Vj)

σ(Vi)σ(Vj)
(4)

where σ(Vi) and σ
(
Vj
)

represent the standard deviation of displacement data from random
variables Vi and Vj, respectively.

Figure 7a,b show two cases to illustrate the computation of the auto- and cross-correlation
analyses. Auto-correlation denotes correlation only within the same data ensemble at a
given time—namely, time lag δt = 0 min—whereas cross-correlation denotes correlation
computed between data ensembles at different times (i.e., loading stages)—namely, time
lags δt 6= 0 min. Figure 7 presents both auto- and cross-correlation cases for the 1D-T
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data ensemble. Figure 7a presents the computation of two correlation datasets distanced
δynorm located at normalized heights of 0.2 and 0.8 at 7.0% of the axial strain. Since δynorm
can be measured in either direction depending on which vector is defined as Vi(ynrom,i, ti)
and Vj

(
ynrom,j, tj

)
(along the normalized height), thus δynorm can have both positive and

negative values. For the auto-correlation case, as highlighted by the squared and triangle
symbols located in the positive and negative sides of δynorm in Figure 6a, the correlation
structure is symmetrical with respect to the horizontal line δynorm = 0. In the case of
cross-correlation (between data ensembles at 7.0% and 9.6% of axial strain), the correlation
structure is not symmetric (Figure 7b).
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Figure 7. Cases illustrating computing correlation coefficients toward the 1D-T vertical displacement
field. (a) Calculation of auto-correlations of data ensemble at loading stage of 7.0% of axial strain.
Red triangles represent the computing case that has positive spatial lag, and blue squares represent
the computing case that has negative spatial lag. The resulting correlation coefficients are plotted
against spatial lags along the vertical profile of the specimen. (b) Calculation of cross-correlations of
data ensembles at loading stages of 7.0 and 9.6% of axial strain. The procedure is similar to that of
Figure 6a, except that time lag, δt, is non-zero and needs to be interpreted from two loading stages.
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To better represent the second-order statistics of the 1D-T data ensemble, all 48 stages
of correlation fields were calculated, from strain levels 0.0 to 9.6%, including both auto-
and cross-correlations. The result is a cloud of correlation points defined in spatial lags,
δynorm , ranging between −1 and 1, and in time lags, δt, ranging from 0 to 48 min (only
positive temporal lag is considered due to correlation symmetry). This representation of the
general trend of the correlation structure of the 1D-T data ensemble is shown in Figure 8,
which shows the projections of a cubic spline interpolation curve fitting the cloud of points
describing the spatio-temporal correlation structure of the displacement field, where the
horizontal and vertical axes represent the temporal and spatial lags, respectively, and the
colour bar indicates the value of the correlation coefficient, ρ

(
δynorm , δt

)
. The correlation plot

follows the approximate symmetrical shape with respect to the axis δynorm = 0, following
the description of the computation of ρ shown in Figure 7. There is some skew beyond
the δt= 10 min in the time-lag domain (equivalent to ∆εa = 2%). Correlation values higher
than, for example, ρ > |±0.75| extend to a vertical lag distance of δynorm < |±0.33| and to a
time lag of δt < |±20| (time-lag equivalent to ±2.0% of axial strain). Beyond this region,
the influence of local data drops in space and time because of randomness effects associated
with the development of local deformation phenomena.

Materials 2022, 15, x FOR PEER REVIEW 12 of 24 
 

 

To better represent the second-order statistics of the 1D-T data ensemble, all 48 stages 

of correlation fields were calculated, from strain levels 0.0 to 9.6%, including both auto- 

and cross-correlations. The result is a cloud of correlation points defined in spatial lags, 

𝛿𝑦𝑛𝑜𝑟𝑚
, ranging between −1 and 1, and in time lags, 𝛿𝑡, ranging from 0 to 48 min (only 

positive temporal lag is considered due to correlation symmetry). This representation of 

the general trend of the correlation structure of the 1D-T data ensemble is shown in Figure 

8, which shows the projections of a cubic spline interpolation curve fitting the cloud of 

points describing the spatio-temporal correlation structure of the displacement field, 

where the horizontal and vertical axes represent the temporal and spatial lags, respec-

tively, and the colour bar indicates the value of the correlation coefficient, 𝜌(𝛿𝑦𝑛𝑜𝑟𝑚
, 𝛿𝑡). 

