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Abstract: The vulnerability of buildings and structures to rain and flooding due to a lack of adaptive
capacity is an issue all over the world. Exploring the bio-resources availability and engineering
performance is crucial to increase infrastructure’s resilience. The current study analyses earth-based
mortars using mineral precipitation as a biostabiliser (bio) and compares their performance with
cement-based mortars. Cultures of S. oneidensis with a concentration of 2.3× 108 cfu/mL were used to
prepare earth-based and cement-based mortars with a ratio of 6% of binder. Microstructure analyses
through SEM/EDS, water absorption, moisture buffering, mechanical strength, and porosity are
discussed. The biostabiliser decreases water absorption in tidal-splash and saturated environments for
earth and cement mortars due to calcium carbonate precipitation. The biostabiliser can prevent water
migration more effectively for the cement-based (60% reduction) than for the earth-based mortars (up
to 10% reduction) in the first 1 h of contact with water. In an adsorption/desorption environment, the
conditions favour desorption in cem+bio, and it seems that the biostabiliser precipitation facilitates
the release of the chemicals into the mobile phase. The precipitation in the earth+bio mortar porous
media conditions favours the adsorption of water molecules, making the molecule adhere to the
stationary phase and be separated from the other sample chemicals. The SEM/EDS performed
for the mortars confirms the calcium carbonate precipitation and shows that there is a decrease
in the quantity of Si and K if the biostabiliser is used in cement and earth-mortars. This decrease,
associated with the ability of S. oneidensis to leach silica, is more impressive for earth+bio, which
might be associated with a dissolution of silicate structures due to the presence of more water. For
the tested earth-based mortars, there was an increase of 10% for compressive and flexural strength if
the biostabiliser was added. For the cement-based mortars, the strength increase was almost double
that of the plain one due to the clay surface negative charge in the earth-based compositions.

Keywords: biological methods; earth; cement; self-healing; infrastructure

1. Introduction

The vulnerability of buildings and structures to rain and flooding due to a lack of adap-
tive capacity is an issue all over the world according to the United Nations Development
Programme (UNDP). Indeed, 300 million new houses are needed in the world by 2030 to
provide accommodations for three billion people. Just in South Asia and West Africa, there
is an enormous demand for housing that needs to be catered for within a short span of time.
Half of the population in the world lives in rural areas, where earth-based construction is
predominant [1–3]. However, the local earth-based materials for construction cannot with-
stand inundation, leading to housing collapse and affecting livelihoods. Understanding
and exploring the bio-resources availability and their engineering performance is crucial to
increase housing resilience for flooding with low carbon impact.

By adding different admixtures and additives to the soil, there is a modification of its
characteristics. This stabilisation technique is commonly adopted in earth-based houses
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but can generate concerns in the soil environment. The addition of such cementitious
admixtures to the soil as lime or cement can improve the soil strength but change the
environment in a permanent way and requires the emission of greenhouse gases during
admixtures manufacturing [4–14]. This highlights the need for a different and sustainable
stabilisation technique for soils, such as the use of biological methods. The biological
methods include techniques such as mineral precipitation and biopolymer and biofilm
accumulation [1,4–6].

