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Abstract: The production of thin-walled beams with various cross-sections is increasingly automated
and digitized. This allows producing complicated cross-section shapes with a very high precision.
Thus, a new opportunity has appeared to optimize these types of products. The optimized parameters
are not only the lengths of the individual sections of the cross section, but also the bending angles and
openings along the beam length. The simultaneous maximization of the compressive, bending and
shear stiffness as well as the minimization of the production cost or the weight of the element makes
the problem a multi-criteria issue. The paper proposes a complete procedure for optimizing various
open sections of thin-walled beam with different openings along its length. The procedure is based
on the developed algorithms for traditional and soft computing optimization as well as the original
numerical homogenization method. Although the work uses the finite element method (FEM), no
computational stress analyses are required, i.e., solving the system of equations, except for building a
full stiffness matrix of the optimized element. The shell-to-beam homogenization procedure used
is based on equivalence strain energy between the full 3D representative volume element (RVE)
and its beam representation. The proposed procedure allows for quick optimization of any open
sections of thin-walled beams in a few simple steps. The procedure can be easily implemented in any
development environment, for instance in MATLAB, as it was done in this paper.

Keywords: homogenization; thin-walled structure; shell-to-beam; radial basis functions; artificial
neural networks; parametrized optimization

1. Introduction

In recent years, thin-walled structures have gained more and more popularity, both as
thin-walled beam profiles and trapezoidal sheets. They are most often used in constructions
as load-bearing elements of structures, among others as roof bolts and purlins, spatial lattice
trusses or in transom-column systems. In addition, thin-walled elements are used in the
construction of facades and as bracings. In such applications, it is necessary to ensure the
appropriate load-bearing capacity of the elements. Another application of thin-walled
sections is their use for the production of architectural details. These include window and
door leaves, balustrades and fences. Although they are not load-bearing elements, their
weight and strength are still important and often optimized.

Generally, more and more often the aim is to obtain steel structures with the lowest
possible weight while maintaining an appropriate load capacity. This can be achieved by
using high-strength steel or by inserting appropriately spaced holes/perforations along the
length of the element. Holes obviously reduce weight, but they can also act as mounting
holes, which are used to attach a profile to another load-bearing element or, for example, to
attach sandwich panels to such a profile, as was shown in [1]. These types of openings are
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typically placed at specific locations where connections are planned. Such an arrangement
causes a local weakening of the cross-section and reduction of its stiffness. In turn, an
arrangement of the mounting holes periodically along the length of the beam leads to
a reduction in the stiffness of the cross-section along its entire length. However, such
arrangement of the openings is advantageous as it allows the connection point to be freely
adjusted on the construction site. In addition, the use of openings in thin-walled structures
may be conditioned by the installation, such as fire sprinkler system [2] and electrical
wiring. Due to the increasing development and emphasis on the creation of intelligent
buildings, the number of installations will gradually increase, which will result in the need
to use more openings in cross-section.

Designing load-bearing elements, including thin-walled purlins usually consists of
selecting the appropriate cross-section from the manufacturer’s available catalogs. All
that is needed is the beam span, the number of spans and the load value. Cross-section
warping and distortions are ignored in this study, although they usually affect the behavior
of thin-walled beams. These phenomena are widely discussed in the literature, including
buckling assessment of thin-walled steel frames [3], where Generalized Beam Theory (GBT)
was used, or nonlinear torsional analysis of composite beams [4], where Benscoter theory
was applied. The nonlinear behavior can be also considered similarly to, for example, the
approach presented in [5], where non-uniform distortions and warping of the cross-section
in the beam model and Saint Venànt solutions were taken into account. A phenomenon not
included here, but equally important, is also the influence of torsion and shear distortion of
the beam, which were analyzed, among others, by Addessi et al. in [6].

Calculations of geometric or strength parameters for a fixed beam without holes
is easy to perform. However, for more complicated structures or elements with holes,
more complex calculations are required. In the case of complex cross-section consisting of
several materials, the analytical calculations can usually be performed only for the elastic
range. The problem arises when one takes into account the plasticity of the material, then
the section properties are not sufficient to determine the load capacity of the structure.
In this case, the application of general nonlinear constitutive law (GNCL) proves to be
useful. Thus far, they have already been used for 2D steel plates [7], composite beams [8],
trapezoidal sheets [9] and hollow-core slabs [10]. If the cross-section changes along the
length of the beam, additional partitioning and averaging techniques are required for
the analytical problem. Sometimes an individual analytical solution is required, typically
aimed at a unique cross-section. However, this solution is very labor-intensive and the
use of it becomes impractical, since usually an engineering design needs to be obtained
quickly and universally. Therefore, the remedy is to use numerical methods, especially the
finite element method (FEM), which is currently one of the most widely used method by
civil engineers.

Applying the finite element method and creating full three-dimensional models for
complex structures is very time-consuming and labor-intensive. In the case of bar elements
with perforations or holes, modelling with the use of solid or shell elements is required [1,2].
In this case, the classical FEM becomes ineffective due to the need of dense mesh in the
vicinity of the holes. Additionally, shell or solid elements are necessary to be implemented
in commercial or home-made finite element method code. Therefore, simplified approaches
are often used. An example of such simplification may be the use of one of the homoge-
nization techniques available for FEM calculations. Such an approach could significantly
simplify the calculations, thus, reducing time.