The correlation plot follows the approximate symmetrical shape with respect to the axis 

𝛿𝑦𝑛𝑜𝑟𝑚
= 0, following the description of the computation of 𝜌 shown in Figure 7. There is 

some skew beyond the 𝛿𝑡= 10 min in the time-lag domain (equivalent to 𝛥𝜀𝑎 = 2%). Cor-

relation values higher than, for example, 𝜌 > |±0.75| extend to a vertical lag distance of 

𝛿𝑦𝑛𝑜𝑟𝑚
< |±0.33| and to a time lag of 𝛿𝑡 < |±20| (time-lag equivalent to ±2.0% of axial 

strain). Beyond this region, the influence of local data drops in space and time because of 

randomness effects associated with the development of local deformation phenomena. 

This set of results indicates that localization effects along the specimen’s boundary 

surface cannot be fully characterized by the interpretation of the first-order statistics (Fig-

ure 6). As previously stated, however, testing specimens were all prepared with high rel-

ative density (as shown in Table 1), which can introduce shear or expansion bands [17,27]. 

If only 1D-T data are available, first-order statistics would be expected to show this type 

of failure at the normalized height of 𝑦𝑛𝑜𝑟𝑚 = 0.2 and at 𝑦𝑛𝑜𝑟𝑚 = 0.75 (Figure 6), which 

corresponds approximately to the heights of transition of the compaction layers for the 

vibratory-compaction specimens. 

 

Figure 8. Smooth hypersurface representing the spatio-temporal empirical correlation structure for 

the 1D-T data ensemble of averaged vertical displacements. 

3.3.2. “1D-T” Radial Displacement Field 

The 1D-T averaged radial displacement field presents the sequence of deformation 

similar to the averaged vertical displacement shown in the previous section. The defor-

mation evolution makes explicit the effect of the friction end at the bottom of the specimen 

(Figure 9a), indicated by a zero radial displacement induced by the contact between sand 

and the porous stone [28]. At the top of the specimen, data are incomplete, as mentioned 

Figure 8. Smooth hypersurface representing the spatio-temporal empirical correlation structure for
the 1D-T data ensemble of averaged vertical displacements.

This set of results indicates that localization effects along the specimen’s boundary sur-
face cannot be fully characterized by the interpretation of the first-order statistics (Figure 6).
As previously stated, however, testing specimens were all prepared with high relative
density (as shown in Table 1), which can introduce shear or expansion bands [17,27]. If
only 1D-T data are available, first-order statistics would be expected to show this type
of failure at the normalized height of ynorm = 0.2 and at ynorm = 0.75 (Figure 6), which
corresponds approximately to the heights of transition of the compaction layers for the
vibratory-compaction specimens.