The mineral precipitation consists of precipitation of calcium to fill the pores of the soil,
enabling to increase soil bonding. Calcium carbonate precipitation via bacterial activity
has gained popularity as a soil improvement technology in recent years. It is defined
as a novel and environmentally friendly procedure [15–17]. This novel technology has
benefits over traditional chemical treatments, which could be toxic and damaging to the
environment, as well as having a short injection distance. In comparison to chemical
treatments, the biological approach is cost-effective [18,19]. Several literature studies have
found that using microbial-induced calcite precipitation to increase bonding, shear strength,
and decrease permeability in sandy and gravelly soils is quite efficient [19,20]. There is
currently a limited characterisation of the materials that directly compare soil/earth-based
infrastructure and self-healing behaviour based on biomineralisation [21–26]. The work
presented in Ref. [21] aimed to test four different bio-based materials to create an earth
mortar using bio-consolidation mechanisms to extend service life and boost durability for
potential implementation as a repair mechanism for earth construction. It was detected that
the use of the bio-product increased the sensitivity of earth-based construction to moisture
buffering cycles, contributing to less mass loss during sorption cycles and increasing
the long-term performance of these earth-based composites. Furthermore, a research
study conducted by Chou et al. [27] reported that the microbial activity contributed to the
blocking of the porous medium of the soil. Biofilms are natural and abundant in natural
environments. Whereas biofilms protect microorganisms from chemical, physical, and
biological external stimuli [28], the formation of biofilms in soils has a significant impact on
the stability of soil bonding, causing the breaking down/dissolving of minerals, organic
carbon degradation and sequestration, and reduction in hydraulic conductivity [29].

Biopolymers are natural polymers with high tensile strength, and they are harmless
and biodegradable. Biopolymer use for soil improvement has grown in popularity in recent
years [16,29]. They are recognised for their gel-like extracellular polymeric substance. This
method relates to the use of biopolymers as a chemical cementing agent in soils. Gellan
gum, xanthan gum, gum from algae, bacteria-produced beta-glucan, chitosan from shellfish,
casein from dairy agar products and guar gum, and leguminous plants from plants are
all examples of biopolymers [30]. In order to obtain the desired engineering performance,
the extracted biopolymers from diverse sources are purified and dried, then combined
with water and soils at a predetermined ratio. The biopolymer treatment of soil is used to
increase the liquid limit and improve the strength of soils [31], change water repellence,
enhance erosion resistance, and reduce hydraulic conductivity [32].

Bio-based soil stabilisation technologies and biopolymers treatment have been studied
extensively to determine the way they affect certain engineering characteristics; they are at
the vanguard of field-scale applications. Due to the variables of soil physical properties and
testing, appropriate experimental data have yet to be accumulated and analysed, which has
hampered further progress in developing unique yet effective soil development approaches.

The knowledge and demonstration of modern and durable earthen material with
bio-based techniques for housing in different contexts can act as a catalytic agent to im-
prove earth and tailor enhanced solutions for housing. Improving the resilience of local
housing directly contributes to the UN Sustainable Development Goal (SDG) 11, to mitigate
significant social and economic damage associated with flooding.

The significant cost of traditional stabilised earthen material can be reduced by drop-
ping cement/hydraulic lime use in favour of bio-based alternatives. This research intends to
find new opportunities to increase infrastructure resilience through self-recovery/adaptive
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solutions from the re-use of bio-resources. This contributes to UN SDG 9 as infrastructure
and innovation investments are critical for economic growth and development, providing
new jobs and promoting energy efficiency. Global housing requirements pose a significant
financial and environmental challenge under the climate emergency.

This study focuses on the potential of using mineral precipitation as stabilisers in
earthen construction materials. By presenting a low embodied energy and carbon footprint,
these biostabilisers have some advantages over cement, and they are widely available around
the world, providing suitable mechanical properties, durability, and improved hygroscopic
performance. Earth-based mortars’ performance with the biostabiliser and without it are
compared with cement-based mortars with or without the biostabiliser. Cultures of S.
oneidensis with a concentration of 2.3 × 108 cfu/mL are used. The biostabiliser is then used
to prepare earth-based and cement-based mortars with a ratio of 6% of binder. The study is
conducted at different levels of relative humidity (RH) as, at a low RH, capillary suction
is more efficient, whereas, in wet/humid porous media, diffusion coefficients decrease for
gases but play a more important role for the mobility of ions, which is greatest in completely
water-filled pores. The microstructure analysis through SEM/EDS, water absorption via
capillary, moisture buffering, mechanical strength, and porosity results are analysed.

