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Abstract: Cold metal transfer (CMT) fusion brazing technology was used to weld 6061 aluminum
alloy and Q235 galvanized steel with ER4043 welding wire. The microstructure, hardness, tensile
performance, and fatigue performance of the welded joint were observed and analyzed. The results
show that the tensile strength of the welded joint is 110.83 MPa and the fatigue strength limit is
170 MPa. In the fatigue process, the coupon first undergoes cyclic hardening and then cyclic softening
and a ratchet effect occurs. The coupon was broken at the interface layer or weld zone where the
fatigue strength limit is the lowest. The fatigue crack initiation is mainly caused by: (1) inclusions
and second-phase particles; and (2) porosity and incomplete fusion. When cracks encounter holes
during expansion, the expansion direction will change. The fatigued coupon displays a toughness
fracture in the instantaneous fracture zone.

Keywords: cold metal transfer; aluminum/steel butt joint; microstructure; fatigue

1. Introduction

Aluminum alloy has a low density, resistance to low temperature, and good corrosion
resistance. Its plasticity, processing properties, mechanical properties, welding properties,
forming properties, and surface treatment properties are excellent. Aluminum alloys
are widely used in various industries such as aerospace, automobiles, and machinery
manufacturing [1]. At present, in addition to gas welding and arc welding, aluminum
alloys are generally welded by argon arc welding, resistance welding, diffusion welding,
and other methods. Some hard aluminum and super-hard aluminum alloys are welded
by new types of methods, including argon arc welding, helium arc welding, and friction
stir welding; in addition, some new methods and special welding materials are used [2].
At present, global warming and depleted energy supplies are of importance. In order to
reduce vehicle energy consumption and vehicle exhaust emissions, the automotive industry
uses aluminum alloy materials to reduce vehicle weight. For the realization of lightweight
manufacturing and the improvement of fuel economy, it will be of great significance to
solve the problem of welding aluminum and steel, which are dissimilar metals.

Cold metal transfer (CMT), a cold metal over-welding technology, is a new type
of welding technology without slag splash that was developed by Fronius International
GmbH. It is a high quality technique with reliable and rapid arc ignition. During the
welding process, the arc is more stable and arc length control is more accurate [3]. Because
of these advantages of CMT technology, it is widely used in the welding of dissimilar
metals, such as the welding of dissimilar aluminum alloys, the welding of aluminum alloys
and steel, etc. In order to study the mechanisms of damage to aluminum/steel butt joints,
this paper uses CMT fusion-brazing technology to connect 6061 aluminum alloy plates and
Q235 galvanized steel plates.

In the past, researchers have tried almost all welding methods to weld aluminum
and steel. Fukumoto et al. [4] studied friction welding, Hou Fachen et al. [5] investigated
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explosive welding, and Cakmakkaya et al. [6] explored diffusion welding. These all belong
to the category of pressure welding, but with this welding method, it is not easy to control
the welding quality and the production efficiency is low. Lv Xueqin et al. [7] studied
transition layer brazing, Peng et al. [8] examined vacuum brazing, and Koltsov et al. [9]
reported on laser brazing. These all belong to the category of brazing, but the obtained
welded joint has low strength and poor resistance to high temperatures. In recent years,
fusion-brazing has been studied more frequently; it has the characteristics of both fusion
welding and brazing and is suitable for the connection between dissimilar metals with
very different melting points. Shi Yu et al. [10] studied MIG fusion brazing, Song et al. [11]
researched TIG fusion-brazing, and Dharmendra et al. [12] investigated laser fusion brazing.
All these studies reported welded joints with good performance. Fatigue studies on
aluminum/steel joints have also been performed. Kowalski M. [13] reported the results
of a fatigue crack growth simulation of the transition joint for S235JR steel and A5083
aluminum with a Grade 1 titanium interlayer coat and A1050 aluminum. The crack growth
phenomena observed during fatigue testing are also described.

