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Abstract: Three-dimensional (3D) concrete printing (3DCP) technology attracts significant attention
from research and industry. Moreover, adequate mechanical performance is one of the primary
properties for materials, meeting the demand of structural safety using 3DCP technology. However,
research on curing conditions as the significant influence factor of mechanical capacity is required
to accelerate the practical application of 3DCP technology. This study aims to explore the impact of
various steam curing conditions (heating rate, constant temperature time, and constant temperature)
on the mechanical performance of printed concrete containing solid wastes. Moreover, the optimal
steam curing conditions are obtained for compressive, tensile, and flexural properties in different
directions. Subsequently, anisotropies in the mechanical properties of printed composites and
interlayer bonding behaviors are investigated when various curing conditions are employed. The
result shows that steam curing conditions and solid waste incorporation improves the interlayer
bond for 3D printed cement-based composites.

Keywords: 3D concrete printing; curing conditions; mechanical capacity; solid waste; anisotropy;
sustainability

1. Introduction

Additive manufacturing is a method exhibiting the characteristics of saving material,
being economical, having high construction speeds, and enabling flexible design, and
has been employed in various fields [1–3]. In the last decade, the interest in additive
manufacturing from the building industry has significantly increased [4–6]. The rapid
growth and elaborate research in this field indicate that additive manufactured construction
structures are not a dream but will be a reality in the near future, although they are still in
their nascent stage [7–9]. Meanwhile, additive manufacturing in construction has developed
varying technologies such as contour crafting, D-shape, and extrusion-based 3DCP [10–12].
3DCP technology is the cementitious composites deposited in layer-by-layer shapes by the
coordination of a computer design and the help of a printer [2,13]. Advantages of 3DCP
include no requirement for formwork, waste reduction, and significant saving in costs and
labor [14–18]. Consequently, 3DCP has attracted the most attention from both academia
and industry in the additive manufacturing area [19–21].
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To ensure structural safety using 3DCP technology, desirable materials using the 3DCP
method demand adequate mechanical properties for load bearing [1,19,22]. Additionally,
high early strength is essential to ensure the maintenance of printed shapes and printed
layers without collapse [23–25]. The curing conditions and material mix proportions are
the main influencing factors on the mechanical properties of a material [26–28]. Moreover,
the steam curing method improves the hydration and early strength of materials to benefit
3DCP [29–31]. However, improper steam curing technology used in printed concrete
creates an interface transition zone between the cementitious material and aggregate
resulting in thermal expansion deformation which produces microcracks [32,33]. As the
microcracks grow, the long-term performance of steam-cured concrete may be reduced.
Furthermore, conventional concrete by 3DCP methodology generally uses fine aggregates,
leading to more cement usage, CO2 emissions, and energy consumption than traditional
casting concrete due to the higher cement content [34–36]. Compared to cast concrete,
higher evaporation rates, surface drying, and cement content for printed concrete can
induce shrinkage cracking due to the lack of formwork [37–39]. Disposing of anisotropy
(the distinct property of 3D printing materials) is crucial to promoting the use of 3DCP
technology in large-scale construction [40–42]. Therefore, research on the optimum steam
curing conditions of mechanical capacity and anisotropy of 3DCP is required.

The rapid development of industrial production and demolition has led to a huge
amount of various solid wastes [43–45]. Meanwhile, more than 95% of urban solid wastes
are directed to landfill, thus impacting the health of humans and the environment [46–48].
As a result, effectively improving the reuse of solid wastes is urgent to obtain sustainabil-
ity [49–51]. FA, SF, and GGBS are solid wastes in the by-product of the energy and smelting
industry, which need to be resolved at a considerable cost [52–54]. However, cementitious
composites using 3DCP technology employ the combination of FA, SF, and GGBS to re-
place cement, improving sustainability, shrinkage resistance, steam curing adaptability,
durability, and the mechanical properties of materials [25,55,56]. Printed materials with
waste minerals incorporated improve the internal pore structure and the particle fineness
gradation, based on the theory of dense packing [57–59].

This study aims to investigate the influence of mechanical performance when vari-
ous steam curing conditions are employed on the concrete using 3DCP technology. Or-
thogonal experiments are conducted to reduce the experimental workload and obtain a
high-sensitivity evaluation indicator. Additionally, a coefficient is used to quantitatively
assess the anisotropy of the materials. Subsequently, a further analysis of printed interlayer
bonding performance is conducted. Thereby, the optimum printed concrete steam curing
conditions for various mechanical performance and anisotropy are acquired.