2. Materials and Methods
2.1. Soil

The sand and earth grain size distribution is presented in Figure 1. They were charac-
terised in accordance with EN 1015-1. The dry bulk density of sand is 2500 kg/m3 and of
earth is 2527 kg/m3.
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Figure 1. Grain size distribution of earth and sand.

2.2. Binders
2.2.1. Cement

Type one ordinary Portland cement (CEMI) 52.5 N was used to produce the cement-
based mortars in accordance with BE EN 197-1. The specific gravity is 3.13 g/cm3.

2.2.2. Lime

Natural hydraulic lime 3.5 was used for the mix design of earth-based mortars, which
was supplied from a national builder’s merchant—where the requirements are defined
within BS EN 459-1, 2015. The lime dry bulk density is 2700 kg/m3.
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2.3. Mix Design

A flow table test was used to ensure that each mix design had a spread value between
155 ± 5 mm, according to BS EN 1015-3. This enabled the calibration of the consistence
of each sample. Four types of mortars were developed: earth-based with and without
biostabiliser (bioproduct) and cement-based with and without bioproduct (Table 1).

Table 1. Earth-based and cement-based samples mix design (by weight).

Mortar Lime Earth Sand

Earth-based 1 0.1 8.6

Cement Sand

Cement-based 1 3.7

Cultures of S. oneidensis were incubated at 30 ◦C to achieve the concentration of
2.3 × 108 cfu/mL. The bioproduct was then used to prepare earth-based and cement-based
mortars with a ratio of 6% of binder. Figure 2 presents the bioproduct and mortar samples.
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2.4. Methods for Testing

The earth-based and cement-based mortars were tested according to the following
procedures (Table 2), using the equipments available at Liverpool John Moores University.

Table 2. Testing procedures adopted in this study.

Tests Performed Test in conformity with
Standard Picture

Bulk Density EN 1015-6

Compressive strength EN 826 and EN 1015-11
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Table 2. Cont.

Tests Performed Test in conformity with
Standard Picture

Three-point flexural
strength EN 12089
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3. Results and Discussion

The porous medium of each mortar, which includes cracks and voids within earth- and
cement-based materials, enables the transport of carbon dioxide and oxygen and water and
ions, with a direct impact on the durability of the structures. The transport is caused by a
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change in the concentration of the ions, pressure gradients for gases and water, differences
in the absolute pressure for gases and water, migration, and capillary forces. Figure 3
presents the different types of transport processes in an earth- or cement-based medium.
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Ref. [33].

In order to understand the influence the biostabilisers have in the micro and macro
properties of the cement- and earth-based mortars, this chapter focuses on the discussion of
the results regarding the microstructure modifications detected through SEM/EDS, water
absorption via capillary, moisture buffering, mechanical strength, and porosity.

3.1. Bulk Density

The following figure (Figure 4) presents the bulk density for the cement- and earth-
based mortars (plain) with and without biostabiliser (bio).

Materials 2022, 15, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 4. Bulk density for the cement- and earth-based mortars (plain) with and without 
biostabiliser (bio). Coefficient of variation (CoV) per family of mortar: cement mortar: 1.0%; 
cem+bio: 0.5%; earth mortar: 4.8%; earth+bio: 1.0%. 

The results show that the impact of the biostabiliser on the density slightly change 
the density by less than 6% for cement and earth-based mortars. 

3.2. Water Absorption via Capillary 
Capillary suction corresponds to the transport of water in mortar porous media due 

to surface tension acting in the capillaries. It is a function of the pore structure (including 
the tortuosity and continuity of the capillaries and their radius) of the mortar. Capillary 
tests were done using EN 1015-18. The samples were placed in an oven at 30 °C until the 
mass change was less than 0.1%. The weights of the samples were registered at 0′, 5′, 15′, 
30′, 1 h, 2 h, 3 h, and 21 h up to when the water absorption stabilised and reached an 
asymptotic value. 

Figures 5–8 present the capillary water absorption for the earth- and cement-based 
mortars. 