2. Experimental
2.1. Experimental Materials

The experimental materials were 6061 aluminum alloy plates and Q235 galvanized
steel plates; the experimental welding wire was ER4043 (AlSi5). Their chemical composition
is shown in Tables 1–3. Information on their physical properties and mechanical behavior is
shown in Table 4. The matrix phase of the 6061 aluminum alloy is α-Al, its key strengthening
phase is β (Mg2Si), its status is T6 [14], its tensile strength is 332 MPa, and its elongation
is 5%. The Q235 steel is composed of α-Fe and pearlite [15], and on its surface there is a
10 µm Zn layer applied by hot-dip coating, with a Zn content of 99.99%. The thickness of
both the 6061 aluminum alloy plates and the Q235 galvanized steel plates is 3 mm.

Table 1. Main chemical composition of 6061 aluminum alloy (%) [16].

Material
Content
Element

Si Fe Cu Mn Mg Zn Cr Ti Al

6061 0.4~0.8 0.7 0.15~0.4 0.15 0.8~1.2 0.25 0.04~0.35 0.15 margin

Table 2. Main chemical composition of Q235 galvanized steel (%) [16].

Material
Content
Element

C Si Mn S P

Q235 (B) 0.12~0.20 ≤0.30 0.30~0.70 ≤0.45 ≤0.45

Table 3. Main chemical composition of ER4043 welding wire (%) [16].

Material
Content
Element

Si Fe Cu Mn Mg Zn Ti Al

ER4043
(AlSi5) 4.5~6.0 ≤0.8 ≤0.30 ≤0.05 ≤0.05 ≤0.10 ≤0.2 margin
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Table 4. Physical properties and mechanical behavior of 6061 aluminum alloy, Q235 galvanized steel,
and ER4043 welding wire [16].

Material
Numerical

Value
Properties

Density
(g·cm−3)

Hardness
(HV)

Melting
Point
(◦C)

Elongation
Rate
(%)

Tensile
Strength

(MPa)

Yield
Strength

(MPa)

6061 2.73 95 580~650 25.0 290 240
Q235 7.86 140 1500 ≥26 370~500 235

ER4043 (AlSi5) - - 580~620 - - -

2.2. Experimental Methods
2.2.1. Material Pretreatment and Welding

Open a V-shaped groove on the steel side, with an angle of 30◦. Mechanically grind
the 6061 aluminum alloy plate before welding. Completely remove the surface oxide film
and then clean it chemically. Use fine sandpaper to sand the surface of Q235 galvanized
steel plate and groove. Wash the area to be welded with acetone before clamping. Control
the gap between the two plates to 1.5 mm during clamping. Use the CMT welding machine
to perform the welding; control heat input at about 150 J/mm. Set the arcing current to
150% and the arcing current to 50%. Select argon as the protective gas with a flow rate of
15 L/min. The dry elongation is 10 mm and the welding gun inclination angle is 30◦. The
specified parameters include: welding voltage, 10 V; welding current, 40 A; wire feeding
speed, 5.5 m/min; welding speed, 0.5 m/min. The welding diagram is shown in Figure 1.
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Figure 1. Welding diagram.

2.2.2. Observation of Weld Microstructure

After welding, cut the metallographic sample by a wire cutter perpendicular to the
weld direction for inlaying, grinding, and polishing. Then, use 1% HF + 1.5% HCl + 2.5%
HNO3 to corrode the aluminum side and 4% HNO3 + 96% C2H5OH to corrode the steel
side. Observe the microstructure by VHK-600K ultra-depth microscope.

2.2.3. Mechanical Properties Test

Prepare the tensile test specimen by a wire electrical discharge machining along the
welding direction, as shown in Figure 2. The working principle of the wire electrical
discharge machining is shown in Figure 3. Using a moving thin metal wire (copper wire
or molybdenum wire) as an electrode, the diameter of the wire is generally between
0.12~0.20 mm. Using thin molybdenum wire as tool electrode for cutting; the wire stor-
age drum makes the molybdenum wire move forward and backward alternately, and
the processing energy is supplied by the pulse power supply. Pouring the working fluid
medium between the electrode wire and the workpiece, the two coordinate directions of the
worktable in the horizontal plane follow the predetermined control program, respectively.
According to the state of the spark gap, the servo feed moves to synthesize various curved
trajectories to cut the workpiece into shape. Use HXD-1000TCM/LCD Vickers microhard-
ness tester to test the microhardness, the loading force is 100 gf and the holding time is
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15 s. Stretch the sample with an AG-25TA electronic universal material testing machine at a
stretching speed of 0.1 mm/s.
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2.2.4. Fatigue Performance Test and Fatigue Fracture Appearance Observation

