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Abstract: Our work investigates the polycrystalline composite deformation behavior through multi-
scale simulations with experimental data at hand. Since deformation mechanisms on the micro-level
link the ones on the macro-level and the nanoscale, it is preferable to perform micromechanical
finite element simulations based on real microstructures. The image segmentation is a necessary
step for the meshing. Our 2D EBSD images contain at least a few hundred grains. Machine learning
(ML) was adopted to automatically identify subregions, i.e., individual grains, to improve local
feature extraction efficiency and accuracy. Denoising in preprocessing and postprocessing before
and after ML, respectively, is beneficial in high quality feature identification. The ML algorithms
used were self-developed with the usage of inherent code packages (Python). The performances of
the three supervised ML models—decision tree, random forest, and support vector machine—are
compared herein; the latter two achieved accuracies of up to 99.8%. Calculations took about 0.5 h
from the original input dataset (EBSD image) to the final output (segmented image) running on
a personal computer (CPU: 3.6 GHz). For a realizable manual pixel sortation, the original image was
firstly scaled from the initial resolution 10802 pixels down to 3002. After ML, some manual work
was necessary due to the remaining noises to achieve the final image status ready for meshing. The
ML process, including this manual work time, improved efficiency by a factor of about 24 compared
to a purely manual process. Simultaneously, ML minimized the geometrical deviation between
the identified and original features, since it used the original resolution. For serial work, the time
efficiency would be enhanced multiplicatively.

Keywords: machine learning; digital image segmentation; ground truth; denoising; size spectrum

1. Introduction

Accompanying the progressing development of computer technology, the amounts
of data that have to be processed are exploding. This increase in data is driving the
search for better automated data sortation and data handling solutions. The new research
branches of big-data-driven sciences that deal with such enormous amounts of data are
gaining in importance. Besides improving data pipelines’ efficiency, organizations desire
to gain additional knowledge or relationships from their data with ease. To achieve this
goal, the algorithms need to perform their tasks similarly to a human being and make
decisions based on learning from experience and analytic information. Data science is also
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referred to as “the fourth paradigm of science” [1]. In materials science, the study of such
“intelligent algorithms” is considered “material informatics”. For autonomous data parsing
and simultaneous learning from the received data, machine learning (ML) provides a nearly
endless application range, e.g., in medical analysis, business trend prediction, industrial
engineering, and materials science.

The concept of ML can be traced back to the 1950s [2]. In the 1980s, ML developed
into an independent discipline and became a core element in data science [3]. Data mining
is an important application of ML, which can extract and leverage hidden correlations
and important relationships among large amounts of data. The user’s eyes can hardly
observe such correlations. Despite its rapid development, ML is still in the formative
stage. This means many factors of ML are not fully fixed yet. Possibly, this is due to the
vast application potentials of ML and the large number of ML methods/techniques. Still,
there are no unified ML classifications in the literature [3-5]. Characteristics of ML can be
summarized as (i) autonomous (executing tasks); (ii) requiring no explicit programming;
(iii) able to parse data; (iv) able to learn from data; (v) able to make decisions (delivering
results); (vi) able to transfer the learned “knowledge” as solutions for further problems.
Just as there is no set ML definition, no standardized classification categories exist for ML.
According to [6], ML can be categorized into unsupervised, supervised, and reinforcement
learning. The last execution is contingent on “learning” experience—i.e., it depends on
previously classified results. Following [7,8], semi-supervised learning is also an accepted
classification. In these ML algorithms, the training data are partly labeled and partly
not [9], whereby the amount of unlabeled data often exceeds the labeled data. According
to the characteristics of algorithms for implementing ML methods, they can be divided
into two types: (i) shallow learning methods, mainly for cases requiring manual feature
extraction and linear classification, e.g., support vector machine, decision tree, and naive
Bayes classifier; (ii) deep learning methods, which are suitable for the automatic feature
extraction and nonlinear classification, e.g., convolutional neural networks (CNN) and
recurrent neural networks (RNN). Recently, U-Net [10] showed the ability to detect detailed
microstructural features with low training data requirements. U-Net is a deep-learning
CNN and applies a reinforcement learning algorithm to solve, e.g., supervised learning
problems. Among all the available ML algorithms, the neural networks currently receive
the most attention in research. Nearly 40 types of neural networks are available, e.g.,
backpropagation networks, perceptrons, self-organizing maps, the Hopfield network, and
Blotzmann machines [9]. The artificial neural network (ANN) is an important one in the
neural network family and has applications in many fields, such as pharmaceutics, traffic
management, materials science, and engineering. It belongs to the nonlinear processing
class and is adaptive. ANNSs are inspired by the biological neural networks found in animal
brains. The neurons possess a layer-to-layer arrangement, and the data propagate from one
layer to another during the training phase. Three types of layers can be identified: the input
layer, the hidden layers, and the output layer. One or multiple hidden layer(s) can be used
to solve nonlinear problems. The reader may refer to [11] for a more comprehensive review
of ANNs. Many review articles about ML have been published. Wei et al. [9] presented
a summary of ML in materials science, and Butler et al. for molecular and materials science.
Ramprasad et al. [12] reported the recent applications and prospects of ML in materials
informatics. A review of the applications of ML and data mining approaches in continuum
materials mechanics can be found in Bock et al. [13]. Data fusion is the main functionality
of ML. A survey on ML for data fusion is given in Meng et al. [14].

Image segmentation is one of the application branches of ML in materials informatics.
Image segmentation in itself is a study field, which means that image segmentation is
independent of ML. Among various (digital) image processing techniques, image segmen-
tation plays a vital role in analyzing the given image. Segmentation refers to the process
of identifying and isolating the surface and regions of the digital image corresponding
to the structural units [4]. According to [4], segmentation algorithms are mainly based
on two basic properties: discontinuity and similarity. Similarly to ML, there is no unified
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classification of image segmentation methods. Jaiswal and Pandey [15] categorized them
into supervised segmentation and unsupervised segmentation methods. Kannan et al. [4]
lists four segmentation categories: edge detection, thresholding, region-based, and feature-
based. Reviews of image segmentation can be found, e.g., in [4,15-21]. Some review reports
concentrate on medical imaging, such as [22-25].