2. Materials and Methods
2.1. Raw Materials

The precursor materials of the samples in this study were 42.5 R Portland cement
(produced by China Anhui Conch Group Company Limited, Wuhu, China), FA (Class F,
obtained from Shenglong Technology Industry Co., Ltd., Weinan, China), GGBS (produced
by Delong Powder Engineering Material Co., Ltd., Xi’an, China), and SF (provided by
Linyuan micro silica powder Co., Ltd., Xi’an, China). The chemical compositions of the
precursor materials are shown in Table 1. Quartz sand with a particle grading range of
between 0.21 mm and 0.55 mm wa used because it has less mud content than natural sand,
as shown in Figure 1. Additionally, the good gradation of quartz sand guaranteed that the
pipe and nozzle of the printer were not blocked. The physical and mechanical properties
of PVA fibers utilized in this study are shown in Table 2. Additionally, the high-efficiency
polycarboxylic acid type water reducer and hydroxypropyl methylcellulose (viscosity at
40,000 Cp) were employed to improve the working performance of 3D printed concrete.
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Table 1. Chemical compositions, specific surface area, fineness of 45µm sieve residue, and density of the cement, FA, SF, and GGBS (wt.%).

Precursors
Content (wt.%) Specific Surface

Area (m2/kg)
Fineness of 45

µm Sieve
Residue (%)

Density
(kg/m3)SiO2 Al2O3 Fe2O3 CaO Ignition

Loss MgO SO3 K2O Na2O Cl

Cement 19.4–21.5 4.1–4.9 2.8–2.9 61.9–64.2 1.9–2.0 1.1–1.2 3.0–3.2 0.6–0.7 0.1–0.2 0.01–0.02 350–400 - 2800–3200
FA 43–54 28–34 8–13 0.4–0.5 1.6–4.7 1.1–2.3 0.5–1.2 2–4 0.8–1.5 0.01–0.02 - 6.7–7.3 2400–2500
SF 93–97 - - 0.26–0.28 1.0–1.1 - - - - 0.01–0.02 20,000–27,000 2.2–4.1 320–380

GGBS 34.7–38.2 9.1–10.2 0.5–0.7 38.8–40.5 0.6–0.8 9.9–11.1 0.1–1.8 0.12–0.14 0.24–0.29 0.01–0.04 420–480 5.8–7.5 2800–2900
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Figure 1. (a) FA, (b) SF, (c) GGBS, and (d) quartz sand used in specimens of this experiment [60].

Table 2. Main properties of the PVA fibers.

Diameter
(µm) Length (mm) Density

(kg/m3)

Elastic
Modulus

(GPa)

Tensile
Strength

(MPa)

Elongation
(%)

39 18 1.2 76.5 1950 6

2.2. Orthogonal Experimental Design of Mix Proportion

The mixing proportions of 3D printed concrete mainly include a water binder ratio,
sand binder ratio, polycarboxylate superplasticizer, PVA fiber, hydroxypropyl methyl-
cellulose, etc. The water binder ratio of this experiment was 0.36 based on a trial test
considering the balance between printable fluidity and mechanical strength. The sand
binder ratio at 1.3 was verified to provide smooth extrusion and reasonable cost. The
optimal material mix proportion was determined by previous tests of mechanical and
printable capacity [60]. Therefore, the components of FA, SF, and GGBS were 20 wt.%,
15 wt.%, and 10 wt.%, respectively, in the cementitious materials which were calculated
when the total percentage of binder materials was 100 wt.%, as shown in Table 3. PVA fiber,
hydroxypropyl methylcellulose, and polycarboxylate superplasticizer content in the mortar
were 0.21 wt.%, 0.23 wt.%, and 0.016 wt.%, respectively. Hydroxypropyl methylcellulose
promotes the dispersion of mortar and fiber, thus enhancing the water-retaining property of
the material. Moreover, the addition of hydroxypropyl methylcellulose improved viscosity.

Table 3. Control mix proportion of this test.

Components (wt.%)

Cement FA SF GGBS Sand Water Polycarboxylate
Superplasticizer PVA Fiber Hydroxypropyl

Methylcellulose

55 20 15 10 130 36 0.23 0.21 0.016

The orthogonal test aimed to explore the mechanical capacity of the printed concrete
influenced by various steam curing conditions. With reference to Chinese criteria [61] and
previous research [62], three factors (heating rate, holding time, holding temperature) and
three levels were designed in the orthogonal experimental shown in Table 4. The study
utilized range analysis because of higher intelligibility and more convenient calculation
compared to analysis of variance. The range analysis method utilizes the average value cal-
culation of each level and obtains the range value, and subtracts the minimum level average
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value from the maximum level average value. The primary and secondary relationships
affecting the index value are determined by the range value.