In the direction perpendicular to the weld, use the wire cutter to cut the fatigue
specimen of the welded joint, as shown in Figure 3, make sure that the weld is in the
middle. All fatigue specimens must be sanded and polished before fatigue testing. In the
fatigue test, the minimum stress value of the welded joint is set to 40 MPa; the stress level
increases by 20 MPa until it breaks. This process takes the form of a sine wave with an
initial phase of 270◦, a frequency of 1 Hz, a stress ratio of 0, and a cycle number of 105. The
experimental data are automatically collected by the software, and complete data from
the first five hundred cycles are collected. The subsequent cycles are collected at equal
intervals, with one cycle of data collected every fifteen cycles. Finally, observe the fatigue
fracture by S-3400N scanning electron microscope.

3. Results
3.1. Microstructure of Welded Joint

The appearance of the weld joint after welding is shown in Figure 4a. The weld joint
is well formed, continuous, and uniform. The pattern on the weld joint resembles fish
scales. The shape of the weld joint is high and narrow; the height is 75 mm. A macroscopic
image of the welded joint is in Figure 4b. The dotted line indicates the position of the Q235
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galvanized steel sheet and the 6061 aluminum alloy base metal (6061BM) before welding.
The comparison of the positions before and after welding shows:
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Figure 4. Morphology of welded joint: (a) appearance of the weld zone; (b) cross-section of the
weld zone.

Aluminum alloy is fully melted during the welding process, and it solidifies with the
melted wire to form the weld zone (WZ), as shown in Figure 5. The eutectic point of Al–Si
is 577 ◦C [17]; during the solidification of the molten pool, α-Al is formed at a temperature
higher than 557 ◦C, and Al–Si is formed at a temperature lower than 557 ◦C. So the weld
zone is composed of α-Al and Al–Si [18]. The arc stirring effect of CMT inhibits the growth
of grains to a certain extent, because during the welding process, the arc stirs in the molten
pool, so the liquid metal in the molten pool is mixed more uniformly, and the solidified
tissue is more uniform. At the same time, the cooling rate of the molten pool is accelerated,
the grain nucleation rate is increased, and the grain cannot grow further. In short, under
the action of the arc stirring force, the high-temperature melt further from the solidification
front and the high-temperature melt near the interface will make a forced exchange with
the low-temperature melts with a high percentage of solids, to change the temperature field
and concentration field of the melt at the solidification front. Therefore, nucleation and
crystallization proceed simultaneously in a wide range within the direction. Solidification
crystallization is destroyed and the dynamic crystallization is strengthened. In Figure 5a,
the center of the weld seam is mostly small equiaxed crystals that are tightly arranged,
and its directionality is not obvious. As shown in Figure 5b, near the heat-affected zone,
part of the equiaxed crystals transform into coarse columnar crystals, and its directionality
is obvious.
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During the welding process, the steel does not melt. As shown in Figure 6a, the
steel connects directly with the molten liquid alloy in the weld seam to form the Fe–Al
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intermetallic compound layer (IMC), which also called interface layer. In Figure 6b, the
thickness of the interface layer is 10 µm. The interface layer is tongue-shaped on the steel
side and needle-shaped on the aluminum side.
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The aluminum alloy and steel close to the welding seam have significant changes in
organization and performance, and then become the welding heat-affected zone (HAZ). The
heat-affected zone near the weld is heated higher, and the low-melting-point strengthening
phase melts. In Figure 7a, the low-melting-point strengthening phase gathers at the grain
boundary, and forms coarse equiaxed crystals after cooling and precipitation. At the
junction of the weld zone and the heat-affected zone, there is an area with coarse grains
and uneven structure; this is the fusion zone. The range of the fusion zone is extremely
narrow; it is often called the fusion line. The heat-affected zone near the aluminum alloy
is less heated, and most of the columnar low-melting-point precipitation phase melts and
agglomerates after cooling. As shown in Figure 7b, compared with the heat-affected zone
close to the weld seam, the grain size of the heat-affected zone close to the aluminum alloy is
significantly increased and become coarse columnar crystals. We can see the characteristics
of competitive growth and epitaxial solidification.