The current work applied ML methods to segment electron backscatter diffraction
(EBSD) images for polycrystalline microstructures containing no less than 500 grains.
An autonomous process should significantly improve the time efficiency of input data
preparation for finite element (FE) simulations, in which representative polycrystalline real
microstructures were used. ML also benefited the detailed feature extraction to a great
extent. Local morphological characteristics could be better mapped for FE predictions.
Our process of image segmentation includes three stages: preprocessing, ML classification,
and postprocessing. The three supervised ML methods—decision tree, random forest, and
support vector machine—were adopted, and their accuracies were compared. All achieved
satisfying results. With freely available Python packages, a self-coded ML algorithm was
developed. Our EBSD images possessed an original resolution of 1080 x 1080 pixels for
an 80 x 80 um? sized sample. On a personal computer (PC) with a central processing unit
(CPU) operating at 3.6 GHz, our code processed each image in about 30 min. The data
training for the ML took approximately two-thirds of the whole time. Our approach with
the usage of ML required only about i of the manual work time, and simultaneously
allowed for much more detailed subregion identification regarding the morphological
features. From the original input of data to finishing the geometrical adaptive meshing
ready for FE calculations, the process took about 3—4 days, depending on the manual work
intensity. This work contributes to autonomous segmentation for colored images, which
is far less reported on than the same for monotonic images [21]. It supports the use of
big-data-driven science in materials science, and supports the applicability of machine
learning (new branch) to improving the efficiency of simulations (existing branch).

2. Materials and Experiments

Our work’s original goal was to experimentally and numerically investigate the defor-
mation behavior of SnO, oxide dispersion strengthened (ODS) Ag alloys in multi scales
since any specific material behavior results from coupled mechanisms on different scales.
Micromechanical FE simulation is an essential tool to investigate material deformation
behaviors numerically. The microscale acts as a bridge, which links the mechanisms on
the nanoscale and macroscale. Our study currently emphasizes predictions of the influ-
ence of £3-twins on the local deformation behaviors. In such calculations, the applied
microstructure should be well representative to achieve correct predictions. During the data
preparation for the FE calculation, the time-consuming and tedious work of the manual
pixel sortation of real microstructures has led to the consideration of the image segmen-
tation by using ML. The development of advanced ML algorithms shows the potential
to replace manual classification. The ML methods and segmentation results presented
in this report are the first part of our work. The second part deals with FE results and
their comparison with experimental findings, which will be presented in another report.
Wasserbach and Skrotzki [26,27] presented most of the measured results.

2.1. Materials

We used six commercial composites with various oxide concentrations and sizes. The
internal oxidation (IO) processes [28-30] manufactured three, and the powder metallurgical
(PM) process [29] the other three. The hot extrusion process is the commonly applied
treatment in the industrial production of the Ag/SnO; metal matrix composites (MMCs).
The usage of different SnO, powders can control the final oxide sizes. Such MMCs are also
a kind of functionally graded materials. Table 1 lists five material characteristic values for
the two MMCs used in the current work and for the pure Ag as a comparison. For simplicity,
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only EBSD images will be shown in the following. Further descriptions of experimental
results and their application in FE simulations are presented in the second part.

Table 1. A list of essential properties of the two MMCs used in the current work [27].

Oxide Oxide Grain Mean Size D5y Oxide Mean Size dsg

Material Wt% Vol.% [um] [um] Rpo.2 [MPa]
PM12-2 12 17 443405 0.56 £ 0.16 118

PM12-3 12 17 5.00 £ 0.5 0.93 £0.20 106
Ag99.97 - - - - 43

2.2. EBSD Images

Due to the shaping process, extraordinary distortions and recrystallizations appeared.
The observed microstructures, including >3-twins, and textures, are due to recrystalliza-
tion during or immediately after the hot-extrusion process (at high temperature). In our
samples, the true strain partly reached the value of 500% caused by hot extrusion. The Ag
phase possessed sharp textures after the extrusion. This shaping, leading to cross-section
reduction, introduced tensile deformation of the material. Consecutively, tensile tests were
performed with a loading direction identical to the extrusion one. Unexpectedly, the tension
test caused a reduction in the texture sharpness. During tensile loading (cold-working), the
5nO; particles destroy the existing texture, including >3-twins. The experiment revealed
that the texture intensity (around <001> fiber) and the volume fraction of twins are reduced.
During hot extrusion, the Ag phase is very soft and the dislocations (in the Ag phase)
can bypass the oxide particles. This means oxide particles’ effect on the texture evolution
during hot extrusion is not as evident as during cold-working. Figure la denotes the
material’s status in the green body of the PM12-2 composite (Table 1) before hot extrusion,
and Figure 1b shows the material’s status after hot extrusion and before the tension test
in the longitudinal direction. The arrows in Figures 1b and 2a show the loading direction.
Figure 1c is the color code shared by all the EBSD images for the Ag phase in Ag/SnO,
MMCs. The black areas in all EBSD images represent the SnO, phase. Figure 2a,b illustrates
the material’s status before tension and after the extrusion of the PM12-3 composite in
the longitudinal and cross-sectional directions. Figure 2c shows the twin boundaries of
Y¥.3-twins in Figure 2b. Figure 2d denotes the measured angles of X3-twins along the line
AB marked in Figure 2b.

Figure 1. (a) The green body morphology of the PM12-2 composite before hot extrusion [26]; (b) the
microstructure of PM12-2 in the longitudinal direction after hot extrusion (Table 1), where the arrow
presents the extrusion direction; (c) grain orientation color code valid for the Ag phase of all the EBSD
measurements for Ag/SnO; MMCs.
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Figure 2. PM12-3 composite (Table 1) from EBSD measurements: (a) in the longitudinal direction, where

the arrow presents the extrusion direction [26]; (b) in the transverse direction [26]; (c) the X3-twin boundaries
for the microstructure given in (b); (d) the measured >3-twin angles along the line AB marked in (b).