3.3.2. “1D-T” Radial Displacement Field

The 1D-T averaged radial displacement field presents the sequence of deformation
similar to the averaged vertical displacement shown in the previous section. The deforma-
tion evolution makes explicit the effect of the friction end at the bottom of the specimen
(Figure 9a), indicated by a zero radial displacement induced by the contact between sand
and the porous stone [28]. At the top of the specimen, data are incomplete, as mentioned be-
fore, because of DIC’s inability to retrieve data close to the boundary of the sand specimen
and the porous stone. A visual inspection of the likely extension of the averaged radial dis-
placements shows that some data profiles would not converge to zero, however, which may
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be associated with likely lateral displacement or tilting of the specimen, induced either by
the boundary conditions (seating of top plate) or by local material heterogeneity. The radial
displacement at the center of the specimen (around mid-height of the specimen) generally
increases, leading to a “bulging” effect. First-order statistics of this displacement field are
presented in Figure 9a,b, which capture the progression of the mean and standard devia-
tion of averaged radial displacements, respectively. Progression of the mean (Figure 9b)
shows a symmetrical behavior with respect to the mid-height of the specimens, providing
a sense of uniformity. Figure 9c, on the other hand, shows significant local variabilities at
about ynorm = 0.3 and ynorm = 0.80, which reflects an increase in randomness around the
heights where soil layers transition for the vibratory-compaction specimens, suggesting
local deformation effects were likely induced by material heterogeneity.
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Figure 9. (a) 1D-T data ensembles of averaged radial displacements calculated from 17 tests at four
loading stages—0.8%, 3.2%, 7.0%, and 9.6% of axial strain. The radial displacement at each specimen
height is estimated through averaged radial displacements that are captured by 3D-DIC. (b) Mean of
data ensembles shown in (a). (c) Standard deviation of data ensembles shown in (a).

Figure 10 is similar to Figure 8, but is for the second-order statistics of the spatio-
temporal correlation or correlation structure of the 1D-T averaged radial displacement data
ensemble. Correlation values higher than, for example, ρ > |±0.75| extend to a vertical lag
distance of δynorm < |±0.20| and to a time lag of δt < |±20| (time lag equivalent to ±2.0% of
axial strain). Beyond this region, the influence of local data drops in space and time, due to
the randomness effects associated with the development of local deformation phenomena.
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In addition, correlation becomes negative for regions at δynorm = ±[0.5, 0.75], indicating
generally opposite radial deforming trends for two points at this range of spacing. This
can be interpreted as being a trend for any two points spaced at such distance along the
specimen’s vertical direction to exhibit opposite radial deformation behaviors.
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Similar to the averaged vertical displacement fields, localization effects along the
specimen’s boundary surface cannot be fully characterized by interpreting first-order
statistics (Figure 9). If only 1D-T data are available, first-order statistics should indicate
that this type of failure would show at ynorm = 0.3 and at ynorm = 0.80 (Figure 9), which
corresponds approximately to the heights of transition of the compaction layers for the
vibratory-compaction specimens.

3.4. “3D-T” Data Ensemble

The 3D-T data ensemble consists of a set of spatio-temporal displacement fields cap-
tured by the 3D-DIC technique over the boundary of sand specimens during the course
of triaxial compression. These experimental data include the Cartesian components of
hundreds of thousands of displacement vectors on a segment of the cylindrical surface
of the specimens [2,23,26]. One single test produces three sequences of clouds of points
representing each of the cumulative displacement fields, u(xnorm, ynorm), v(xnorm, ynorm),
w(xnorm, ynorm), where xnorm and ynorm represent the horizontal and vertical normalized
coordinates (i.e., material coordinates) with respect to the diameter and the height of
the specimen, respectively (each displacement component is projected in a vertical plane
formed by the xnorm and ynorm axis). Since each test produces a different spatial calibration
and captures different boundary data coverage areas over each sand specimen, a uniform
grid of spatio-temporal points common to the surfaces covered by all tests was defined
(common overlapped area at a given space and time), where each displacement field was
interpolated on the mesh grid to produce a uniform spatio-temporal data ensemble shared
by the three components of the displacement field [2]. This configuration supports the com-
putation of the ensemble’s first- and second-order statistics for each displacement field at
the same point in space and time. In addition, this work presents two different projections
of the same 3D-DIC data ensemble: one for Cartesian components and one for cylindrical
components, as shown in Figures 11 and 12, respectively (clouds of points). One advantage
of evaluating displacements under the cylindrical coordinate is that all triaxial samples in
this study were constituted into a cylindrical shape; thus, displacements decomposed along
radial, tangential, and axial directions can explicitly show how deformation changed the
specimen geometry, in contrast with displacements under the Cartesian coordinates, which
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show the deformation projected onto rectangular planes. Video clips of the deformation
sequences of both components’ representations can be found at the Texas Data Repos-
itory (https://dataverse.tdl.org/dataverse/SGL-MDPI-Topic-StochasticGeomechancis-
ForwardModeling accessed on 9 March 2022) as described in [26].
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Figure 11. A 3D-T data ensemble (clouds of points) under the Cartesian coordinate system at four
loading stages—0.8%, 3.2%, 7.0%, and 9.6% of axial strain. Coordinates are normalized according to
the specimen’s diameter. (a) Horizontal (u) displacement data ensembles. (b) Vertical (v) displacement
data ensembles. (c) Out-of-plane (w) displacement data ensembles.
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data ensembles. (c) Axial (v) displacement data ensembles.
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3.4.1. First-Order Statistics