Materials 2022, 15, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 7. Microstructure of heat-affected zone near the aluminum alloy: (a) microstructure under 
100 μm; (b) microstructure under 50 μm. 

The structure of the heat-affected zone on the steel side is shown in Figure 8. The 
temperature during welding is between 750 °C and 900 °C; the steel near the weld seam 
has reached the temperature of incomplete annealing. As seen in Figure 8b, some black 
martensite appears. The grain refinement is not complete; only part of the pearlite is trans-
formed into austenite, so the small equiaxed crystals and the black aggregates are mixed. 
As shown in Figure 8a, under the influence of the temperature gradient, the grains become 
smaller and the black aggregates become more obvious closer to the interface layer. 

 
Figure 8. Microstructure of heat-affected zone near the steel: (a) microstructure under 100 μm; (b) 
microstructure under 15 μm. 

The weld zone, the interface layer, and the welding heat-affected zone finally form 
the welded joint. 

3.2. Microhardness and Stretchability of Welded Joint 
The microhardness test results of the welded joint are shown in Figure 9. The low arc 

heat input of the CMT welding causes few effects on the microstructure of the steel, so the 
hardness of the steel does not change much; it is about 143 HV. When the interface layer 
is reached, the microhardness suddenly rises to the maximum (280 HV). The heat-affected 
zone near the aluminum side has the lowest microhardness (43 HV) due to grain coarsen-
ing. The minimum microhardness of the weld zone is 59 HV, which is lower than the 
microhardness of the aluminum alloy (about 70 HV). This indicates that due to the back 
dissolution and re-precipitation of the strengthening phase, a softening zone occurs. 

Figure 7. Microstructure of heat-affected zone near the aluminum alloy: (a) microstructure under
100 µm; (b) microstructure under 50 µm.

The structure of the heat-affected zone on the steel side is shown in Figure 8. The
temperature during welding is between 750 ◦C and 900 ◦C; the steel near the weld seam
has reached the temperature of incomplete annealing. As seen in Figure 8b, some black
martensite appears. The grain refinement is not complete; only part of the pearlite is
transformed into austenite, so the small equiaxed crystals and the black aggregates are
mixed. As shown in Figure 8a, under the influence of the temperature gradient, the grains
become smaller and the black aggregates become more obvious closer to the interface layer.
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Figure 8. Microstructure of heat-affected zone near the steel: (a) microstructure under 100 µm;
(b) microstructure under 15 µm.

The weld zone, the interface layer, and the welding heat-affected zone finally form the
welded joint.

3.2. Microhardness and Stretchability of Welded Joint

The microhardness test results of the welded joint are shown in Figure 9. The low
arc heat input of the CMT welding causes few effects on the microstructure of the steel,
so the hardness of the steel does not change much; it is about 143 HV. When the interface
layer is reached, the microhardness suddenly rises to the maximum (280 HV). The heat-
affected zone near the aluminum side has the lowest microhardness (43 HV) due to grain
coarsening. The minimum microhardness of the weld zone is 59 HV, which is lower than
the microhardness of the aluminum alloy (about 70 HV). This indicates that due to the back
dissolution and re-precipitation of the strengthening phase, a softening zone occurs.
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Figure 9. Microhardness of welded joint.