3. Machine Learning Applied for Image Segmentation

In the range of ML applied in microstructure processing (digital image segmentation),
different works focus on various aspects concerning the microstructure. Furat et al. [31]
semantically segmented the tomographic images by combining ML methods and conven-
tional image processing steps. In their work, 2D and 3D U-Net [10] were used. Due to the
poor resolution of tomographic images, 3D X-ray diffraction measurements were defined as
ground truth during the data training. P’utz et al. [32] investigated advanced high-strength
steels by using representative volume elements with periodic material structures using
virtual (artificial) microstructures. Since the input parameters are the most critical part of
generating the RVEs, an ML algorithm was trained to reproduce input data parameters
equivalent to the real microstructural and morphological parameters. In order to charac-
terize the critical events in microstructures, e.g., twin activity, Sharma et al. [33] explored
the potential for informing the microscope’s observation strategy by using a decision tree
(ML) model. Their resultant framework has been taken as the first step towards intelligent
microscopy for the efficient observation of stochastic events during in situ microscopy cam-
paigns. A methodology based on supervised learning was introduced to characterize and
reconstruct stochastic microstructures [34]. In this work, the example microstructures were
all two-phase ones. In integrated computational material engineering, two interesting topics
are the coupling of computational thermodynamics and kinetics and process parameter op-
timization. To overcome the bottlenecks of the slow responses in kinetic calculations and the
poor quality of a large amount of numerically predicted thermodynamic data, Li et al. [35]
employed an unsupervised ML method to clean the data, which resulted in an extensive
tabulated thermodynamic dataset. Consecutively, the extensive dataset’s parameterization
was performed via artificial neural networks to achieve the nonlinear equation consisting of
base functions and parameterization coefficients. In chemical engineering, Tercan et al. [36]
found structural regions of interest in a complex phase diagram and identified local envi-
ronments’ characteristics by coupling their own code with freely available ML algorithm
packages. Tawfik et al. [37] presented an ML application to calculate the vibrational proper-
ties of crystals using quantum mechanical methods. Their complementary machine learning
methods can rapidly and reliably recapitulate entropy, specific heat, effective polycrystalline
dielectric function, and a non-vibrational property (bandgap). Baturynska et al. [38] ad-
vanced a conceptual framework which combines the FE simulation and ML to optimize
process parameters for powder bed fusion additive manufacturing. The phenomenon of
grain boundary phase transition is an emerging field that was until recently dominated
by experiments. Atomistic modeling can predict interface structures and has the major
bottleneck of a lack of computational tools. Based on evolutionary algorithms (unsupervised
ML method), Ramprasad et al. [12] developed a computational tool to predict the structures
of interfaces. Their tool can reveal new ground states and multiple grain boundary phases,
where molecular dynamic simulations demonstrated the grain boundary phase transition.
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In investigations of material’s behaviors, ML can be used independently and coupled
with other methods, e.g., coupled with experiments, simulations, and manufacturing. The
former case means ML is a step in the whole working process, and its results might be used
by the following steps or as the final results, but there is no interchange or interaction between
ML and other working steps. Our work belongs to this case. The segmented image resulting
from ML serves as the microstructure for the FE meshing. No feedback from FE results
would influence or modify the ML methods, also not necessary in this work. Pal et al. [21]
mentioned that the autonomous segmentation for colored images had been much less reported
than for monotonic images. Our work deals with the segmentation of Ag grains and SnO,
particles in colored EBSD images by using ML algorithms. The primary task is to extract the
polycrystalline Ag grains, since they possess various colors. These lead to more complexity
for the feature identification of Ag grains than for the black SnO, particles. The input dataset
(EBSD image) describes a complex local morphology. It is not the simple case with two phases
described by two colors. Our problem belongs to the category of supervised learning.

This work aimed to efficiently parse the data (pixels in EBSD images) and further
apply the segmentation result (microstructure with a single-pixel color for each grain) for
the subsequent step investigation, e.g., meshing for FE simulation. Here, the pixel color
was used to identify micromorphology and was irrelevant to grain misorientations and
other data obtained from EBSD. This means the pixel sortation process did not change any
measured properties, such as lattice orientations. The measured orientations can be applied
as input data (for theory) in FE simulations.

3.1. Image Processing Steps and Preprocessing

EBSD images, as shown in Figures 1a,b and 2a,b, provide the actual microstructure
cut-outs in this work. All our EBSD images for Ag/SnO, composites have a resolution
of 1080 x 1080 = 1,166,400 pixels representing an 80 x 80 um? area. To achieve a good
meshing quality and decrease the meshing process’s complexity, clearly distinguishable
pixels are required for each subregion (per grain or particle/cluster). Distinguishable pixels
in this context mean identical and individual pixel colors without noises for any individual
subregion. Any original EBSD image contains noises, inevitable outliers, or disturbances,
which frustrate pixel sortation into a meshed structure. Figure 3 presents the workflow
of the image segmentation used in the current work. The segmentation process includes
three steps, preprocessing (Step-I), ML (Step-II), and postprocessing (Step-1II). Our Python
algorithms include self-written code and inherent libraries /packages.

Step-I: input n}e_dian filter output
preproc. (original image) E)}llll}gselzlxélglter denoised image
data collection: supervised ML: ‘as input for ML ‘
trs AT 700/ lat | decision tree
Step-1T: testing: 30% data random forest
ML support vector machine
output: : evaluatin dels & de i ion:
s g models ata classification:
‘support vector machine parameter adjusting ‘ ~ 10 colors
Step—HI: ‘as input for post-proc. overwhelming: output:
post-proc. neighboring colors segmented image

Figure 3. The workflow chat for the image segmentati on (preproc.: preprocessing, post-proc.:
postprocessing).