The issue of homogenization has been the subject of numerous studies over the last
dozen or so years. Consequently, many homogenization techniques have emerged. There
are homogenization methods based on the deformation energy [11], the periodic homog-
enization [12,13] or based on the equivalence of the deformation energy [14–18]. The
paper [17] presents a method of determining the stiffness of perforated corrugated board,
which is based on the homogenization method presented by Garbowski and Gajewski [15].
It is a universal method used not only for cardboard homogenization, but also for engi-
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neering structures. For instance, it was used for the homogenization of the cross-section of
prefabricated Filigran slabs in the work of Staszak et al. [16] and for thin-walled profiles
with holes [18]. On the other hand, in [19] the method based on the matrix eigenvectors
and the main vectors of the state transfer matrix for the lattice beam-like structure was
used. The authors of [20] present the homogenization of the three-dimensional model of
non-centrosymmetric tetrachiral unit cells based on homogenization in bundles taking
into account the Timoshenko theory. The above examples show that the homogenization
methods in each case accelerated the numerical calculations or significantly simplified the
calculation model.

Thanks to the use of homogenization methods, calculations can be accelerated, which
is especially desirable in optimization problems [21,22]. For instance, homogenization was
used with great time benefit to obtain the geometrical [23] and material [24] parameters of
the structure. The authors of [25] describe the optimization of the cross-section of a thin-
walled section of a structure with dynamic behavior. Additionally, in the works [22,26,27],
the optimization of the structure topology was presented. In turn, in [28] the optimization
of the sigma type cross-section and in [29] the C-type cross-section were presented. In [30],
the authors showed the use of Latin hypercube sampling (LHS) for square tube trusses with
holes. A hybrid optimization method is presented in [31]. The authors used this technique
to optimize cellular beams.

In this paper, we use the homogenization technique based on the equivalence of
elastic strain energy and traditional gradient-based minimization algorithms for parametric
optimization of thin-walled sections of different beams. After the successful implementation
of a very efficient algorithm in MATLAB, an offline computation method based on a
surrogate was also presented. Its task was to replace the homogenization procedure, which
further accelerated the optimization process without significantly losing the accuracy of
the proposed procedure. In addition, a properly prepared surrogate can be used on a small
portable computer or as a light and fast web application to optimize any parameterized
cross-sections of thin-walled beams with holes; of course, after prior training of the model
using the procedure proposed here.

2. Materials and Methods
2.1. Study Objective and Optimization Frameworks

Optimization problems are common in daily engineering work. Often they are solved
intuitively, or by trial and error methods. Highly qualified engineers use advanced op-
timization methods available in commercial software, developed by in-house codes or
possibly implemented as the subroutines/addons to their daily usage programs. One of
the key elements is the so-called solver of each optimization task, which must be able to
map the output results based on the input parameters.

In advanced engineering problems, the solver is rarely a simple analytical or empirical
mathematical expression. Most frequently, the output is obtained by heavy and medium-
heavy computations, for instance, by employing the finite element method [32,33], meshless
methods [34,35], etc. Therefore, it is greatly desirable to use the numerical techniques
which are able to reduce the number of problem degrees of freedom while maintaining the
accuracy of modelling. Such property can be achieved by adopting the numerical technique
proposed in Staszak et al. [18].

In this paper, the shell-to-beam homogenization technique [18] was used as part of an
optimization problem in structural engineering to model the representative volume element
(RVE) stiffness of thin-walled 3D perforated beams. The general question considered in
the study was: what should a cross-section design of a thin-walled 3D perforated beam
from a Z, C or Σ profile be for a simply supported beam with an evenly distributed load
to achieve a specific load capacity due to bending moment and maximum displacement.
The cross-section design was described by a parametric model of x; see Section 2.2. Beam
length used was equal to 1.0 m and the evenly distributed load was equal to 1 kN/m. The
beam was assumed to be rotated in the cross-section with α = 25◦, therefore, the bending
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moment and displacement was computed in x and y direction (distributed adequately
by trigonometric functions). The resultant bending moment criteria and displacement
criteria set was Mcr = 2.65 kNm and dcr = 0.0696 mm for Z profile, Mcr = 2.89 kNm and
dcr = 0.105 mm for C profile and Mcr = 2.21 kNm and dcr = 0.145 mm for Σ profile.

The load-bearing bending moment M(x) was computed from ultimate stresses in
two-direction bending:

σpl =
My

Iy(x)
xmax(x) +

Mx

Ix(x)
ymax(x), (1)

where σpl is the yield stress, here assumed to be 235 MPa; Mx and My are bending moments;
Ix and Iy are moments of inertia along x and y axes, respectively; and xmax and ymax are the
maximal coordinates in the cross-section plane. After substituting My = cosα·M(x) and
Mx = sinα·M(x) we can extract the following form of load-bearing bending moment:

M(x) =
σpl ·Ix(x)·Iy(x)

cosα·ymax(x)·Iy(x) + sinα·xmax(x)·Ix(x)
. (2)

In perforated beams, the displacement from shearing can be the important part of the
overall displacements. Therefore, in the study, the second order displacements were also
taken into consideration:

di(x) = 5qi ·L4

384·EIj(x) +
qi ·L2

8·Gjz A(x) i = x, y j = y, x . (3)

where L is the beam length and q is the evenly distributed load.
As mentioned earlier, the displacements were computed in x and y directions, thus,

the resultant values are computed from the simple formula:

d(x) =
√

dx(x)2 + dy(x)2. (4)

To sum up, after considering Equations (2) and (4), the objective function, F, used in
the study in all optimization jobs has the following form:

F(x) =
∣∣∣∣d(x)− dcr

dcr

∣∣∣∣+ ∣∣∣∣M(x)−Mcr

Mcr

∣∣∣∣. (5)

Such form of Equation (5) enforces the optimization algorithm to find the solution
with Mcr and dcr assumed earlier in this section. Because we solve the engineering problem
the boundary conditions are physical dimensions. Each parameter has lower, bl , and upper
boundary, bu; the boundary conditions are presented in Table 1 (the meaning of the symbols
are described at the beginning of Section 2.2 and drawn in Figures 1–3). The problem was
solved for two fixed levels of thin-walled sheet thicknesses, namely, 1.5 and 2.0 mm.

Table 1. The lower and upper limits of the parameters selected for optimization for Z, C and
Σ profiles.