Table 4. The curing conditions of samples in this test.

Test Group
Curing Conditions

e (◦C/h) E (h) f (◦C)

1 10 6 50
2 10 8 70
3 10 10 60
4 15 6 70
5 15 8 60
6 15 10 50
7 20 6 60
8 20 8 50
9 20 10 70

Cc Curing in natural condition
Cp

Note: e represents heating-up rate; E represents thermostatic period; f represents thermostatic temperature,
Cc represents control cast sample, Cp represents control printed sample, natural condition is 20 ◦C average
temperature and 60% humidity.

2.3. Load Direction Definition

Load direction was determined to explore the anisotropy of printed composites.
Figure 2a shows that the three directions of X, Y, and Z are orthogonal. The X, Y, and
Z directions are the outer points perpendicular to the centre of the cross-section of the
printed layer, the profile center of the printed layer, and the center of the plane section
of the print layer, respectively. Fxy and Fxz are the X-direction line loads, which extend
in Y direction and Z direction, respectively, as shown in Figure 2b. Fyx and Fyz represent
the line loads in the Y direction extending in the X direction and Z direction, respectively.
Fzx and Fzy denote the Z-direction line loads extending in the X direction and Y direction,
respectively.
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2.4. Mechanical Performance Test

The mix proportion of printable mortar referred to in Table 3 was used for the me-
chanical performance test. The structure was extruded and deposited by 3DCP equipment
according to the designative printing path, as shown in Figure 3. Additionally, the printing
direction of each layer was Y. The height, width of printing nozzle, and nozzle moving
velocity were 38 mm, 14 mm, and 12 cm/s, respectively. To improve printing efficiency
and structure quality, a large-sized printing nozzle was used for the structure fabrication.
Moreover, it enabled a more stable deposition of the printing filaments compared to the
circular nozzle, preventing collapse. Each layer was manufactured with 12 round-trip
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continuous paths and the number of vertical deposition layers was 20. The printing path
interval was 40 mm and the height of each layer was set to 13 mm. The structure used a
bucket (0.05 m3) of printing material and its printing time was 15 min. The open time of
the mortar was 40 min. The printing and equipment parameters were based on previous
experimental results of buildability and extrudability [60]. The round-trip continuous paths
ensured that the mutual extrusion of printing filament was not improved.
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Figure 3. (a) Printing path model, (b) printing process [60].

By adopting the Chinese national standard GB/T 50081-2002 [63,64], compressive, flex-
ural, and tensile tests were employed to evaluate the mechanical performance influenced
by various steam curing conditions. The cube samples (100 mm × 100 mm × 100 mm) and
prismatic specimens (50 mm × 50 mm × 200 mm), used in different direction tests, were
obtained by structural cutting after 8 h of natural maintenance, as shown in Figure 4a,b. A
printed structure was cut into three cube compression test samples; and three cube speci-
mens were used in the X, Y, and Z directions splitting tension test, as shown in Figure 4a.
The splitting tension test specimens in the X direction were loaded in an XY or XZ direction,
specimens in the Y directions were loaded in an YX or YZ direction, and specimens in the
Z directions were loaded in an ZX or ZY direction. Six prismatic flexure tests specimens
loaded in various directions (XY, XZ, YX, YZ, ZX, and ZY) were acquired from the printed
structure. To ensure the accuracy of the mechanical properties experiment, the cube or
prismatic specimens, which were employed in the same direction test, were cut from the
same position in the printed structures and had the same interlayer number. After an
8-h cut time, the test samples were placed into a zky-400b steam box to cure one circle,
as shown in Figure 4c. The steam curing conditions of the printed samples refer to the
orthogonal experimental design (Table 4). Subsequently, the test samples were cured for 28
days in natural conditions. The experiments of 28-day compressive, flexural, and tensile
performance utilized 9 group samples with various steam curing conditions and 2 control
groups cured in natural conditions. Subsequently, uniaxial compressive strength in the X, Y,
and Z directions was determined by compression tests in which each group contained three
cube specimens, as shown in Figure 5a. Each group of flexural and splitting tensile capacity
tests contained six prismatic specimens to be under the line flexural and tensile load of
XY, XZ, YX, YZ, ZX, and ZY directions, as shown in Figure 5b,c. Moreover, the average
and coefficient of variation of mechanical performance were obtained by measuring three
group samples at each curing condition from Table 4.
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2.5. Anisotropy Assessment