With the collected data (the pixel colors in original EBSD images) at hand, the first step
is preprocessing for the feature extraction. The data need to be prepared and cleaned due
to outliers and disturbances, which could negatively affect the final result’s quality. Data
cleaning partially removes the noise in the raw data to obtain suitable inputs for the model
training in ML and is a crucial process of data preparation. Our collected data are given in
red green blue (RGB) color scale. In the input image, various colors represent subregions of
Ag grains and oxide particles. Two inherent Python libraries, “cv2 . medianBlur (image, 11)”
and “cv2 . bilateralFilter (image, 25, 100, 100)”, denoise the black subregions and colored
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ones, respectively. Subsequently, the data were saved into an excel CSV file. As a contrast
to noises, sample images manually cropped from the original image have dimensions of
approximately 60 x 60 pixels for each color. The RGB values of each pixel in the sample
image are written into the CSV file using Python’s CSV library. Corresponding target labels
are given to the RGB values, also called the features. Using a CSV file for this purpose has
several advantages. They (i) are relatively safe; (ii) can clearly distinguish between the
numeric numbers and text numbers; (iii) do not manipulate data and store the data as they
are; (iv) can also be opened by any conventional text editor; (v) read and import large CSV
files faster and consume less memory than an excel file. As an example, Figure 4a presents
a cut-out from the original EBSD image shown in Figure 1a. Figure 4b, as a comparison of
the raw data in Figure 4a, illustrates cleaned data after the denoising in the preprocessing.
The output of the data cleaning procedure denoted as an example in Figure 5b is the ML
algorithm’s input and ready for the ML training algorithm.

(b)
Figure 4. An example of data cleaning done for the original raw data in the preprocessing: (a) a cut-
out of the original image in Figure 1a; (b) after the denoising.

¢
original image preprocessed ML result

timeicost ~0.5h as input for postprocessing

(f) () (d)
final result after denoising in binary format
Figure 5. Autonomous image segmentation for MP12-2 Ag/SnO, composite (Table 1): (a) original EBSD
image; (b) resultant image after denoising by the preprocessing; (c) resultant image after the ML /random
forest model; (d) monotonic image obtained by transforming (c) as preparation for denoising in postpro-
cessing; (e) monotonic image after postprocessing; (f) final segmented color image after postprocessing.
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3.2. Machine Learning

The second step of the image segmentation identifies subregions by using ML. The
EBSD image acquisition (data visualizations) is the data collection for ML. The resulting
data from the preprocessing described in Section 3.1 are prepared data, an example of which
is shown in Figure 5b. The next step in the workflow would be choosing an appropriate
ML model. Choosing the model depends on the type of problem at hand. It is important
to know the major techniques of supervised and unsupervised learning to select suitable
models. Most of the practical ML problems use supervised learning, for which the ML
algorithm was trained to make user-defined correlations or classifications. In this case:
(i) it needed a set of input variables {x} and a set of output variables {y}; (ii) ML methods
approximated the relations between {x} and {y} using a learning algorithm. The objective
was to generate a surrogate model function y = f(x) to calculate y for any new values of
x. In other words, the algorithm was trained for labeled data (objective function y = f(x)
and domain variables x are identified by the user). The algorithm made predictions on new
data based on the training data. Training was stopped once the required accuracy of the
surrogate model was reached. Supervised learning can be categorized into classification and
regression. For the former, the output could possess distinctive classifications, e.g., “red”,
“blue”, “green”, or “black”. If the algorithm divides the labeled input data into two classes,
then it is a binary classification. The separation into multiple classes is called multi-class
classification. For the regression, the output variable obeys a continuous numeric function
depending on past trends or the correlation between x and y values gained from the
training data. Krishna [39] lists some examples for supervised and unsupervised learning
and compares their differences. A comparison of classification and regression models
can be found in [40]. In unsupervised learning, the model predicts the output without
being trained on a labeled dataset. These algorithms find an underlying pattern and
the structure in the data and sort the data depending on similarities. The user does not
explicitly train the model, but the model is expected to find compelling patterns and sort the
data independently. Unsupervised learning can also be classified into the two categories,
clustering and association, although many other divisions, such as anomaly detection,
dimensionality reduction, and many more, exist. For a comparison of characteristics of
supervised learning vs. unsupervised learning, the reader may refer to [39,41].

Our input data for ML were pixel colors resulting from preprocessing. The ML models
aimed to identify the different colors and classify them into microstructural features with
high accuracy. Since there was no hidden pattern that had to be extracted from the data
and the total number of classes in the image was known in advance, it was expedient to
apply a supervised learning algorithm. Actually, the clustering algorithms of unsupervised
learning can also segment the pixels. However, ML has considerably lower accuracy than
an algorithm using supervised data classification. Additionally, there is some difficulty in
controlling the classification output, since there is no user interference in the learning phase
for an unsupervised ML. Different ML algorithms are suitable for various specific problems.
In our case, three supervised ML methods were adopted, decision tree, random forest,
and support vector machine. For the decision tree, ML modeling in Python used iterative
Dichotomizer 3 (ID3) and Gini index (Gini). ID3 utilizes entropy and information gain to
construct the decision tree. It is beneficial to use it when the separation between output
classes is slight, while many data samples are available [42]. The Gini index is suitable if
the output classes are easily distinguishable by spatial separation. The implementation is
computationally easier than ID3. Our Gini algorithm follows the procedures in [43]. The
reader may refer to [42—-46] for the detailed mathematic algorithms behind the three ML
models mentioned above.

Besides the cleaned data from step I (data preparation), data classification is also
required for ML. It is necessary to train the ML model regarding two factors: (i) what
constitutes a particular color class; (ii) which color ranges can be classified into particular
color classes. If the available amount of data is not sufficient, a risk of underfitting (biasing)
the model can appear, which possibly deteriorates the output results. If the training data
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are sufficient to train the ML model, the user can proceed to add data labels or improve
the existing data label. In our case, more than one million data samples were sufficient.
Each pixel corresponds to a data sample. The output result shown in Figures 5d supports
this conclusion. Multi-class classification is needed for the datasets in colored images. In
our case, there are 9-10 classifications depending on individual image colors. It needs the
so-called labeling to classify the data in a supervised algorithm. Additionally, important
is to shuffle the training data randomly in order to minimize the chances of overfitting
and false correlations. This improves the ML model’s output quality and the predictive
performance of the model. In our supervised ML algorithm, a little more than 1.16 million
datasets (1080 x 1080 pixels, each RGB pixel color one dataset) were stored in the CSV
file. The entire dataset was divided into training and testing datasets. The ML model was:
(i) trained to be sophisticated for parsing data by using the training dataset and (ii) tested
for its accuracy by using the test dataset.