First-order statistics of the 3D-T data ensemble are presented in Figures 13 and 14 for
the Cartesian and cylindrical coordinate systems, respectively. Each column in these figures
presents a given loading stage, and each row indicates either the mean or standard devi-
ation of a displacement’s data ensemble. Under the Cartesian coordinates, the mean plot
of u(xnorm, ynorm) (horizontal) displacement fields (Figure 13) shows that the specimen is
primarily expanded from its vertical center line, and that the material motion is toward two
opposite directions. The standard deviation of displacements shows a significant increase
starting at εa = 7.0%, with highest variability in diagonal parallel patterns, indicating the
presence of likely competing local deformation effects such as shear bands. Along the vertical
direction, the mean surfaces of v(xnorm, ynorm) displacement fields show a relatively smooth
and uniform displacement sequence, consistent with what was depicted in Figure 6 for the
1D-T data ensemble, indicating a uniform displacement from the bottom, from where the
specimen is being loaded, and zero vertical displacement at the top. The corresponding stan-
dard deviation shows a significant increase starting at εa = 7.0% of the axial strain. A unique
pattern is evident in the diagonal direction, consistent with that for the u(xnorm, ynorm) compo-
nent. Patterns in the w(xnorm, ynorm) field (out-of-plane direction) highlight the bulging effect,
which can be observed at the mid-height of the specimen. The standard deviation shows
increasing values at εa = 7.0%, around the heights where the compaction layers are located,
indicating a likely local effect due to variability of the displacement component.

Figure 14 presents results of 3D-T data ensembles under the cylindrical coordinates.
The mean field of radial displacement, r(xnorm, ynorm), is observed at the mid-height of
the specimen, and its standard deviation shows peaks around the vertical heights where
the transition between the soil layers occurs in the vibratory-compaction specimens, in-
dicating significant variation in the displacement fields in both regions, which can be
associated with likely local deformation effects. The tangential displacements field (mean
of t(xnorm, ynorm)) indicates that along the off-diagonal direction, soil clusters tend to rotate
in a counterclockwise manner (positive value in tangential displacement) that agrees well
with previous findings about shear bands’ development [17,27]. The uncertainty of the
tangential displacement field is consistent with that of the horizontal displacement field,
u(xnorm, ynorm), observed in the Cartesian coordinate representation (Figure 13), where
the predominant pattern of shear band formation seems to be associated with the highest
values of standard deviation. The representation of the vertical displacement component,
v(xnorm, ynorm), is the same as the one presented for Cartesian coordinates, indicating a
uniform displacement progression by the mean, and that the highest uncertainty values are
along the same diagonal, where hypothesized to capture a pattern of shear band formation.

3.4.2. Second-Order Statistics

To calculate the empirical correlation structure of 3D-T displacement fields, each
coordinate point, pi, is assumed to be a random variable defined in space and time:
pi = (xnorm,i, ynorm,i, ti). Therefore, the correlation coefficient between two random vari-
ables can be defined as a function of their spatio-temporal lag distance (δxnorm , δynorm , δt). The
calculation of the empirical covariance, for instance, for the u(xnorm, ynorm) displacement
field, can be defined as:

covu(p1, p2) = E{[u(p1)− u(p1)][u(p2)− u(p2)]} =
1
N

N

∑
i=1

[ui(p1)− u(p1)][ui(p2)− u(p2)] (5)

where p1 and p2 represent two coordinates:(xnorm,1, ynorm,1, ti) and (xnorm,2, ynorm,2, ti), re-
spectively. u represents the displacement data at point pi and u represents the data mean at
point pi. The empirical correlation coefficient is thus calculated as:

ρu(p1, p2) =
covu(p1, p2)

σu(p1)σu(p2)
(6)

where σu(pi) means the standard deviation of the displacement data at point pi.
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Figure 15 illustrates the process of computing the spatio-temporal correlation coeffi-
cient from the 3D-T data ensemble, using as an example the u displacement field at two
different deforming stages (7.0 and 9.6%). The floor of the 3D plots represents the plane
(xnorm, ynorm) and the vertical axis represents the u component. Figure 15a,c show two
displacement vectors, u(P1) and u(P2), at the two deformation levels selected. Each vector
consists of 17 data entries that are the result of triaxial compression tests. The spatial lags
δxnorm = −0.475 and δynorm = −1.042 can be explicitly presented if we project these two
spatial variables on the (xnorm, ynorm) plane, as shown in Figure 15b. In addition, the time
lag can be determined by the difference in axial strain (δt = 13min or ∆ε = 2.6%), and the
calculation of the correlation coefficient will result in a data point in the correlation field,
characterized by lags δxnorm = −0.475, δynorm = −1.042 and δt = 13 min. By iterating this
process through each pair of displacement vectors, we can obtain the coefficient cloud field,
as shown in Figure 15d.

Once the empirical correlations are calculated for all loading phases (from 0.0 to 9.6% of
the axial strain), a hypersurface can then be fitted, using the cubic spline interpolation for
the correlation coefficient cloud as an approximate representation of the spatio-temporal
correlation structure of each displacement field. The process is similar to that for generating
spatio-temporal correlation maps for the 1D-T data ensembles (Figures 8 and 10), except
for the additional temporal lag dimension. The resulting 4D volume hypersurface-fitting
visualization for all empirical correlation coefficients, with u, v, and w displacement fields,
is presented in Figure 16, and that for the r, t, and v fields is presented in Figure 17.
These figures show how correlation structures gradually collapse at different rates with
increasing spatial and time lags across all displacement fields, and show distinct correlation
structure patterns.

To further explain the correlation pattern of the 4D volume shown in Figures 16a and 17a,
additional sub-plots (Figures 16b and 17b) showing the floor of the 4D volumes are in-
cluded that represent auto-correlation maps (i.e., δt = 0 min). Within the u(xnorm, ynorm)
displacement field, as shown in the first sub-plot of Figure 16b, two intense correlation
bands oriented along diagonal and off-diagonal directions imply shear bands have caused
material translational dependencies in the horizontal direction. Along the vertical direction,
v(xnorm, ynorm) displacements show positive correlations for nearly their entire spatial do-
main (second sub-plot of Figure 16b), meaning that deformation along the vertical direction
shows a more predictable spatial pattern, which is consistent with the direction of the
deformation and to some degree with the vertical symmetry of the sample compaction.
The out-of-plane displacement field, w(xnorm, ynorm), shows the most significant correlation
region at zero spatial lag, suggesting that its predictive domain of influence is shorter than
the domain of influence for the other two displacement fields.