This study applied an anisotropy coefficient to represent the influence of the printing
process on the mechanical behavior of the materials, as described in Equations (1) and (2).

favg =
∑i

n=1 fxn + ∑i
n=1 fyn + ∑i

n=1 fzn

3i
(1)

Ia =

√(
fx1 − favg

)2
+ . . . +

(
fxi − favg

)2
+
(

fy1 − favg
)2

+ . . . +
(

fyi − favg
)2

+
(

fz1 − favg
)2

+ . . . +
(

fzi − favg
)2

favg
(2)

where i is the number of load directions in the direction of the main load, fxi, fyi, and fzi, are
the average strength of i-th load direction in the X, Y, and Z direction, respectively, favg is
the average strength of all loads, and Ia is the anisotropy coefficient. Thereby, the value of
Ia is the positive correlation with anisotropy of the printed material. The smaller value of Ia
ought to be employed to improve the feasibility of printed structures when the requirement
for mechanical property directions of the structure are not determined.

3. Results and Discussion
3.1. Analysis of Mechanical Performance in Various Curing Conditions
3.1.1. Compressive Performance

The compressive strength (CS) test data and variation coefficient of the samples in
the various curing conditions were summarized in the L9 (33) orthogonal experimental
table (Table 5). The average values of CSx, CSy, and CSz were obtained by the results
and calculations of the orthogonal test, as shown in Figure 6. The CSx range values in
the various curing conditions of heating-up rate, thermostatic period, and thermostatic
temperature were 7.70 MPa, 1.90 MPa, and 3.83 MPa, respectively, and determined the
degree of influence of the three steam curing conditions (heating-up rate > thermostatic
temperature > thermostatic period). Meanwhile, the CSy range values in the varying
conditions of heating-up rate, thermostatic period, and thermostatic temperature were
4.23 MPa, 7.50 MPa, and 5.47 MPa, respectively, which determined the influence degree
of thermostatic period > thermostatic temperature > heating-up rate. Furthermore, the
CSz range values in the various conditions of heating-up rate, thermostatic period, and
thermostatic temperature were 4.37 MPa, 8.23 MPa, and 7.30 MPa, respectively, which
determined the influence degree of thermostatic period > thermostatic temperature >
heating-up rate.
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Table 5. Orthogonal experimental table of various test group designs, curing conditions, compressive
strength test data, and coefficients of variation.

Test
Group

Curing Conditions Compressive Strength (MPa) Coefficient of Variation (%)

e (◦C/h) E (h) f (◦C) CSx CSy CSz CSx CSy CSz

1 10 6 50 48.0 55.0 36.0 5.12 3.75 9.13
2 10 8 70 52.0 45.8 46.9 7.20 8.86 9.51
3 10 10 60 48.3 50.3 43.3 7.66 6.81 5.58
4 15 6 70 46.1 56.7 39.4 8.60 5.72 9.27
5 15 8 60 42.3 42.7 40.8 4.89 7.21 8.66
6 15 10 50 47.5 45.7 32.9 5.59 4.98 9.40
7 20 6 60 39.6 43.6 44.9 6.43 5.61 5.08
8 20 8 50 42.0 44.3 44.9 5.99 6.45 7.37
9 20 10 70 43.6 50.5 31.7 7.02 4.41 8.81

Cc
Curing in natural condition

42.7 7.53
Cp 48.1 56.3 35.8 4.37 3.80 7.96

Note: CSx represents compressive capacity in the X direction; CSy represents compressive capacity in the Y
direction; CSz represents compressive capacity in the Z direction; Cc means control cast sample; Cp means control
printed sample.
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Figure 6. (a) CSx, (b) CSy, and (c) CSz affected by various heating-up rates, thermostatic periods, and
thermostatic temperatures.

Figure 6a shows that the CSx had a negative correlation, positive correlation, and
parabolic correlation with the curing conditions of heating-up rate, thermostatic period,
and thermostatic temperature, respectively. Additionally, Figure 6b shows that negative
correlation, parabolic correlation, parabolic correlation were achieved by the CSy with the
curing conditions of heating-up rate, thermostatic period, and thermostatic temperature,
respectively. Figure 6c shows that CSz had a parabolic correlation with the curing conditions
of heating-up rate, thermostatic period, and thermostatic temperature. Moreover, the
relation between CSz and heating-up rate was a concave-shape curve, which differed from
thermostatic period and thermostatic temperature. Thereby, the optimal parameter of
steam curing conditions for CSx and CSy are 10 ◦C/h heating-up rate, 10h thermostatic
period, and 70 ◦C thermostatic temperature based on the correlation with the various
curing conditions. Moreover, the optimal parametersfor steam curing conditions for CSz
were 10 ◦C/h heating-up rate, 8h thermostatic period, and 60 ◦C thermostatic temperature.