The algorithm should differentiate the aberrant colors and replace them with the
closest absolute pixel color from the RGB scale for the training data. Here, absolute pixel
color means the orthochromatic color, e.g., (255, 0, 0) in RGB for orthochromatic red color.
A sample training dataset for the labeling is shown in Table 2. The first four pixel colors
in Table 2 are aberrant colors, which the absolute red should replace. The last three pixel
colors in Table 2 should be replaced by the absolute blue color. In the model training stage,
the following intermediate steps were accomplished: preprocessing the data (handling the
pixels), classification of data into more classes, adding new features to the models, analyzing
the runtime complexities of the models, performing a methodological comparison of the
models. After the accomplishment of all these activities, the test data were used to get
an unbiased assessment of the model’s prediction accuracy. Therefore, no shared data
existed for the testing set and the training data set. At this stage, the user has to evaluate
the model output against the EBSD input image. Evaluation allows the user to validate
whether the predefined accuracy was achieved. In case of unsatisfactory results, the prior
steps, beginning with data training, need to be revisited so that the root behind causing the
model’s under-performance can be identified, and subsequently rectified. The colors in the
output image must be predicted accurately. If they are not, it could be due to the following
five reasons in generic models: (i) The training dataset did not include the required class.
For example, training of the red color might not have been done in the previous training,
which appears in the new input image. (ii) There were not sufficient data for a particular
class. For example, the total number of training data for the orange color was less than 1000,
far less than the 100,000 for blue. This implies that the orange color cannot be identified.
It is worth mentioning that a certain color with less data was not a significant problem in
our image, since our images resulting from the ML algorithm had good quality, as shown
in Figure 5c. (iii) The aberrant colors and the outliers were not fixed in the preprocessing
and were used for the training dataset. Such outliers may have negatively influenced the
model’s prediction accuracy. (iv) The dataset was not uniform for the different classes
(different colors). To ensure there is no bias in the model training, the numbers of training
data for all classes should be comparable. There were 60 x 60 pixels for the training of
each class (color) in our work. (v) The accuracy of the chosen ML model was low, as not
all chosen ML models are suitable for the given task. For an EBSD image, a model with
an accuracy larger than 95% would give a satisfactory result. Table 3 lists the accuracies of
the applied three models. According to Table 3, the random forest model and the support
vector machine model are applicable for the color sortation, and the former have the best
quality results. Figures 5c presents the ML predicted images from Figure 5a. After the
first application, the model is possibly suitable for direct usage on new untrained data
(new image) and reduces the risk of overfitting the data. The previously trained models
could at this point be applied to the following images (untrained data), increasing the
segmentation’s time efficiency.
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Table 2. A sample of the labelling for the input EBSD image data, which was used as the training dataset.

R G B Label
245 5 10 1
240 30 10 1
235 0 35 1
250 5 5 1

25 5 254 2

2 3 244 2

10 8 252 2

Table 3. An example to show the prediction accuracies of the three ML models.

Decision Tree Support Vector Random
Model
Gini Entropy Machine Forest
Accuracy 85.81% 93.30% 99.84% 99.86%
Ground Truth

Ground truth should be used to calibrate the results from autonomous processes when it
is necessary and possible. It also serves to assess the accuracies of different algorithms. It is
a difficult task to design a good measurement for the segmentation quality [47]. Still, much
work remains for the objective evaluation of segmented outputs [21]. Besides using images
with higher accuracy as a baseline for the ground truth [10], Verma et al. presented [48] another
approach, which uses mathematical methods to calculate the ground truth. Some authors also
took manually segmented tomographic images as the ground truth. Gwet et al. [16] classified
the existing performance measurements into two sets, using ground truth and going without.
The authors listed several examples/methods to achieve the ground truth in their work. In
the current work, it is not necessary to compare the ML result with the ground truth. It is not
possible to predict the actual microstructure by any mathematical method in our case. On the
one hand, there are no experimental measurements available, which provide an even finer
pixel resolution than ~0.07401 um per pixel. On the other hand, manual segmentation is too
time-consuming for an image with 1080 x 1080 = 1,166,400 pixels to be realized. The widths
of grain boundaries, i.e., the slim black contours around grains (e.g., in Figure 5a), are mostly
less than ~20.07401 x 3 = 0.22203 um. Compared to the mean grain diameter of 4.43 pm in
Figure 5a, the inaccuracy is negligible for the ML-identified features.

3.3. Postprocessing

The third step denoised the image resulting from ML. Figure 5c presents the image
segmented by ML from the predenoised image Figure 5b. The postprocessing included
four substeps. For better visualization of the disturbances and the simplified handling of
them, the image was first transformed into an inverse binary image, as shown in Figure 5d.

Secondly, white clusters smaller than 25 pixels in diameter (area 7r x % ~ 490) pixels
present the Ag grains’ outliers. They are either not part of the grains or interconnected with
grain boundaries. These clusters of white pixels (pixel color number 255) were replaced
by the surrounding grain pixels (pixel color number 0). Figure 6a, as a zoom-in view of
the region enclosed by the rectangle in Figure 5d, depicts the clusters of outlier pixels in
the inverse binary image. In the next step, the coordinates of the pixels replaced in the
inverse binary image were stored. Figure 6b, as a zoom-in view of the region enclosed
by the rectangle in Figure 5e, denotes the denoised image in monotonic color. The three
rectangles marked in magenta color in Figure 6a,b denotes the noise’s existence and its
disappearance before and after the postprocessing procedure. The corresponding pixel
colors in the EBSD image for the final output were replaced by the pixel color of the
surrounding grain. Figure 5f illustrates the postprocessed EBSD image compared with the
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ML-predicted output Figure 5c. On a PC (CPU 3.60 GHz), the whole segmentation time
was about 30 min, of which the training time took about two-thirds of the total.