Boundary Profile b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm)

bl Z, C
30 30 90 0 5

bu 90 90 200 24 20

Boundary Profile b and d
(mm)

c
(mm)

j
(mm)

k
(mm)

l
(mm)

bl Σ
30 90 20 20 5

bu 90 200 45 80 45
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Figure 1. Z profile parametrized for optimization purpose: (a) Cross‐section and (b) side view of 

representative volume element. 
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Figure 2. C profile parametrized for optimization purpose: (a) Cross‐section and (b) side view of 
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Figure 3. Σ profile parametrized for optimization purpose: (a) Cross‐section and (b) side view of 

representative volume element. 

   

Figure 1. Z profile parametrized for optimization purpose: (a) Cross-section and (b) side view of
representative volume element.
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Figure 2. C profile parametrized for optimization purpose: (a) Cross-section and (b) side view of
representative volume element.
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Figure 3. Σ profile parametrized for optimization purpose: (a) Cross-section and (b) side view of
representative volume element.

The main objective of the paper was to verify different approaches to solve the con-
strained optimization problem. Three cases were selected, namely, (i) traditional opti-
mization with minimization algorithm of sequential quadratic programming (SQP) [36],
(ii) optimization with metamodeling by radial basis function (RBF) network feed with
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systematic sampling data and (iii) optimization with metamodeling by RBF network feed
with optimal Latin hypercube sampling (OLHS) data. In order to find the global solution,
the optimization algorithm was run from several initial guesses of design parameters; see
Table 2. All computations in the research were performed in MATLAB software (Software
Version 2021b, Mathworks, Natick, MA, USA).

Table 2. The initial guesses of design parameters selected for optimization for Z, C and Σ profiles.

No. Profile b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm)

x1 Z, C 45 40 110 20 19
x2 Z, C 35 35 140 5 5
x3 Z, C 30 65 90 5 15
x4 Z, C 35 35 100 5 15
x5 Z, C 45 30 150 10 5

No. Profile b and d
(mm)

c
(mm)

j
(mm)

k
(mm)

l
(mm)

x1 Σ 80 150 37.5 50 50
x2 Σ 30 120 20 40 20
x3 Σ 60 110 37.5 20 35
x4 Σ 45 170 20 20 10
x5 Σ 55 135 30 30 30

2.2. Parametric Models of Thin-Walled Cross-Sections

In the study, the three cold formed thin-walled cross-sections were considered, i.e.,
Z profile, C profile and Σ profile. The Z and C profiles have rounding at the corners and
regular holes in the web. The hole shapes considered are circular and stadium type. The
geometries analyzed for Z and C profiles were parameterized by a few geometric features:

• b—upper flange width
• c—web height
• d—lower flange width
• t—thin-walled sheet
• w—length of the rectangular part of the hole
• r—radius of the hole

The Σ profile was parametrized by:

• b—upper/lower flange width
• c—overall height
• j—non-perforated height of the web
• k—perforation height
• l—web perforation depth

Moreover, some of the features are dependent on the geometric parameters assumed,
that is, a—length of upper flange stiffener is equal to 10t, e—length of lower flange stiffener
is equal to 10t, and rb—bending radius in the cross-section are equal to 3t.

The parametrized models were used to build the representative volume element
(required in the numerical homogenization technique [18]) for a particular set of parameters
used in the optimization framework. The technique is based on the finite element method
approach, but does not require formal computational stress analyses, i.e., solving a system
of equations.

2.3. Numerical Homogenization Technique

Although, in the case of thin-walled beam elements, the material from which they
are made is rarely heterogeneous, the appearance of holes along the beam means that
traditional tools and algorithms cannot be used. To avoid the need for advanced tools and
complicated modeling, numerical homogenization can be used [12,14–17]. In this study,
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the homogenization method proposed in [18] was used, which was an adaptation (to thin-
walled beams) of the technique based on the elastic deformation energy equivalence [14].
This method was also successfully used earlier for the homogenization of layered sections of
shells with a corrugated core [15,17] and concrete slabs reinforced with spatial trusses [16].

In order to apply the elastic deformation energy equivalence between the full 3D
model (which is homogenized) and the model reduced to a structural element, the first step
is to correctly construct the relationship between the deformation and the displacement in
the selected model nodes. To do this, first one needs to build a full stiffness matrix of RVE
and then condense the stiffness of the full model into nodes where kinematic boundary
conditions have been applied. Let us briefly go through the homogenization method used
in [18] and adopted in the study. For more details, the reader should follow [18], in which
all mathematical details of the method were stated.

Starting from a typical finite element method equation, one may extract magnitudes
for external (subscript e) and internal (subscript i) nodes:

K u = F →
[

Kee Kei
Kie Kii

][
ue
ui

]
=

[
Fe
0

]
. (6)

where K is the stiffness matrix, u is the nodal displacement vector and F is the external nodal
load vector. External nodes are the ones at the front and back of the RVE cross-section. The
stiffness matrix of external nodes of RVE may be computed from static condensation, i.e.,

Ke = Kee −Kei Kii
−1 Kie , (7)

On the other hand, the total elastic strain energy, E, may be written as:

E =
1
2

uT
e Fe . (8)

Which, after a series of substitutions and simplifications, can be expressed as:

E =
1
2
εT

e Hk εe{length}, (9)

where Hk contains compression, bending and shearing stiffnesses:

Hk =
HT

e Ke He

{length} =


A33 B31 B32 0 0
B13 D11 0 0 0
B23 0 D22 0 0
0 0 0 R44 0
0 0 0 0 R55

 , (10)

where: A33—tensile stiffness along longitudinal axis; D11 and D22—bending stiffnesses
with respect to the in-plane directions; R44 and R55—shear stiffnesses of RVE and B13 = B31
and B23 = B32—the terms of compressive-bending behavior.