Figure 10 shows the tension curve of the welded joint. When the load is 6.15 kN
and the displacement is 0.715 mm, the yield point is reached. When the load drops to
5.95 kN, the curve begins to rise until the load reaches the maximum value of 6.65 kN; at
this moment, the displacement is 0.910 mm, which is the breaking point. According to the
curve, the tensile strength of the welded joint is 110.83 MPa.
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3.3. Fatigue Performance of Welded Joint

Figure 11 is the S–N curve of the welded joint. When the stress is greater than 170 MPa,
the specimen breaks after the first stress alternation. When the stress is less than 170 MPa,
the specimen break after stress alternations that continue for a period of time. When the
stress is 70 MPa and below, the fatigue life can reach 105.
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Figure 12a–c shows the hysteresis loop of the fatigue coupon at the initial stage, stable
stage, and late stage under 130 MPa. Then, representative cycles for calculation in these
three stages can be selected:
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The first cycle is shown in Figure 12d:

σmax = 132.593 MPa
σmin = −8.257 MPa
∆σ = 140.85 MPa
∆ε = 0.406%

Under 130 MPa of stress, the fatigue life of the coupon is 18,360 cycles, so the hysteresis
loop of cycle 9180 can be considered the stable hysteresis loop. This cycle is shown in
Figure 12e:

σmax = 129.904 MPa
σmin = −0.166 MPa
∆σ = 130.7 MPa
∆ε = 0.335%

The last cycle is shown in Figure 12f:

σmax = 129.814 MPa
σmin = 0.104 MPa
∆σ = 129.71 MPa
∆ε = 0.360%

In the comparison of these three cycles, it can be found that during the initial cycles,
the coupon is subjected to cyclic loading, so the hysteresis loop is not completely closed.
With the passage of time, the coupon becomes stable after a certain number of cycles, and
the hysteresis loop is closed; this is the stable hysteresis loop. In the process, the range of
the strain first decreases and then increases, while the flow keeps increasing. This shows



Materials 2022, 15, 2367 10 of 14

that the coupon experiences cyclic hardening from the initial stage to the stable stage, and
the coupon experiences cyclic softening from the stable stage to the late stage. Throughout
the fatigue process, the hysteresis loop slowly moves to the right with the increase in the
number of cycles, indicating that a ratchet effect has occurred.

During this fatigue test, the coupon was broken in two areas: one is the interface layer
and the other is the weld zone. This indicates that the fatigue strength limit of these two
areas is low. It can be found from Figure 13a that the fatigue fracture is mainly caused
by incomplete fusion and porosity near the surface of the coupon. The specific fracture
process will be analyzed in the following section. In Figure 13b, many secondary cracks
and tearing edges appeared around the indentation during the fatigue test. In Figure 13c,
when the main cracks merge to form new cracks, fatigued strips are produced due to slip.
The fatigued strips here are jagged and irregular; this is a typical brittle fatigue strip. In
Figure 13d, there are dimples in the instantaneous fracture area, and there is porosity in
the dimple. However, the depth of the dimple is small, indicating that the toughness of
the weld is poor. Overall, the fatigue fracture mode of the welded joint is a ductile–brittle
mixed fracture.
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4. Discussion
4.1. Initiation of Fatigue Cracks

Previous experiments have shown that in the fatigue coupon of the welded joint, the
fatigue crack initiation is mainly located near the surface of the coupon, and the welding de-
fects include: (1) inclusions and second-phase particles; (2) porosity and incomplete fusion.