(b)

Figure 6. Denoising in postprocessing: (a) binary image shown in monotonic color (magenta rectangle
in Figure 5d) with disturbances shown in white in black grains and vice versa; (b) corresponding
image of (a) after denoising (magenta rectangle in Figure 5e).

It is worth mentioning that the process in Figure 5 deals with the pixel color. The colors
in the final result Figure 5f do not correspond to the color code (Figure 1c) anymore. The
aim was to obtain an image presenting local morphologies with much less noise about both
Ag grains and SnO; particles and efficiently prepare the data for meshing. Such pixel colors
are irrelevant to the crystallographic orientations. This means EBSD-measured orientations
(in digital numbers) are not changed by our image segmentation process. The digital data
of measured orientations should be used if an FE simulation with the crystal plasticity
requires the input of the initial grain orientation.

3.4. Testing and Further Application of Segmentation Algorithms

EBSD images from another source were segmented to validate our image segmentation
method’s general applicability and transferability. For new images, additional colors need to
be trained for an increased segmentation quality. Depending on final goals, it is also possible
to use the already trained algorithm, i.e., without training it for the new colors. Figure 7a,
with a pixel resolution of 1280 x 1000, is an EBSD image for an industrial ferritic alloy, also
a kind of ODS steel. This material possesses a mean grain size of about 1 um. The Cr-oxide
and Al-oxide particles have a mean size of about a few to tens of nanometers, and carbides
are about about a 30-300 nm. From Figure 7a, Cr-oxide and Al-oxide cannot be identified,
since each pixel corresponds to about 37 nm, which is larger than oxides. The carbides might
cover 5-8 pixels, making them still too small to be identified. The nano-sized oxide particles
with a very high number density show very high thermal stability and can effectively pin the
dislocation movement. Such materials often serve in high-temperature environments.

The fine grains and the ultrafine particles lead to clearer grain boundaries than those
as shown in Figure 1 (ultrafine particles are invisible in Figure 7a). Still, no noise exists
for particles or between boundaries of particles and grains. Such characteristics introduce
little noise. In Figure 7a, the brown color is not present; i.e., the algorithm was not yet
trained for this color. If the final goal is to mesh the structure, such unknown colors can
be assigned to an existing color class (trained color). Figure 7b denotes the segmented
result of Figure 7a with the newly trained brown color. Its segmented quality implies that
our algorithm is well applicable for such types of materials (EBSD images). As marked
in the oval in Figure 7b, some undesired stripes appeared along some grain boundaries.

The reason must have been poorly trained color classes. The dark purple marked as @ in
Figure 7a was not trained for and was treated as a kind of brown color, which is different

from the brown color marked as . For two neighboring grains with @ and color,
pixel colors on their grain boundaries may be mixed colors from these two colors after
training. This pixel color is near to red and categorized as red. In a visualized graph,
stripes show up along grain boundaries. The characteristics of the EBSD image as given in
Figure 7a are not all the same as those, e.g., in Figures 1 and 2a,b. The differences led to not
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completely identical considerations for the ML algorithms. Our work emphasized image
segmentation for Ag/SnO; alloys. It means an improvement on the image segmentation
for Figure 7a could not be made in this work. In our opinion, it should be easy to remove
these stripes along grain boundaries, since only new colors need to be trained.

Figure 7. EBSD image from another source for a nanostructured ferritic alloy: (a) original EBSD
image; (b) segmented final result.

4. Time Efficiency Comparison of Machine Learning and Manual Work

Figure 8a,d shows the original EBSD images for composites PM12-2 and PM12-3 in
the longitudinal direction (Table 1). These present the material’s status after hot extrusion
and before tensile loading. The high pixel resolution in Figure 8a,d reveals very tiny grains
(about 0.074 um per pixel), which are far below the average values (Table 1). Such tiny
grains are useless for FE simulations. This implies that the original pixel resolution can
be coarsened so that less working time is needed for the manual pixel sortation. The
ML segmentation of an image with a coarsened pixel resolution (500 x 500 pixels for
80 x 80 um?) resulted in output with low quality due to lots of noise and is not shown
here. By controlling the element edge length during meshing, the final meshed structures
can be comparable for images with identical sizes but different pixel resolutions. Figure 8c
(1080 x 1080 pixels) and Figure 8f (300 x 300 pixels) resulted from the autonomous seg-
mentation and the manual work, respectively. They possess the same dimensions but
non-identical pixel resolutions. Even for Figure 8f, the element edge length mentioned
above was small enough to obtain converged simulation results. This means the pixels’
resolution (Figure 8f) is good enough to achieve meshing convergence. Further refinement
of the mesh only caused a negligible difference in the numerically predicted results. The
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corresponding numbered grains for Figure 8a,d are illustrated in Figure 8b and Figure 8e,
respectively. By adjusting the threshold grain size value in the experiment, we controlled
the total number of grains in a microstructure cut-out. Figure 8b has 750 Ag grains, whereas
Figure 8e has only 513. After recalculating by using the Ag grains” mean sizes (Table 1),
these numbers decreased to 415 and 325 grains, respectively. This implies that a manually
segmented image with pixel coarsening can still present a good enough local morphology.
Table 4 lists the pixel resolutions in the original images and in the ones during the pixel
sortation for the autonomous segmentation and manual work case. It also gives the total
number of resulted pixel groups and the time consumed. The name “Resultant groups” in
Table 4 indicates that regions with identical pixel colors after ML. Each region covers much
more than one grain. E.g., ten resulted (pixel) groups cover a vol% range about [5, 20.5].
The image segmentation done by algorithms took about 0.50 h on a PC (CPU 3.6 GHz). If
necessary, the high-performance computation center at the University of Stuttgart can do
the same inside a few minutes, depending on the cluster nodes used. After the postprocess-
ing, the resulting image still contained some sparsely distributed noise. An additional 4-5 h
of manual work (software GIMP with open access) removed all of them, and the image was
then ready for meshing. The commercial meshing software [49] was used, which meshes
structures based on pixel colors. It is preferable for a better meshing quality that each
Ag grain or particle/cluster contains only one color, the so-called “perfect” color in the
current work. Autonomous image segmentation with the application of ML can improve
the segmentation quality and the time efficiency by roughly 24 times. For a stack of N EBSD
images, there would be an increase in time efficiency of about N x 24 times. Besides EBSD
images, the algorithm can segment images from other sources, since the data parsing is
pixel-color-based and independent of imaging methods and materials. It is also suitable for
various materials, whether with or without pores and voids, and whether liquid or solid.
The code deals with three-channel colors (3 x 8%), which means monotonic images should
be presented in the same format.