The most important part of the method is the transformation matrix Hi for each node
(xi = x, yi = y, zi = z), i.e., the approach for coupling nodal displacements and nodal
deformation in:

ui = Hi εi , (11)

The full form of Equation (11), in the method postulated [18] is the following:
ux
uy
uz
θx
θy


i

=


0 0 −z2/2 z/2 0
0 −z2/2 0 0 z/2
z yz xz x/2 y/2
0 0 −z 0 0
0 −z 0 0 0


i


εz
κx
κy
γxz
γyz


i

. (12)
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2.4. Optimization Methods Used
2.4.1. Sequential Quadratic Programming

Sequential quadratic programming (SQP) method was used because this optimization
method is one of the most efficient, accurate and was tested over a large number of
benchmarks. Moreover, it has a high percentage level of successful solutions [37–41].

The mathematical problem of the optimization is postulated in the following manner:

minF(x), (13)

where F(x) is the objective function of design parameters x with potential equalities constraints:

Ceq(x) = 0,
Aeq·x = beq,

(14)

and inequalities constraints:
C(x) ≤ 0,
A·x ≤ b,

bl ≤ x ≤ bu,
(15)

where b and beq are vectors; A and Aeq are matrices; C and Ceq are functions; bl and bu are
vectors of lower and upper boundary values of design parameters x.

In order to take the constraints into account, the function F(x) is modified according
to Lagrange’s function, L, which takes the subproblem form:

L(x, λ) = F(x) +
m

∑
i=1

λi·g(x), (16)

where λi are the Lagrange multipliers and gi(x) are the nonequality constraints.
The quadratic programming subproblem form leads to the following expression:

min
d∈Rn

1
2

dTHk +∇F(xk)
Td, (17)

where Hk is the positive definite approximation of the Hessian matrix of Equation (16). The
approximation is obtained bye Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. The
Hessian matrix is updated at each major iteration by the following expression:

Hk+1 = Hk +
qkqT

k
qT

k sk
−

HksksT
k HT

k
sT

k Hksk
, (18)

where
sk = xk+1 − xk, (19)

qk =

(
∇F(xk+1) +

m

∑
i=1

λi∇gi(xk+1)

)
−
(
∇F(xk) +

m

∑
i=1

λi∇gi(xk)

)
. (20)

The solution obtained due to quadratic programing is used to generate a new step:

xk+1 = xk + αkdk, (21)

where αk is the step length received to decrease the discrepancy in merit function [38–40].

2.4.2. Radial Basis Function Network

In this work, we used very simple neural networks with radial basis functions. These
networks are characterized by zero error on the training vectors. The training parameters
of such a neural network are: (1) a set of input vectors P (in our case a design parameter
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of the cross-section x), (2) target vectors T (stiffnesses calculated through the numerical
homogenization) and (3) a certain constant defining spread for the radial layer base.

As a result of learning, we obtain weights and biases in such a way that the outputs of
the network are exactly the values of T, when the inputs are the value of P. The network
has as many radial neurons as there are input vectors in P and sets the weights of the first
layer to the value of P. Thus, there is a layer of radial neurons in which each neuron acts as
a detector for a different input vector. The transfer function, a, is the following [42]:

a(n) = exp
(
−n2

)
, (22)

where n is a distance between the value of Pi and the value of weight Wi.
Each variation in the first layer is set so that for a radial basis function that intersects

0.5, the weighted inputs value is +/− the spread value. This determines the width of
the area in the input space to which each neuron corresponds. Second layer weights and
deviations are found by simulating the first layer results a and then solving a simple system
of linear equations (for known values of T targets).

Thus, the only required condition in this type of neural network is to ensure that
the spread is large enough that the active input regions of the radial neurons overlap
sufficiently (to always activate several radial neurons with a given input vector). This
makes the approximation function smoother and the results are better generalized for new
input vectors located between the input vectors used for training. The spread for each
neuron should not be too large to be able to respond effectively to a correspondingly large
area of the input space. In our case, the value of this parameter was set to 10; this was the
value that generated the smallest error when testing the network with new input vectors.

2.5. Submodelling Sampling
2.5.1. Systematic Exploration

In the work, the systematic sampling data was used in (ii) optimization task, assuming
the boundary design parameters x included in Table 1. For each parameter, a certain
number of evenly spaced samples was assumed. These were, respectively, three values for
parameters t and w, four values for parameters b, d, r and five values for parameter c. The
parameters are shown in Figures 1 and 2. As a result, 2880 sets of design parameters x were
obtained within the boundary adopted in Table 1. Then those parameters were used in
(ii) optimization task for RBF training for optimization with metamodeling.

2.5.2. Optimal Latin Hypercube Sampling

In the study, the optimal Latin hypercube sampling was used in (iii) optimization
job within the assumed boundary of design parameters x; see Table 1. The optimal Latin
hypercube sampling algorithm in its first step spreads the random Latin hypercube design
matrix sampling. In the next step, the two factor levels are replaced in the column matrix,
which gives new sampling spacing, and this is repeated until the goal is achieved. The
goal of the algorithm is to obtain the spread of the points (sampling of the x parameters) as
evenly as it is possible.

The algorithm in order to generate the sampling is using the maximum distance
criteria, φp, according to Jin et al. [43]:

φp =

(
s

∑
i=1

Jid
−p
i

)1/p

, (23)

where p is a positive integer, Ji is the index, s is the number of distinct distance values and
di is the distance between two sample points.

In the study, for (iii) optimization job, 75% of the points used for systematic sampling
optimization, i.e., (ii) optimization job, was assumed, namely, 2160 points were generated,
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i.e., set of 2160 design parameters x within the boundary assumed in Table 1 were obtained
and used in learning a radial basis function network approximator.