 
Figure 5. Water absorption for bio and non-bio earth mortar samples after 28 days. Coefficient of 
variation (CoV) per family of mortar: earth mortar: 2.8%; earth+bio: 3.8%. 

Figure 4. Bulk density for the cement- and earth-based mortars (plain) with and without biostabiliser
(bio). Coefficient of variation (CoV) per family of mortar: cement mortar: 1.0%; cem+bio: 0.5%; earth
mortar: 4.8%; earth+bio: 1.0%.

The results show that the impact of the biostabiliser on the density slightly change the
density by less than 6% for cement and earth-based mortars.

3.2. Water Absorption via Capillary

Capillary suction corresponds to the transport of water in mortar porous media due
to surface tension acting in the capillaries. It is a function of the pore structure (including
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the tortuosity and continuity of the capillaries and their radius) of the mortar. Capillary
tests were done using EN 1015-18. The samples were placed in an oven at 30 ◦C until
the mass change was less than 0.1%. The weights of the samples were registered at 0′, 5′,
15′, 30′, 1 h, 2 h, 3 h, and 21 h up to when the water absorption stabilised and reached an
asymptotic value.

Figures 5–8 present the capillary water absorption for the earth- and cement-based mortars.
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It is observed that the initial water absorption tends to be lower for the bio samples
than the non-bio samples, which is a desirable result. At this range, the water absorption
via the capillary tends to reduce by at least 60% if the mineral precipitation is promoted in
cement-based mortars. For earth mortars, the contribution of this mineral precipitation is
between a 5 and 10% reduction in the initial stage of water absorption. This emphasises
that the biostabiliser can prevent water migration more effectively for cement-based than
for earth-based mortars in the initial stage of the capillary absorption.

In the asymptotic value stage—when the samples tend to become saturated—the
biostabiliser shows a constant contribution of a 5% decrease in water absorption for the
earth-based mortars. For the cement+bio mortars, the contribution to decrease absorption
was above 15%.

In a flooding situation, there is always a stage when there is water absorption in a
non-saturated medium and in a saturated medium. The first corresponds to the beginning
of the capillary curve (Figures 6 and 8), when a structure or a building is exposed to the
tidal-splash water. The second corresponds to structures of the building under water, when
the medium (earth or cement) is already saturated; in a capillary curve, this corresponds to
the plateau. Therefore, it seems that this biostabiliser presents higher benefits to minimise
the migration of water-soluble ions in the tidal-splash zones of earthen constructions than
in underwater environments.

Since very impressive results are obtained during the first 1 h of testing, where the
water is still close to the mortar surface, from a mineral precipitation point of view, it seems
that the capillary action was impeded by the microstructure formed near the surface by S.
oneidensis in a more impressive way for the cement than for the earth-based mortars, which
explains the improved results for the cement-based compared to the earth-based mortars.
The long-term analysis shows, however, that the microbial precipitation effect is detected
deeply in the mortars through the differences between the asymptotic value of the samples
with or without bio. This is confirmed through the SEM/EDS results discussed below.

3.3. SEM/EDS

Each mortar sample was crushed, and the inner part was coated in gold in order
to investigate the bonding characteristics between the cement paste and the aggregates
with or without the biostabiliser. In order to confirm the formation of calcium carbonate
precipitation, an EDS analysis was performed for the cement-based (Figures 9 and 10 and
Table 3) and earth-based (Figures 11 and 12 and Table 4) mortars.

The measurement in different areas was focused, and the corresponding peaks are
shown in Figures 9 and 10. The CaCO3 is associated with an increased quantity of Ca and
oxygen, as observed in the spectrum of the cem+bio in comparison to the cement plain.
The presence of Si is associated with the hydration of cement paste and the presence of
sand. The details of the EDS are presented in Table 3.
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Table 4. EDS analysis of earth-based mortars with and without biostabiliser.