3.1.2. Splitting Tensile Performance

The test data and variation coefficient of the splitting tensile strength (TS) for this
study are summarized in the L9 (33) orthogonal experimental tables (Tables 6 and 7). TS
of the printed specimen was influenced by the steam curing technology and interlayer
effect, as shown in Table 6. Applying steam curing technology to cast samples has some
negative effects on the mechanical properties due to a heterogeneous distribution of air
voids in the specimens. The cast concrete demonstrates uneven expansion under heating-
up conditions due to the thermal expansion of air and water. However, the steam curing
technology can improve the TS of printed samples because of an improvement in the bond
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strength between layers. Additionally, the air voids in the printed samples are relatively
homogeneous due to the printing path impact. Small dimensions of the air bubbles and
a tight internal structure are produced as a result of the deposition effects of the 3DCP
technology. The addition of various solid wastes can improve the hydration of the products
and the pore structure, thereby enhancing the steam curing adaptability of 3D printed
cement-based materials.

Table 6. Orthogonal experimental table of various test group designs, curing conditions, and splitting
tensile strength test data.

Test
Group

Curing Conditions Splitting Tensile Strength (MPa)

e (◦C/h) E (h) f (◦C) TSxy TSxz TSyx TSyz TSzx TSzy

1 10 6 50 2.680 4.201 5.468 3.081 2.788 4.253
2 10 8 70 5.380 3.488 4.113 4.520 3.807 4.087
3 10 10 60 4.654 2.756 3.813 4.591 2.896 3.693
4 15 6 70 4.024 3.164 4.348 4.316 2.891 4.902
5 15 8 60 5.367 2.865 4.278 4.546 3.336 3.801
6 15 10 50 4.628 2.228 4.138 4.049 2.547 2.947
7 20 6 60 4.182 2.222 5.284 3.081 2.999 4.208
8 20 8 50 4.113 2.699 4.145 2.489 2.355 4.074
9 20 10 70 4.456 2.611 3.501 3.145 3.145 3.126

Cc
Curing in natural condition

4.43
Cp 4.533 2.018 2.814 2.588 2.426 2.909

Note: TSxy represents splitting tensile strength in the XY direction; TSxz represents splitting tensile strength in
the XZ direction; TSyx represents splitting tensile strength in the YX direction, TSyz represents splitting tensile
strength in the YZ direction, TSzx represents splitting tensile strength in the ZX direction, TSzy represents splitting
tensile strength in the ZY direction.

Table 7. Orthogonal experimental table of various test group designs, curing conditions, and variation
coefficient of splitting tensile strength.

Test
Group

Curing Conditions Coefficient of Variation (%)

e (◦C/h) E (h) f (◦C) TSxy TSxz TSyx TSyz TSzx TSzy

1 10 6 50 2.34 5.27 5.90 9.27 1.93 3.99
2 10 8 70 9.46 7.40 10.10 7.56 5.17 5.60
3 10 10 60 4.43 8.34 7.93 2.45 6.50 2.39
4 15 6 70 8.60 9.12 9.25 6.06 9.78 7.08
5 15 8 60 10.03 5.59 9.74 4.64 4.37 2.65
6 15 10 50 5.43 3.45 8.65 5.73 8.08 3.93
7 20 6 60 9.81 7.06 7.51 1.48 5.59 2.64
8 20 8 50 7.77 2.68 5.15 4.84 6.83 8.89
9 20 10 70 9.91 3.93 10.78 9.07 8.66 6.75