2.6. Surrogate Model

In the methodologies presented above, the artificial neural network with radial basis
functions (see Section 2.4.2) is a surrogate (i.e., a blackbox) that replaces the very laborious
process of creating a numerical model and homogenization. In this research work, two
models trained a priori, with the use of training data based on a regular grid of points in
the parameter space (see Section 2.5.1) and the LHS grid (see Section 2.5.2) are used. Both
models prepared once and for all in the learning process can be used offline (without the
need to involve specialized numerical analysis software) as a module in an optimization
algorithm (see Section 2.4.1).

3. Results

The flow of the computations in the optimization is as follows:

• design parameters x are passed to the objective function F(x) (due to initial guess or
optimization update, Equation (21))

• these design parameters x are used to compute, via numerical homogenization, the
effective stiffnesses (Equation (10))

• these effective stiffnesses are used in Equations (2) and (3) to compute the objective
function values F(x), Equation (5), at each iteration step of the optimization process

• F(x) is minimized according to Equations from (13) to (21).

The sensitivity analysis of objective functions for each parameter for all profiles used
were computed. For each trial step in the SQP optimization the numerical gradient of the
objective function was computed. These data were used to compute the mean sensitivity
for each parameter. For Z and C profiles the results were similar; for b, c, d, w, r the
sensitivities for the Z profile were 1.23%, 1.07%, 0.59%, 0.75%, 0.76% and 0.79% and 1.28%,
1.06%, 0.50%, 0.81, 0.82% and 0.93% for the C profile. For b, c, j, k and l for the Σ profile the
sensitivities were 5.32%, 1.13%, 1.33%, 1.79% and 1.50%.

3.1. Traditional Optimization with SQP Minimization Algorithm
3.1.1. Z Profile

The Z profile results obtained for traditional optimization with SQP minimization
algorithm are presented in Table 3. Data show the derived optimal parameters for particular
thickness of thin-walled sheet (1.5 mm or 2.0 mm) for each initial guess presented in Table 2.
The last column demonstrates the objective function obtained at optimal point derived. For
1.5 mm the lowest value was achieved for the fourth case, i.e., F(i) = 0.0079. For 2.0 mm
the lowest value was achieved for the fourth case, i.e., F(i) = 0.0057.

Table 3. Results for traditional optimization with SQP minimization algorithm for Z profile.

No. t
(mm)

b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm) F(i) (−)

1

1.5

82.97 84.08 124.01 19.64 19.16 0.0085
2 87.92 87.92 113.67 4.82 5.06 0.0084
3 63.56 69.52 200 4.53 12.69 0.0554
4 85.14 85.14 119.31 5.6 16.38 0.0079
5 90.0 89.6 112.42 9.19 5.26 0.0259

1

2.0

60.8 57.02 155.88 19.92 18.23 0.0218
2 90.0 90.0 200.0 4.98 5.02 1.6343
3 55.78 62.78 149.35 4.62 13.55 0.0068
4 60.9 60.87 138.94 3.86 15.37 0.0057
5 78.85 48.76 122.68 9.84 6.2 0.0058
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The example of the design parameters convergence for the fourth case and 2.0 mm
thickness is shown in Figure 4. Moreover, in Figure 5, for the same case the objective
function F is illustrated for minimization iterations. The objective function components
were also presented; F1, which was responsible for deflection discrepancy and F2, which
accounted for load-bearing moment discrepancy.

Materials 2022, 15, 2520  11  of  23 
 

 

3.1. Traditional Optimization with SQP Minimization Algorithm 

3.1.1. Z Profile 

The Z profile results obtained  for traditional optimization with SQP minimization 

algorithm are presented in Table 3. Data show the derived optimal parameters for partic‐

ular thickness of thin‐walled sheet (1.5 mm  or  2.0 mm) for each initial guess presented in 

Table 2. The last column demonstrates the objective function obtained at optimal point 

derived. For  1.5 mm  the lowest value was achieved for the fourth case, i.e.,  𝐹ሺ௜ሻ ൌ 0.0079. 
For  2.0 mm  the lowest value was achieved for the fourth case, i.e.,  𝐹ሺ௜ሻ ൌ 0.0057.   

Table 3. Results for traditional optimization with SQP minimization algorithm for Z profile. 

No. 
t 

(mm) 

b 

(mm) 

d 

(mm) 

c 

(mm) 

w 

(mm) 

r 

(mm) 
F(i) 
ሺെሻ 

1 

1.5 

82.97  84.08  124.01  19.64  19.16  0.0085 

2  87.92  87.92  113.67  4.82  5.06  0.0084 

3  63.56  69.52  200  4.53  12.69  0.0554 

4  85.14  85.14  119.31  5.6  16.38  0.0079 

5  90.0  89.6  112.42  9.19  5.26  0.0259 

1 

2.0 

60.8  57.02  155.88  19.92  18.23  0.0218 

2  90.0  90.0  200.0  4.98  5.02  1.6343 

3  55.78  62.78  149.35  4.62  13.55  0.0068 

4  60.9  60.87  138.94  3.86  15.37  0.0057 

5  78.85  48.76  122.68  9.84  6.2  0.0058 

The example of the design parameters convergence for the fourth case and  2.0 mm 
thickness is shown in Figure 4. Moreover, in Figure 5, for the same case the objective func‐

tion  𝐹  is illustrated for minimization iterations. The objective function components were 

also presented;  𝐹ଵ, which was responsible for deflection discrepancy and  𝐹ଶ, which ac‐

counted for load‐bearing moment discrepancy. 

 

Figure 4. Parameter convergence of Z profile for traditional optimization for  𝑥̅ସ  initial guess. 
Figure 4. Parameter convergence of Z profile for traditional optimization for x4 initial guess.

Materials 2022, 15, 2520 12 of 23 
 

 

 

Figure 5. Objective function minimization of Z profile for traditional optimization for 𝑥̅4 initial 

guess (thickness 2.0 mm). 