CaCO3

Ca O Si K

Weight
(%)

Atomic
(%)

Weight
(%)

Atomic
(%)

Weight
(%)

Atomic
(%)

Weight
(%)

Atomic
(%)

Earth Plain
Average 15.8 9.4 40.2 59.5 30.5 25.7 0.8 0.5

Earth+Bio
Average 31.8 16.7 58.2 76.4 5.2 3.9 2.1 1.1

In order to confirm the formation of calcium carbonate precipitation in the earth-based
mortars with the biostabiliser, an EDS analysis was performed (Figures 11 and 12 and
Table 4). The measurement in different areas was focused, and the corresponding peaks are
shown in Figures 11 and 12. The CaCO3 is associated with an increased quantity of Ca, as
observed in the spectrum of the earth+bio mortar in comparison to the earth plain mortar.
The EDS performed for the earth- and cement-based mortars shows that there is a decrease
in the quantity of Si and K in the composition with the biostabiliser for both families of
mortars (Tables 3 and 4). However, that decrease is more impressive for the earth-based
mortars with the biostabiliser, which might be associated with a dissolution in the silicate
structures due to the presence of more water. This will be discussed more in the next topic
on the adsorption and desorption of water vapour.

A scanning electronic micrograph of cement and earth mortars with and without
biostabiliser was completed after crushing for compressive strength at 28 days of age.
The microstructure analysis of the samples is illustrated in Figure 13 (cement-based) and
Figure 14 (earth-based). Figure 13 (left) demonstrates the SEM analysis of the cement plain
sample with visible micro-cracks and voids. Figure 13 (right) shows the micro-structure
of the cem+bio mortar, revealing the existence of crystalline calcium carbonate, which
correlates with bacteria precipitation; nearly all the micro-cracks and voids are filled with
calcium carbonate. Calcium carbonate in the form of calcite is detected not only in earth-
based but also earth+bio mortars (Figure 14 (left and right) and Table 4). This increased
quantity of calcium carbonate in the cement- and earth-based mortars with biostabiliser,
as observed in the SEM of the cement and earth mortars and EDS, is the microstructure
behaviour explanation of the macro behaviour detected for the mortars regarding the
compressive and flexural tensile strength increase, as discussed below.

3.4. Adsorption and Desorption of Water Vapour

Adsorption is a surface process with the accumulation of water (or oxygen) on the
solid mortar. Adsorption can be defined based on the strength of the interaction between
the adsorbent (the substrate onto which chemicals attach) and the adsorbed molecules. The
strength of the interaction can be due to Van der Waals interactions between the substrate
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and adsorbate (the molecule that is adsorbed, which, in this case, is water), or due to
the chemical bonds involved (covalent bonds usually) in sticking the adsorbate to the
adsorbent [34].
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Desorption can occur when an equilibrium situation is altered and corresponds to the
release of one substance from another, either from the surface or through the surface.

In this context, if the mortar porous media conditions favour the adsorption of a water
molecule, then the molecule will adhere to the stationary phase and be separated from the
other sample chemicals. When the conditions favour desorption, the opposite will occur
and the chemicals will be released into the mobile phase.

A combination of the NORDTEST protocol and ISO 21453 was employed in order
to determine the moisture buffering value (MBV) of the mortars, which corresponds to
the ability of the cement- and earth-based mortars to adsorb and desorb water vapour
from the environment (Equation (1)) when the air humidity is high and low, respectively.
The samples were covered with aluminium tape and laid horizontally with the single
exposed surface pointing upwards. They were then exposed to 24 h cycles of RH of 75%
for 8 h and 53% for 16 h at 23 ◦C Afterwards, they were exposed to a cyclical step change
in RH of 75% for 8 h and 53% for 16 h in accordance with the test conditions defined by
Romano et al. [35,36]. The results were obtained for cycles 1, 3, 8, and 10.