Many experimental results have proved that inclusions and second-phase particles
(namely entrainment) in high-strength aluminum alloys have a very important effect on
the initiation of cracks. There are three main reasons: (1) the interface between the second-
phase particle and the matrix is separated, causing the cracks to sprout; (2) sprouting from
pre-cracked inclusions; (3) sprouting through the interaction of slip and particles under
low stress levels. In Figure 14, before the fatigue test of the coupon, the entrainment is
connected to the matrix. After the fatigue test is started, the stress alternation works. One
side of the entrainment, which intersects the tensile axis, begins to separate from the matrix;
over times, the other side of the entrainment also separates from the matrix like this. As
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time goes by, the separation zone expands and micro-holes in the nearby matrix are formed.
Then, the micro-holes connect to each other to form the microcrack, which is perpendicular
to the tensile stress axis. After that, the microcrack on one side of the entrainment expands,
while the other side of the entrainment continues to form micropores. During the fatigue
process, these micro-holes continue to form and then expand into microcracks.
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Generally, fatigue caused by porosity and incomplete fusion are usually because of
porosity and imcomplete fusion caused by uneven stress distribution, and concentration
appears on the surfaces of porosity and incomplete fusion. In Figure 15, after the fatigue
test started, under the action of stress concentration, microintrusions occur and form the
slip steps in the first cycle on the edge of the porosity and incomplete fusion. As the number
of cycles increases, the shearing stress on the same slip band becomes larger in the opposite
direction, and reverse slip occurs in the same slip zone. Then, the same mechanism repeats
in each cycle and the cycling slip occurs. Subsequently, slipping steps, intrusions, and
extrusions, are formed on the edge of porosity and incomplete fusion, which makes the
edge of porosity and incomplete fusion more rough and uneven. At this time, microcracks
began to sprout along the slip band. In fact, studies have shown that the intrusion is due to
the slight displacement of the slip plane during loading and unloading, and the extrusion
is due to the reverse slip appearing on the lower side of the slip band [19].

4.2. Extension of Fatigue Cracks

Many microcracks that started to sprout will stop growing immediately, and usually
only those with very favorable slip can continue to grow. After the microcracks occur, the
microcracks in the slip zone continue to increase along the main slip system. Among them,
PSB is formed preferentially on the slip plane where the shear stress is the largest [20,21].
Usually, PSB will lead to the nucleation of microcracks, so microcracks generally expand in
a “Z” shape at an angle of 45◦ to the principal stress direction. When the microcrack’s size
range increase to 2–3 grains, the stress intensity factor range ∆K at the tip of the microcrack
becomes large enough, which causes the slip of other slip systems to be activated and
began to slip. Subsequently, the expansion of the crack begins alternately along the two slip
systems in a propagation direction that is perpendicular to the principal stress direction.
At this time, the microcracks begin to become macrocracks.

It is worth mentioning that if a crack encounters a hole during its expansion, its
expansion direction will change. As shown in Figure 16, due to the existence of holes,
stress concentration will occur under the action of stress alternation, which causes many



Materials 2022, 15, 2367 12 of 14

secondary cracks to form around the holes. If the hole is large enough and located close to
the surface of the coupon, some secondary cracks nearby, for which the expansion direction
tends to be the same as that of the original fatigue crack, will be induced to become a new
fatigue crack the initiation under the action of stress alternation. The expansion direction is
consistent with that of the original fatigue crack initiation.
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4.3. Instantaneous Fracture of Fatigue Coupon

The instantaneous fracture zone of fatigue coupon appears as toughness fracture, and
the formation of dimples in welded joints is mainly due to impurity defects. According to
the dislocation theory [22], there are dislocation loops around the second-phase particles or
inclusions. Under the action of stress alternation, the dislocation loop around it will move
towards the second-phase particles or inclusions. In Figure 17, when the elasticity strain
accumulated in the process can overcome the binding force between the second phase
particles and the matrix or inclusions and the matrix, micro-holes are formed. As the cycle
progresses, these micro-holes continue to grow and quickly expand until they aggregate.



Materials 2022, 15, 2367 13 of 14

At the same time, the cross-sectional area of the matrix between neighboring micro-holes
reduces. When all the micro-holes are connected, instantaneous fracture occurs and the
dimpled morphology of the fracture is formed.
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Figure 17. Instantaneous fracture of fatigue coupon: (a) micro-holes; (b) micro-holes expand and
aggregate; (c) fracture.

4.4. Improved Fatigue Performance of Welded Joints

Based on the above discussion, it can be found that defects are the most important
factor affecting the fatigue performance of aluminum/steel butt joints in CMT fusion
brazing technology. Therefore, the most important part of the welding process is to
minimize the occurrence of these defects. First, it is critical to prevent the generation of
pores; therefore, we need to limit the incorporation of hydrogen into metals and reduce
sources of hydrogen. Second, we need to choose suitable welding materials to obtain a
weld joint with good composition. Finally, the welding process must be controlled, and
standardized operations must be chosen to avoid or suppress the generation of defects.