3.1.2. C Profile 

The C profile results obtained for traditional optimization with SQP minimization 

algorithm were presented in Table 4. Data show the derived optimal parameters for par-

ticular thickness of thin-walled sheet (1.5 mm or 2.0 mm) for each initial guess presented 

in Table 2. The last column demonstrates the objective function obtained at optimal point 

derived. For 1.5 mm the lowest value was achieved for the first case, i.e., 𝐹(𝑖) = 0.0095. 

For 2.0 mm the lowest value was achieved for the first case, i.e., 𝐹(𝑖) = 0.0073.  

Table 4. Results for traditional optimization with SQP minimization algorithm for C profile. 

No. 
t 

(mm) 

b 

(mm) 

d 

(mm) 

c 

(mm) 

w 

(mm) 

r 

(mm) 

F(i) 

(−) 

1 

1.5 

63.37 67.64 200 19.98 15.54 0.0095 

2 89.45 89.15 96.69 5.22 5.32 0.1845 

3 43.47 88.0 130.68 4.85 14.33 0.0410 

4 64.77 65.81 200 5.67 14.85 0.0107 

5 85.14 50.86 129.97 9.16 5.26 0.1632 

1 

2.0 

61.26 60.1 145.55 20.17 16.73 0.0073 

2 84.92 85.13 90 4.19 6.04 0.1345 

3 90 54.49 95.13 4.8 14.14 0.1093 

4 86.09 85.94 90 1.64 8.73 0.1341 

5 58.09 59.77 144.87 11.07 5.24 0.0112 

The example of the design parameters convergence for the first case and 1.5 mm 

thickness is shown in Figure 6. Moreover, in Figure 7, for the same case the objective func-

tion 𝐹 was illustrated for minimization iterations. As previously, the objective function 

components are also presented, 𝐹1 and 𝐹2. 

Figure 5. Objective function minimization of Z profile for traditional optimization for x4 initial guess
(thickness 2.0 mm ).

3.1.2. C Profile

The C profile results obtained for traditional optimization with SQP minimization
algorithm were presented in Table 4. Data show the derived optimal parameters for
particular thickness of thin-walled sheet (1.5 mm or 2.0 mm) for each initial guess presented
in Table 2. The last column demonstrates the objective function obtained at optimal point
derived. For 1.5 mm the lowest value was achieved for the first case, i.e., F(i) = 0.0095. For
2.0 mm the lowest value was achieved for the first case, i.e., F(i) = 0.0073.
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Table 4. Results for traditional optimization with SQP minimization algorithm for C profile.

No. t
(mm)

b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm) F(i) (−)

1

1.5

63.37 67.64 200 19.98 15.54 0.0095
2 89.45 89.15 96.69 5.22 5.32 0.1845
3 43.47 88.0 130.68 4.85 14.33 0.0410
4 64.77 65.81 200 5.67 14.85 0.0107
5 85.14 50.86 129.97 9.16 5.26 0.1632

1

2.0

61.26 60.1 145.55 20.17 16.73 0.0073
2 84.92 85.13 90 4.19 6.04 0.1345
3 90 54.49 95.13 4.8 14.14 0.1093
4 86.09 85.94 90 1.64 8.73 0.1341
5 58.09 59.77 144.87 11.07 5.24 0.0112

The example of the design parameters convergence for the first case and 1.5 mm
thickness is shown in Figure 6. Moreover, in Figure 7, for the same case the objective
function F was illustrated for minimization iterations. As previously, the objective function
components are also presented, F1 and F2.
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3.1.3. Σ. Profile

The Σ profile results obtained for traditional optimization with SQP minimization
algorithm are presented in Table 5. Data show the derived optimal parameters for particular
thickness of thin-walled sheet (1.5 mm or 2.0 mm) for each initial guess presented in Table 2.
The last column demonstrates the objective function obtained at optimal point derived. For
1.5 mm the lowest value was achieved for the fourth case, i.e., F(i) = 0.026. For 2.0 mm the
lowest value was achieved for the second case, i.e., F(i) = 0.0104.

Table 5. Results for traditional optimization with SQP minimization algorithm for Σ profile.

No. t
(mm)

b and d
(mm)

c
(mm)

j
(mm)

k
(mm)

l
(mm) F(i) (−)

1

1.5

64.51 90 34.23 45.87 45.0 0.1004
2 66.94 90 40.06 20.06 45.0 0.1104
3 54.72 159.5 41.62 22.65 40.5 0.0733
4 56.40 145.1 26.02 20.0 5.0 0.0260
5 54.79 157.6 36.0 31.42 41.87 0.0719

1

2.0

51.82 90.0 30.0 45.6 38.26 0.0280
2 50.49 90.0 43.35 20.0 41.39 0.0104
3 53.48 90.0 35.70 20.0 34.98 0.0237
4 51.77 107.5 31.26 20.77 20.95 0.0491
5 53.43 90.0 35.71 32.40 30.48 0.0241

In Figure 8, for the second case the objective function F was illustrated for minimization
iterations. As previously, the objective function components are also presented, F1 and F2.
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(thickness 2.0 mm ).

3.2. Optimization with Radial Basis Function Metamodeling Feed with Systematic Sampling Data
3.2.1. Z Profile

The Z profile results obtained for optimization with radial basis function metamodel-
ing feed with systematic sampling data were presented in Table 6. Data show the derived
optimal parameters for particular thicknesses of thin-walled sheet (1.5 mm or 2.0 mm) for
each initial guess presented in Table 2. The last column demonstrates the objective function
obtained at optimal point derived. For 1.5 mm the lowest value was achieved for the fourth
case, i.e., F(ii) = 0.0058. For 2.0 mm the lowest value was achieved for the fourth case, i.e.,
F(ii) = 0.0043. In brackets, the values from exact RVE modelling were presented.
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Table 6. Results for optimization with metamodeling by RBF adapted feed with systematic sampling
data for Z profile.