MBV = (ma −md)/(A∆ϕ) (1)

where

ma = Mass of mortar at end of moisture adsorption stage (g)
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md = Mass of mortar at end of moisture desorption stage (g)
A = Exposed surface area of the mortar (m2)
∆ϕ = RH difference between adsorption and desorption stage (%)

It is generally a desirable property for a material to have a high MBV [35,36]. Figure 15
shows that, for the earth mortars, the biostabiliser tends to lower the MBV in comparison
to without the biostabiliser. At the 10th cycle, the results are similar in both situations.
Probably, the precipitation decreases the ability of the earth-based mortar to absorb and
desorb water vapour from the air, making the material more stable to relative humidity
changes. The MBV for the cement mortars with the biostabiliser is at least 15% higher in
the first day of cycles, but it tends to decrease with time, and, after three cycles, the MBVs
are similar. For the earth mortars, the same biostabiliser can decrease the MBV by between
6 and 13%.

Materials 2022, 15, x FOR PEER REVIEW 13 of 20 
 

 

the MBVs are similar. For the earth mortars, the same biostabiliser can decrease the MBV 
by between 6 and 13%. 

 
Figure 15. MBV for bio and non-bio earth and cement mortars after 1 month. 

These changes in the MBV seem to happen from cycle three (3 days after the 
beginning of the test). According to Rode et al. [37], the tested mortars are classified as 
good when the MBV varies between 1 and 2 or has a value above 2, which is classified as 
‘Excellent’. 

With an increase in the RH cycle time, deeper layers of the mortars become involved 
in the diffusion process, which enables the transportation of water and ions due to the 
concentration gradient and partial pressure. It is the relative rates of adsorption and 
desorption onto and off of the stationary phase that allow the chemicals in the samples to 
be separated. At low relative humidity, capillary suction is more efficient, whereas, in 
wet/humid porous media, the diffusion coefficients decrease for gases but play a more 
important role for the mobility of ions, which is greatest in completely water-filled pores 
[21]. The sorption isotherm of the concrete influences the increase and decrease in the 
diffusion coefficient (Figure 16). 

 
Figure 16. Schematic representation of the diffusion coefficients of ions and gases within a mortar 
as a function of the relative humidity based on Ref. [38]. 

Figure 15. MBV for bio and non-bio earth and cement mortars after 1 month.

These changes in the MBV seem to happen from cycle three (3 days after the beginning
of the test). According to Rode et al. [37], the tested mortars are classified as good when the
MBV varies between 1 and 2 or has a value above 2, which is classified as ‘Excellent’.

With an increase in the RH cycle time, deeper layers of the mortars become involved
in the diffusion process, which enables the transportation of water and ions due to the
concentration gradient and partial pressure. It is the relative rates of adsorption and
desorption onto and off of the stationary phase that allow the chemicals in the samples
to be separated. At low relative humidity, capillary suction is more efficient, whereas, in
wet/humid porous media, the diffusion coefficients decrease for gases but play a more
important role for the mobility of ions, which is greatest in completely water-filled pores [21].
The sorption isotherm of the concrete influences the increase and decrease in the diffusion
coefficient (Figure 16).

The following figures (Figures 17 and 18) show the contribution of the adsorption and
desorption stages for cement- and earth-based mortars with or without the biostabiliser.