Figure 8. Comparison of image segmenations between autonomous algorithms and manual work
for PM12-2 (upper row) and PM12-3 (lower row) Ag/SnO, composites, respectively: (a,d) original
EBSD images; (b,e) numbered Ag grains from experiment; (c,f) segmented images with perfect pixel
colors that are ready for meshing.
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Table 4. Time consuming comparison of image segmentations executed by ML and manual work.

Material/ Pixel Resolution Resulted Pixel Perfect Meshing Until
Type Ag Grain Nr. Original Working on Groups Segm. [h] Pixels [h] Ready for FE Cal. [h]
ML PM-12-2/750 1080 x 1080 1080 x 1080 9 ~0.5 ~4.0-5.0 ~15.0
Manual PM-12-3/513 1080 x 1080 300 x 300 25 ~120.0 - ~12.0

5. Applications of Machine Learning Results

In the FE calculation, the particle phase volume/area fraction should have only a slight,
and therefore negligible deviation from the actual sample. It means that the particle volume
fraction should be checked before meshing. In our work, FE predictions were performed for
two composites, PM12-2 and PM12-3 (Figure 8a and Figure 8d, respectively). For the former
one, the SnO, phase attained 16.94 vol.% by the stage “ready for meshing” and 14.73 vol.%
for the latter one. For Figure 8f, the particle phase was artificially expanded to 17 vol.%.
Figure 8b,e shows the possibility of numbering the Ag grains with a user-defined smallest
grain size (from tests). Such figures are useful for FE simulation but not for ML, since the grain
boundaries are coarser than those in the original ones (Figure 8a and Figure 8d, respectively).
Figure 8c illustrates the segmented images ready for meshing by using an autonomous process
plus a small amount of manual work. Figure 8f, also ready for meshing, is the result of purely
manual work. FORTRAN code was developed to expand grains based on a grain growth
process [50]. In the current work, we only show the meshing process.

Figure 9a illustrates the input image with 17 vol.% SnO; for meshing. Its original EBSD
image is Figure 8b. Figure 9b is the 2D geometrical adaptive meshing for the white rectangle
marked in Figure 9a. Since the meshing software SimpleWare ScanIP [49] only meshes
3D structures, a given image should be copied manifold to construct a 3D structure. This
software sorts the elements into groups according to pixel colors and delivers geometrical
adaptive meshing. After meshing, the information of nodes and elements can be extracted
from the surface to obtain a 2D mesh. FORTRAN code did this extraction in our case, and
the consumed time was negligible during the preparation for the FE calculation. After this
extraction of elements and nodes, the total number of element groups was identical to the
pixel color groups. Taking PM12-2 and PM12-3 in Table 4 as examples, there would be
9 and 25 element groups, respectively. Considering the Ag phase, such element groups
include element clusters. This implies that not all elements are connected with each other.
An element cluster covers at least one Ag grain. If a cluster covers more than one grain,
further manual work is necessary to separate the grains by using the numbered grains, as
shown in Figure 8b,e. This individual grain identification process is preparation for FE
simulations applied with polycrystalline microstructures. Another program was written
to automatically identify the individual grains or isolated particles, i.e., neighbors not
sharing identical colors. Taking PM12-2 (Figure 8b) as an example, within a few minutes,
638 Ag grains were automatically identified from 9 element groups (excluding the group
for SnOy). Some manual work remained in the process of identifying the 750 Ag grains.
Depending on the morphology complexity and the working intensity, the manual work
took about 1.5-2.0 days to separate the remaining more than 100 Ag grains, as shown in
the last column in Table 4. For the simplicity of the initial grain orientation assignment
from experiment to FE, the Ag grains’ assigned number should be the same as shown in
Figure 8b; i.e., some further manual work was required. E.g., the number of the blue grains
in the middle of the lower edge in Figure 8e should be 501. It is pointed out that neighboring
pixel groups in the input structure should possess a non-identical color for a 3D geometrical
adaptive meshing. Otherwise, the element separation may cause significant inaccuracies of
individual grain shapes. For a 2D meshing, separating the pixel groups or element groups
should result in a slight and negligible change in accuracy, since the grain morphologies
are well recognizable.



Materials 2022, 15, 2486

15 of 20

The micro-macro FE simulations were performed simultaneously in our work, i.e.,
meshing for the macrostructure and the transition zone needed. Hypermesh was used
to connect the meshing at the micro-macro-transition level (Figure 10c). Based on our
experimental data, Figure 10a illustrates the dimensions for our meshed structures. Regular
square-shaped meshing with an edge length of 625 pym was performed on the macro
level, as presented in Figure 10b. The meshing in the transition zone should link the
meshing on the macro- and micro zones, where triangles are necessary to change the
total number of nodes in a fixed dimension. Figure 10c illustrates the meshing of the
transition zone; the outer edge of which has the same length as the macro cross-section
radius. Figure 10d mainly shows the connection with the micro meshing. There were
61,605 triangle elements in the microstructure, 50,928 of which belonged to the Ag phase.
The mean triangle edge length was 0.456 pm for the Ag phase. Six hundred eight square
elements were present in the macrostructure, and the transition zone included mixed
triangle and rectangle elements. The element types were CGAX3 and CGAX4 (axisymmetry
simulaiton in ABAQUS), respectively.

Figure 9. Image (exported from software Hypermesh) with “perfect” pixels from Figure 8b; (b) a meshing
cut-out corresponding to the white rectangle in (a) [49].