No. t
(mm)

b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm) F(ii) (−)

1

1.5

83.36 76.4 137.39 20.07 18.55 0.0902
2 87.56 87.55 114.15 4.74 7.09 0.0078
3 58.31 74.06 200 4.55 13.19 0.0531

4 86.46 86.45 117.42 4.96 15.89 0.0058
(0.0248)

5 90 83.52 115.2 9.91 6.44 0.0105

1

2.0

61.6 59.43 142.02 19.68 17.15 0.009
2 66.6 66.55 117.29 5.14 6.98 0.0073
3 60.69 57.7 152.2 4.62 13.33 0.0092

4 60.7 60.7 140.52 5.04 15.82 0.0043
(0.0315)

5 64.71 58.91 132.61 10.15 6.5 0.0129

The example of the objective function convergence F for fourth case and 2.0 mm
thickness is shown in Figure 9. As previously, the objective function components are also
presented, F1 and F2.
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Figure 9. Objective function minimization of Z profile for optimization with metamodeling by RBF
adapted feed with systematic sampling data for x4 initial guess (thickness 2.0 mm ).

3.2.2. C Profile

The C profile results obtained for optimization with radial basis function metamodel-
ing feed with systematic sampling data are presented in Table 7. Data show the derived
optimal parameters for particular thicknesses of thin-walled sheet (1.5 mm or 2.0 mm) for
each initial guess presented in Table 2. The last column demonstrates the objective function
obtained at optimal point derived. For 1.5 mm the lowest value was achieved for the fifth
case, i.e., F(ii) = 0.0091. For 2.0 mm the lowest value was achieved for the first case, i.e.,
F(ii) = 0.0024. In brackets, the values from exact RVE modelling are presented.

Table 7. Results for optimization with metamodeling by RBF adapted feed with systematic sampling
data for C profile.

No. t
(mm)

b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm) F(ii) (−)

1

1.5

67.14 63.35 200 19.89 12.23 0.0111
2 90 90 98.89 3.95 14.14 0.1822
3 40.7 80.65 167 4.52 13.9 0.0697
4 69.52 68.63 158.7 3.61 18.29 0.1079
5 83.8 33.78 157.93 10.48 14.52 0.0091(0.0144)
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Table 7. Cont.

No. t
(mm)

b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm) F(ii) (−)

1

2.0

51.68 67.4 144.37 19.93 15.51 0.0024
(0.0030)

2 81.11 79.27 90 6 14.41 0.1109
3 90 54.99 95.02 4.81 14.31 0.1126
4 90 78.81 90 10.53 20 0.0904
5 64.53 53.92 145.78 10.12 10.83 0.0056

The example of the objective function convergence F for first case and 1.5 mm thickness
is shown in Figure 10. As previously, the objective function components are also presented,
F1 and F2.
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adapted feed with systematic sampling data for x1 initial guess (thickness 1.5 mm ).

3.3. Optimization with Radial Basis Function Metamodeling Feed with Optimal Latin Hypercube
Sampling Data
3.3.1. Z Profile

The Z profile results obtained for optimization with radial basis function metamodel-
ing feed with optimal Latin hypercube sampling data are presented in Table 8. Data show
the derived optimal parameters for particular thicknesses of thin-walled sheet (1.5 mm
or 2.0 mm) for each initial guess presented in Table 2. The last column demonstrates the
objective function obtained at optimal point derived. For 1.5 mm the lowest value was
achieved for the second case, i.e., F(iii) = 0.0058. For 2.0 mm the lowest value was achieved
for the fifth case, i.e., F(iii) = 0.0072. In brackets, the values from exact RVE modelling
are presented.

Table 8. Results for optimization with metamodeling by RBF adapted feed with optimal Latin
hypercube sampling data for Z profile.

No. t
(mm)

b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm) F(iii) (−)

1

1.5

66.26 67.87 188.8 21.01 17.16 0.0772
2 87.48 87.29 114.64 4.95 5.79 0.0058 (0.0004)
3 56.16 75.61 200 4.4 12.17 0.0567
4 82.95 80.55 122.36 5.61 15.07 0.0484
5 90.0 85.63 113.75 10.7 5.0 0.0113
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Table 8. Cont.

No. t
(mm)

b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm) F(iii) (−)

1

2.0

62.29 56.38 151.84 19.98 17.8 0.0154
2 66.76 67.17 116.47 4.84 5.02 0.0084
3 54.86 62.04 160.03 4.39 12.22 0.0221
4 60.67 61.12 138.63 4.94 14.85 0.0098
5 82.96 32.9 138.04 9.98 8.56 0.0072 (0.0069)

The example of the objective function convergence F for second case and 1.5 mm
thickness is shown in Figure 11. As previously, the objective function components are also
presented, F1 and F2.
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Figure 11. Objective function minimization of Z profile for optimization with metamodeling by RBF
adapted feed with OLHS data for x2 initial guess (thickness 1.5 mm ).

3.3.2. C Profile

The C profile results obtained for optimization with radial basis function metamodel-
ing feed with optimal Latin hypercube sampling data are presented in Table 9. Data show
the derived optimal parameters for particular thicknesses of thin-walled sheet (1.5 mm
or 2.0 mm) for each initial guess presented in Table 2. The last column demonstrates the
objective function obtained at optimal point derived. For 1.5 mm the lowest value was
achieved for the first case, i.e., F(iii) = 0.0196. For 2.0 mm the lowest value was achieved
for the fifth case, i.e., F(iii) = 0.0029. In brackets, the values from exact RVE modelling
are presented.

Table 9. Results for optimization with metamodeling by RBF adapted feed with optimal Latin
hypercube sampling data for C profile.