Adding the bioproduct leads to a decrease of water adsorption by 18% in the first
3 days of testing in comparison to the cement plain compositions (Figure 17). However,
there is 15% more desorption in the first cycle for cem+bio in comparison to plain. After
three cycles, there is more desorption than adsorption of water for cem+bio, but the plain
compositions present similar absorption/desorption values. The results show that the
biostabiliser effect through precipitation seems to decrease the ability of a cement-based
mortar to adsorb more moisture from the air. Because the conditions favour desorption in
cem+bio, the biostabiliser precipitation seems to facilitate the release of the chemicals into
the mobile phase.
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For the earth-based mortars (Figure 18), adding the bioproduct leads to a decrease
of water adsorption by 20% in the first 3 days of testing in comparison to the earth plain
compositions. However, there is 6% less desorption in the first cycle in comparison to
plain and 20% less desorption in the following days if the bioproduct is added. After
three cycles, there is less desorption than adsorption of water for the earth+bio, but earth
plain seems to present a similar level of adsorption and desorption. The relative rates of
adsorption and desorption onto and off of the stationary phase allow the chemicals in the
samples to be separated. In this context, it seems that the precipitation in the earth+bio
mortar porous media conditions favours the adsorption of water molecules, making the
molecule adhere to the stationary phase and be separated from the other sample chemicals.
The SEM/EDS performed for the earth- and cement-based mortars confirms the calcium
carbonate precipitation and shows that there is a decrease in the quantity of Si and K in the
composition with the biostabiliser for both families of mortars (Tables 3 and 4). However,
that decrease is more impressive for the earth-based mortars with the biostabiliser, which
might be associated with a dissolution of silicate structures due to the presence of more
water. This is in agreement with Ghosh et al. [39], who stated that S. oneidensis leaches
silica. The work developed in Ref. [40] also confirms that the dissociation of the silicates
occurs in processes that involve water molecule(s) (or the OH– group). The water molecule
reduces the energy barrier to dissociate the Si–O–Si bridge. The dissociation is also favoured
in the presence of the OH– groups, which increase if RH increases. This could help to
understand how to control the dissociation of silicates and the formation of alkali silicates
or aluminosilicates, such as zeolites and geopolymers. The results from this work could be
extended to the chemistry around the formation of alkali silica gels during the so-called
alkali–silica reaction, which can create irreversible damage in cement [41–43].

3.5. Compressive and Three-Point Flexural Strength

The compressive and three-point flexural test results are presented in Figures 19 and 20.
The results show that there is a compressive and flexural strength increase for both com-
positions if the biostabiliser is used. However, the increase is significant mainly for the
cement-based mortars. For the tested earth-based mortars, this increase is around 10%
if the biostabiliser is added. This is in agreement with the SEM/EDS results obtained
and discussed above. For the cement-based mortars (Figure 20), the strength increase
with the biostabiliser is almost double that of the plain one, either for compressive or
flexural strength.
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Figure 19. Compressive and tensile flexural strength at 28 days for the earth-based mortar with and
without biostabiliser. Coefficient of variation for tensile flexural strength (CoV) per family of mortar:
earth mortar: 23.4%; earth+bio: 14.0%. Coefficient of variation for compressive strength (CoV) per
family of mortar: earth mortar: 16.6%; earth+bio: 11.2%.
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Figure 20. Compressive and tensile flexural strength at 28 days for the cement-based mortar with
and without biostabiliser. Coefficient of variation for tensile flexural strength (CoV) per family of
mortar: cement mortar: 1.3%; cem+bio: 4.9%. Coefficient of variation for compressive strength (CoV)
per family of mortar: cement mortar: 4.3%; cem+bio: 3.6%.

Bacteria adhesion is the first stage for biofilm formation, where the bacteria–surface
interactions are essential for biofilm control. Surface charge plays an important role in
determining the binding force between bacteria and the surface, and it has long been known
to affect biofilm formation. Most bacterial cells are negatively charged; thus, in general, a
positively charged surface is more prone to bacterial adhesion, and a negatively charged
surface is more resistant to bacterial adhesion [44,45]. In the case of earth-based mortar,
the content in clay makes a surface with a negative charge due to its cation exchange
capacity, which can explain the best relative performance of cem+bio in comparison to
earth+bio. However, the clay surface can have its surface interaction changed by adding
some dispersants from the cement or ceramic industry [46,47].