The correlation structure presented under the cylindrical coordinate system shows
that along the radial direction (the first sub-plot of Figure 17b), negative correlation appears
at the normalized heights of −1 and 1 of the specimen. This agrees with our findings in
the correlation analysis of 1D-T radius displacements, which shows an opposite radial
deforming trend if two local areas are spaced at around half of the specimen height. For cor-
relations of the tangential displacement field, t (the second sub-plot of Figure 17b), patterns
along diagonal and off-diagonal directions show signs of shear-band formations, but not
obviously. A further characterization of displacement gradient and local kinematics [3,29]
is anticipated to better present and elucidate the statistics of shear-band properties.
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coordinate system, where each column defines a specific loading stage, and each row shows either
the mean or standard deviation of a displacement’s data ensemble.
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Figure 14. Mean and standard deviation distributions of 3D-T data ensemble under the cylindrical
coordinate system, where each column defines a specific loading stage, and each row shows either
the mean or standard deviation of a displacement’s data ensemble.
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Figure 15. Computation of spatio-temporal correlation coefficients for 3D-T data ensembles.
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(c) Spatial coordinates of second displacement vector, u(P2). (d) Resultant correlation coefficient
defined by spatio-temporal lags.
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Figure 16. Spatio-temporal empirical correlation structures of 3D-T data ensembles under Cartesian
coordinates. (a) Smooth representation of correlation structures for u, v, and w displacement fields
(left to right). (b) Spatial correlation maps for u, v, and w displacement fields when δt = 0 min
(i.e., floor of (a)).
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coordinates. (a) Smooth representation of correlation structures for r, t, and v displacement fields (left
to right). (b) Spatial correlation maps for r, t, and v displacement fields when δt = 0 min (i.e., floor
of (a)).

The above results not only offer statistical insights into data ensembles, but the first-
and second-order statistics we obtained are essential elements for simulating random
displacement fields. If studying the random field satisfies the stationarity and Gaussianity
criteria, then these random responses can be reproduced by Gaussian random simula-
tion consistent with the statistics from the experimental observations [23]. Otherwise,
some other method such as Polynomial Chaos Expansion (PCE) [23,30] can simulate non-
stationary and non-Gaussian random fields. In either case, local deformation phenomena
over continuous displacement fields would show infinite virtual simulations which were
not sampled but statistically likely consistent with the observed experimental behavior.
This work presents all ingredients needed to perform such simulations for the given dimen-
sionality conditions.

4. Conclusions

Natural soils possess an inherent variability associated with their engineering and
physical properties. In this paper, we introduced first- and second-order statistical analysis
performed on boundary displacement observations sampled from a series of nominally sim-
ilar triaxial compression tests. Results provided insight into the overall deformation modes
and inherent uncertainties, as well as spatio-temporal correlation patterns of displacement
fields of soil specimens undergoing three-dimensional stress conditions.

First-order statistics of the 0D-0T dimensionality showed the empirical vs. common
theoretical distributions of soil’s key parameters, showing, in some cases, deviation from
traditional probability models used to simulate its random behavior (i.e., Gaussian and
lognormal).

The first-order statistics of boundary 1D-T vertical displacements show that a specimen
is mainly deformed with three distinct blocks along the vertical direction—the rigid-body
upward motion at the bottom, the linear decrease in vertical displacement in the middle,
and the nonlinear decrease in displacement at the top. Furthermore, spatio-temporal
correlation analysis reveals significant vertical-displacement correlation in the range of
normalized heights between ynorm = 0.3 and at ynorm = 0.80, which can be associated with
the development of localization effects such as shear or compaction bands.
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The similar analysis performed on 1D-T radial displacement fields showed significant
local variability in the normalized specimen heights at ynorm = 0.3 and ynorm = 0.80, which
reflects an increase in randomness around the heights where soil layers transition for the
vibratory-compaction specimens, reflecting the likely local deformation effects induced
by material heterogeneity. In addition, spatial correlation becomes negative for regions at
δynorm = ±[0.5, 0.75], indicating a general opposite radial deforming trend for two points at
this range of spacing.

Statistics of 3D-T full-field measurements suggest deformation patterns are greatly af-
fected by the variability of localization behavior, such as the development of expansion and
shear bands. The presence of shear and expansion bands can also introduce deformation
dependencies in space and time.

Results of this work presented the first- and second-order statistics of displacement
fields populated from the triaxial sand specimens, which are the essential elements for
the stochastic simulation of random fields. In the future work, we will aim at develop-
ing the stochastic model capable of simulating “virtual” displacement fields and their
corresponding failure mechanisms that are consistent with “real” ones sampled from the
laboratory.
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