No. t
(mm)

b
(mm)

d
(mm)

c
(mm)

w
(mm)

r
(mm) F(ii) (−)

1

1.5

66.85 64.74 192.81 20.61 14.46 0.0196 (0.0186)
2 89.8 87.98 97.81 4.78 5.57 0.1855
3 40.78 80.43 169.31 4.52 11.2 0.0546
4 75.01 51.8 184.13 3.76 7.68 0.0224
5 88.62 68.07 109.38 10.24 5.42 0.1993

1

2.0

49.86 69.02 142.49 20.26 17.13 0.0163
2 63.0 90.0 90.0 5.92 7.39 0.1053
3 90.0. 53.76 95.26 4.7 13.38 0.1098
4 90.0 90.0 90.0 24.0 20.0 0.0603
5 59.61 59.32 144.03 9.77 7.54 0.0029 (0.0011)
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The example of the objective function convergence F for first case and 2.0 mm thickness
is shown in Figure 12. As previously, the objective function components are also presented,
F1 and F2.
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Figure 12. Objective function minimization of C profile for optimization with metamodeling by RBF
adapted feed with OLHS data for x5 initial guess (thickness 2.0 mm ).

4. Discussion

The optimization results were presented for three types of optimization tasks: (i) tra-
ditional optimization with minimization algorithm of SQP, (ii) optimization with meta-
modeling by RBF network feed with systematic sampling data and (iii) optimization with
metamodeling by RBF network feed with OLHS data.

The vast majority of optimization tasks have shown good convergence to find optimal
solutions and reached the objective function of less than 0.05; in many cases it was less
than 0.01, see last column in Tables 3–9. In traditional optimization (i), for examples
presented in Figures 5 and 7, the objective function was gradually decreased, with single
modifications during minimizations (in the 6th iteration in Figure 5, and in the 4th and
8th in Figure 7). In RBF optimization with systematic sampling, for examples presented
in Figures 9 and 10, the objective function was decreased with some more significant
fluctuations (especially in Figure 10) with almost twice the larger number of iterations, i.e.,
24 for Z profile and 22 for C profile, respectively. The characteristic rapid increases were
observed in Figure 9, in the 6th and 14th iterations, similar issues were not so evident in
Figure 10. In RBF optimizations with optimal Latin hypercube sampling, for examples
presented in Figures 11 and 12, the objective functions were minimized successfully, in both
cases there were more than 20 iterations to find the optimum. In Figure 11, the only rapid
increase of the objective function was observed (8th iteration), while three rapid increases
were achieved in Figure 12. It is worth noting that the graphs of the objective functions
have a logarithmic vertical axis, therefore, the decreases in the last part of the graphs are
very small in each case.

In most cases, the deflection component in the objective function is greater than
bending moment component. This feature is clearly visible in Figures 5 and 9, but in both
cases, for the optimal solution shown at the end of the graphs, this relationship is inverse,
i.e., the bending moment component is greater than the deflection component.

In Figures 13 and 14, the results were summarized for all optimization methods used
in the paper, but only for 1.5 mm thickness cases. The values of load-bearing moments
and displacements for optimal values of design parameters were presented by bar plots
in reference to its sought values (dashed lines). For all optimization cases, very similar
magnitudes were achieved to its reference counterparts, i.e., Mcr and dcr.
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ters for C profile (1.5 mm thickness) for different optimization methods considered in the study.

Moreover, the optimizations with submodelling (surrogate) approach used have
shown a great reduction in computational cost. In optimization (i), the time of computation
of a single objective function was about 4.1 s, while in optimization (ii) and optimization
(iii) the time was about 0.11 s, i.e., approximately 37 times shorter, which greatly reduced
the overall time of computations in those cases. Such time reduction was obtained due to
mixing the homogenization technique with soft computing methods applied in optimiza-
tion. Such a great advantage has not been obtained at the expense of lowering the accuracy
of the solution, which was proved by the examples presented; see Sections 3.2 and 3.3.

The differences between surrogate models and the exact solutions from the optimal
design parameters are show in Tables 6–9 (last column; the value in the bracket is from the
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surrogate model, while the values in square brackets comes from the exact solution, i.e.,
homogenization technique). The differences were small, usually within the range of the
optimal solutions derived. For instance, in Table 9, in the first row we have 0.0196, which
was obtained for RBF with OLHS, while 0.0186 was the exact value.

5. Conclusions

This paper presents a very efficient algorithm for parametric optimization of thin-
walled beam sections. The beams analyzed have various openings along their length
and are under various loading and boundary conditions. The proposed procedure uses
numerical homogenization based on equivalence of the elastic strain energy between the
RVE model and the simplified, structural model. RVE was modeled within the FEM
framework as a detailed 3D shell structure and then homogenized to obtain its flexural and
shear stiffnesses.

In order to validate the proposed method, the optimization by sequential quadratic
programming was performed in the first case. In the next cases, two surrogate models were
prepared based on artificial neural networks, i.e., with systematic training set and taken
from the optimal Latin hypercube technique. Both allow use of the proposed procedure
offline—without the need for numerical modeling. In the online stage, each type of analyzed
cross-section was separately recalculated in different geometrical variants and all flexural
and shear stiffnesses were calculated by means of shell-to-beam numerical homogenization.
Then, on the basis of the systematic training set as well as the ones generated by the
optimal Latin hypercube technique, various neural networks with radial base functions
were trained for a different type of the beam thin-walled section.

In each case, very precise results, comparable to the reference results, were obtained.
This proves the possibility of using artificial neural network models in an offline phase to
quickly optimize the cross-sections of various beams with periodic openings under various
boundary and load conditions.
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8. Mrówczyński, D.; Gajewski, T.; Garbowski, T. Application of the generalized nonlinear constitutive law in 2D shear flexible beam
structures. Arch. Civ. Eng. 2021, 67, 157–176. [CrossRef]

9. Staszak, N.; Gajewski, T.; Garbowski, T. Generalized nonlinear constitutive law applied to steel trapezoidal sheet plates. In Modern
Trends in Research on Steel, Aluminium and Composite Structures, Proceedings of the 14th International Conference on Metal Structures
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