3.6. Open Porosity

EN 1936:2006 was used to measure the open porosity of the mortars in order to
quantify the void space inside the samples and understand the microstructure (Figure 21).
Despite earth-based mortars presenting an open porosity of 30%, which is higher than the
25% for cement-based mortars, adding the biostabiliser only slighter decreases this value.
However, the porosity results are in agreement with those of other studies focused on earth
and cement [21,48].
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Figure 21. Open porosity at 28 days for the cement-based mortar with and without biostabiliser.
Coefficient of variation (CoV) per family of mortar: cement mortar: 1.8%; cem+bio: 3.2%; earth
mortar: 1.2%; earth+bio: 0.5%.
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4. Conclusions

This study investigated the potential of using mineral precipitation as a stabiliser in
earthen construction materials. These biostabilisers have some advantages by providing
suitable mechanical properties, durability performance, and improved hygroscopic be-
haviour in comparison to stabilisation with cement. Earth-based mortars’ performance
with or without the biostabiliser was compared with cement-based mortars with or without
the biostabiliser. Cultures of S. oneidensis with a concentration of 2.3 × 108 cfu/mL were
used. The biostabiliser was then used to prepare earth-based and cement-based mortars
with a ratio of 6% of binder. The mechanical strength, water absorption via capillary, and
moisture buffering results were analysed.

The capillary results indicate that this biostabiliser presents higher benefits to minimise
the migration of water-soluble ions in the tidal-splash zones of earthen constructions than
in underwater environments. It is observed that the initial water absorption tends to be
lower for the samples with the biostabiliser than the ones without due to precipitation,
as confirmed by micro and macro tests. The biostabiliser can prevent water migration
more effectively for cement-based than for earth-based mortars in the initial stage of the
capillary absorption. In the first 1 h of contact with water, the water absorption via the
capillary tends to reduce by at least 60% for cem+bio, but, for earth+bio, it reduces by 5
to 10%. When the samples tend to become saturated, the biostabiliser shows a constant
contribution of a 5% decrease in water absorption for the earth-based mortars. For the
cement-based mortars, the contribution to decrease the absorption was above 15%. The
long-term analysis shows, however, that a calcium carbonate precipitation effect is detected
deeply in both families of mortars through the differences between the asymptotic value
of the samples with or without the biostabiliser. This is confirmed through the SEM/EDS
results, as discussed above.

At low relative humidity, the capillary suction is more efficient, whereas, in wet/humid
concrete, the diffusion coefficients decrease for gases but play a more important role for
the mobility of ions, which is greatest in completely water-filled pores. In an adsorp-
tion/desorption environment, the biostabiliser effect through precipitation seems to de-
crease the ability of a cement-based mortar to adsorb more moisture from the air. Because
the conditions favour de-sorption in cem+bio, the biostabiliser precipitation seems to facili-
tate the release of the chemicals into the mobile phase. The precipitation in the earth+bio
mortar porous media conditions favours the adsorption of water molecules, making the
molecule adhere to the stationary phase and be separated from the other sample chemicals.
The SEM/EDS performed for the earth- and cement-based mortars confirms the calcium
carbonate precipitation and shows that there is a decrease in the quantity of Si and K in
the composition with the biostabiliser for both families of mortars. However, that decrease
is more impressive for the earth-based mortars with the biostabiliser, which might be
associated with a dissolution of the silicate structures due to the presence of more water as
S. oneidensis can leach silica. With an increase in the RH and the presence of OH– groups,
the water molecules reduce the energy barrier to dissociate the Si–O–Si bridge. A future
study should include longer exposure of samples to the humidity cycles in order to analyse
the final MBV improvement of the mortars with the biostabilisers.

For the tested earth-based mortars, there was an increase of 10% for compressive and
flexural strength if the biostabiliser was added. For the cement-based mortars, the strength
increase was almost double that of the plain one. In the case of the earth-based mortars,
the content in the clay makes a surface with a negative charge due to its cation exchange
capacity, which can explain the best relative performance of cem+bio in comparison to
earth+bio, meaning that the use of dispersants might improve the performance.
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