5. Conclusions

1. The welded joint composed of the weld zone, the interface layer, and the welding
heat-affected zone is well formed and has a height of 75 mm. The HAZ near the
aluminum side has the lowest microhardness (43 HV) and the interface layer has
the maximum microhardness (280 HV). The tensile strength of the welded joint is
110.83 MPa.

2. The fatigue strength limit of the fatigue coupon is 170 MPa. In the fatigue process the
ratchet effect occurs; the coupon first experiences cyclic hardening and then cyclic
softening. The coupon was broken at interface layer or weld zone where the fatigue
strength limit is low.

3. The fatigue crack initiation is mainly caused by: (1) inclusions and second-phase parti-
cles; and (2) porosity and incomplete fusion; only microcracks with very favorable slip
can expand. When cracks encounter holes during expansion, the expansion direction
will change. The fatigue coupon displays a toughness fracture in the instantaneous
fracture zone.

4. The most important part of the welding process is to minimize the occurrence of
defects: first, by limiting the incorporation of hydrogen into metals and reduce
sources of hydrogen; second, by choosing suitable welding materials; and finally, by
controlling the welding process and choosing standardized operations.
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18. Muncuţ, S.; Mortoiu, D.; Sima, G. Technology for Heterogeneous Joining of Thin Zinc-Plated Steel Sheet with Aluminum. Nonconv.

Technol. Rev. 2011, 15, 73–77.
19. Forsyth, P.J.E. The Physical Basis of Metal Fatigue; Elsevier: Amsterdam, The Netherlands, 1969.
20. Mecke, K.; Blochwitz, C. Internal displacements of persistent slip bands in cyclically deformed nickel single crystals. Phys. Status

Solidi A 2010, 61, K5–K7. [CrossRef]
21. Dörr, G.; Blochwitz, C. Microcracks in fatigued FCC polycrystals by interaction between persistent slip bands and grain

boundaries. Cryst. Res. Technol. 2010, 22, 113–121. [CrossRef]
22. Lü, N.C.; Cheng, Y.H.; Jin, C.; Chen, Y.L. Dislocation distribution function of two fracture dynamics problems concerning

aluminum alloys. In Trade Policies for International Competitiveness; University of Chicago Press: Chicago, IL, USA, 2008.

http://doi.org/10.1088/1757-899X/382/4/042025
http://doi.org/10.1007/s10853-006-0644-0
http://doi.org/10.1088/1757-899X/390/1/012058
http://doi.org/10.1016/S1359-6462(00)00299-2
http://doi.org/10.1016/S0025-5408(03)00176-4
http://doi.org/10.1007/s10853-009-3949-y
http://doi.org/10.1016/j.jallcom.2009.08.084
http://doi.org/10.1016/j.msea.2010.10.050
http://doi.org/10.1023/A:1024970421082
http://doi.org/10.1179/1432891715Z.0000000001925
http://doi.org/10.1080/13621718.2019.1685065
http://doi.org/10.4028/www.scientific.net/MSF.638-642.362
http://doi.org/10.1002/pssa.2210610141
http://doi.org/10.1002/crat.2170220124

	Introduction 
	Experimental 
	Experimental Materials 
	Experimental Methods 
	Material Pretreatment and Welding 
	Observation of Weld Microstructure 
	Mechanical Properties Test 
	Fatigue Performance Test and Fatigue Fracture Appearance Observation 


	Results 
	Microstructure of Welded Joint 
	Microhardness and Stretchability of Welded Joint 
	Fatigue Performance of Welded Joint 

	Discussion 
	Initiation of Fatigue Cracks 
	Extension of Fatigue Cracks 
	Instantaneous Fracture of Fatigue Coupon 
	Improved Fatigue Performance of Welded Joints 

	Conclusions 
	References