It took about 18-20 working days for manual work to achieve geometrical adaptive
meshing for an actual microstructure with 513 grains. Comparatively, it took about 3—4 days
with the application of ML for a structure with 750 grains. At the moment, it is not possible
to reach a process completely free of manual work for our given task. However, it is well
acceptable to finish the task within 3—4 days.

A further application based on our ML results could be the provision of experimental
data to generate 2D /3D artificial microstructures. Schneider et al. [51] presented a numeri-
cal method to generate hierarchical 2D /3D Poisson—Voronoi structures. The generation of
artificial microstructures will be reported in our future work to compare the boundary con-
ditions’ influences on the deformation behavior. Figure 11a presents the segmented results
of the original images shown in Figure 2a for the longitudinal direction and Figure 11b for
the cross-sectional direction. After using an available program to separate neighboring
grains not sharing the same color in Figure 11a, the remaining individual grains would
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be identified with a slight amount of additional manual work. It would then be easy to
calculate the grain/particle areas and plot their size distributions. Furat et al. [31] showed
the grain boundary identification from monotonic tomographic images by using ML. Nev-
ertheless, their method cannot be directly used in our colored EBSD images. If an algorithm
can identify the grain boundaries in the EBSD images, the above-mentioned manual work
to identify neighboring grains sharing identical colors would not be necessary. However,
this was not our primary goal and has not been implemented in our work yet.
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Figure 10. (a) Dimensions of micro and macro structures and the transition zone in the two-scale
simultaneous FE simulation; (b) the meshing of the whole structure in the two-scale simulation;
(c) meshing in the square-shaped transition zone; (d) part of the meshing in the transition zone
and the geometrical adaptive meshing of the real microstructure with 750 Ag grains and 222 SnO,

particles (from Figure 8b).
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Figure 11. (a) Segmented image for Figure 2a; (b) segmented image from Figure 2b; (c) an example
for further applications of ML results in FE simulations. (dir.: direction, microstr.: microstructure).

For multiscale investigation of material behaviors, ML results can also contribute to
the bridging /linking of physical or mechanical variables on different dimensions. Based on
autonomous segmented results, e.g., Figures 5f, 8c and 11a,b, our subsequent work would
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statistically calculate the mean size of selected grains. Such grains possess approximately
the same orientation and would have identical color after the digital segmentation. They
together form a group called the “orientation group’.” E.g., Figure 5f possesses eight orien-
tation groups, i.e., eight different colors for the Ag phase. All the grain orientations in each
orientation group would have a resulting orientation (through tensor addition with grain
area/volume weighting factor). This means the microstructure cut-out (Figure 5f) possesses
eight above-mentioned “resulted orientations”, which can be used in discrete dislocation
dynamic (DDD) simulations. In the DDD simulations, the initial randomly distributed
dislocations are assumed as several finite-length segments. Following the interaction rules
(e.g., Peach-Koehler forces, mobility laws) and considering mechanisms such as the cross-
slip and the junction formation, a 3D simulation of the dislocation motion can be achieved.
Such numerical calculations can establish the relation between local Young’s moduli (local
yield stresses) and the critical resolved shear stress (CRSS) on the submicron level. The
evolution of resolved shear stress can also be predicted. Nanoindentation tests can deliver
curves of the local Young’s moduli and drilling depths, i.e., local elasticities on different
dimensions. Measured CRSSs from micropillar tests can calibrate the numerical one. For
in-depth information on DDD and its usage in simulations, on can refer to, e.g., [52,53]. Po
et al. [54] reported a review of the DDD method for numerical investigations of plasticity
in crystals. Molnar et al. [55] published some previous work on DDD simulations. The
submicron dimension covered by DDD is the upper limit for molecular dynamics simu-
lations [53] on the nanoscale. At the micro-level, the crystal plasticity FE simulation can
predict the evolution of the resolved shear stress; e.g., see our previous work [56,57]. To
link the nanoscale and microscale, the predicted CRSS from DDD can be used as the initial
value in the crystal plasticity FE simulations. The numerically calculated evolution of the
resolved shear stress can be compared between DDD and FE simulations.

6. Conclusions

In order to improve the time efficiency of the data preparation for multiscale FE
simulations, this work adopted ML for a digital image segmentation process to extract
morphological features of real polycrystalline microstructures. We developed our own
Python algorithms with the usage of inherent libraries/packages. Our autonomous process
dealing with EBSD images includes three steps, namely, preprocessing, ML, and postpro-
cessing. Three supervised ML methods—decision tree, random forest, and support vector
machine—are applied, and their accuracies were compared. Each of our examples contains
no less than a few hundred grains and more than 1 million data samples (pixels). Image
segmentation results gained using manual segmentation are also presented to quantify the
improved efficiency of the new wrokflow. A coarsened pixel resolution, 1080 x 1080 pixels,
scaled down to 300 x 300 in our case, enables the realization of the manual image segmen-
tation. It is worth mentioning that no logical difference exists between the segmentation
of 2D and tomography-based 3D microstructures. As a further step in preparation for
FE simulation and as an ML application, the geometrically adaptive meshing was also
presented. ML results can also contribute to the scale bridging for physical /mechanical
properties, such as CRSS on the nanoscale and microscale. From the achieved results, the
following conclusions can be drawn:

*  Itis essential to execute the denoising before and after ML to achieve a good segmen-
tation quality, i.e., preprocessing and postprocessing.

¢  The digital image segmentation process with ML possesses a high quality for the
detailed feature extraction. Such a high quality is hardly reachable using manual
segmentation, since the handling of millions of data samples is too time-consuming to
be realized.

*  Two supervised ML methods, random forest and support vector machine, showed
accuracies higher than 99.8%.
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*  The autonomous ML process improves the segmentation’s time efficiency for poly-
crystalline EBSD images by a factor of no less than 24 times for a single image. For
serial works, the time efficiency would be improved multiplicatively.

*  From an original polycrystalline microstructure to the final meshed one ready for FE
calculation, this efficiency is improved approximately six times, since some manual
work is inevitable.
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