Cc
Curing in natural condition

4.15
Cp 5.34 3.78 9.71 5.39 7.13 1.85

The average values of TSxy, TSxz, TSyx, TSyz, TSzx, and TSzy are obtained by the results
and calculations of the orthogonal test, as shown in Figure 7. The relation between TSxy
and the three curing conditions (thermostatic period, thermostatic temperature, heating-up
rate) was a parabolic correlation as presented in Figure 7a. Meanwhile, the optimal curing
conditions were 15 ◦C/h (heating-up rate), 8 h (thermostatic period), and 60 ◦C (thermo-
static temperature) for TSxy. Figure 7b demonstrates that TSxz had a negative correlation,
negative correlation, and parabolic correlation with heating-up rate, thermostatic period,
and thermostatic temperature, respectively. A heating-up rate of 10 ◦C/h, 6h thermostatic
period, and 70 ◦C thermostatic temperature were the optimal curing conditions for TSxz.
Figure 7c shows that the optimal curing conditions of heating-up rate, thermostatic period,
and thermostatic temperature for TSyx were 10 ◦C/h, 6 h, 50 ◦C, respectively. Parabolic
correlation, negative correlation, and negative correlation, respectively, are the relation
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between TSyx and the three curing conditions (heating-up rate, thermostatic period, and
thermostatic temperature). Figure 7d shows that TSyz had a negative correlation with
heating-up rate, negative correlation with thermostatic period, and parabolic correlation
with thermostatic temperature. A 15 ◦C/h heating-up rate, 10h thermostatic period, and
60 ◦C thermostatic temperature were the optimal curing conditions for TSyz. A negative
correlation, parabolic correlation, and positive correlation were the relation of TSyx with the
heating-up rate, thermostatic period, and thermostatic temperature, respectively, as shown
in Figure 7e. For TSyx 10 ◦C/h, 8 h, and 70 ◦C were the optimal heating-up rate, thermo-
static period, and thermostatic temperature for curing conditions. Figure 7f demonstrates
that heating-up rate, thermostatic period, and thermostatic temperature had a negative
correlation, parabolic correlation, and positive correlation, respectively, with TSzy. Fur-
thermore, the optimal curing conditions were 10 ◦C/h (heating-up rate), 8 h (thermostatic
period), and 70 ◦C (thermostatic temperature) for TSzy.
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3.1.3. Flexural Performance

The L9 (33) orthogonal experimental tables (Tables 8 and 9) summarize the test data
and variation coefficients of flexural strength (FS). Figure 8 shows that the average values
of FSxy, FSxz, FSyx, FSyz, FSzx, and FSzy were obtained by the results and calculations of the
orthogonal test. Compared to the control cast, the flexural strength of the printed samples
was commonly decreased because of the weak surface of the printing interlayer. Besides,
the practical structure ought to utilize ZY and YZ directions to resist the flexural load.

The optimal curing conditions were 15 ◦C/h (heating-up rate), 10 h (thermostatic
period), and 60 ◦C (thermostatic temperature) for FSxy, as presented in Figure 8a. Figure 8b
demonstrates the optimal steam curing conditions (15 ◦C/h heating-up rate, 10 h ther-
mostatic period, and 50 ◦C thermostatic temperature) for FSxz. Figure 8c shows that the
optimal curing conditions of heating-up rate, thermostatic period, and thermostatic temper-
ature for FSyx were 10 ◦C/h, 10 h, and 70 ◦C, respectively. Figure 8d exhibits that 20 ◦C/h
heating-up rate, 8h thermostatic period, 50 ◦C thermostatic temperature were the optimal
curing conditions for FSyz. Dor FSyx, 20 ◦C/h, 8 h, and 60 ◦C were the optimal heating-up
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rate, thermostatic period, and thermostatic temperature of curing condition, as shown
in Figure 8e. Figure 8f demonstrates that the optimal curing conditions were 10 ◦C/h
(heating-up rate), 8 h (thermostatic period), and 70 ◦C (thermostatic temperature) for FSzy.

Table 8. Orthogonal experimental table of various test group designs, curing conditions, and flexural
strength test data.

Test
Group

Curing Conditions Flexural Strength (MPa)

e (◦C/h) E (h) f (◦C) TSxy FSxz FSyx FSyz FSzx FSzy

1 10 6 50 5.94 8.10 6.12 12.06 8.28 11.70
2 10 8 70 5.65 7.56 6.74 10.29 8.64 11.65
3 10 10 60 6.14 8.31 5.94 10.64 8.98 10.60
4 15 6 70 5.55 8.98 5.64 9.59 7.17 9.46
5 15 8 60 7.00 7.57 6.43 11.08 9.91 10.38
6 15 10 50 7.42 9.85 6.25 11.09 7.94 11.74
7 20 6 60 6.87 8.11 5.25 10.37 10.29 11.16
8 20 8 50 5.68 9.53 6.10 12.45 8.29 12.37
9 20 10 70 5.34 8.31 7.36 11.29 7.57 9.05

Cc
Curing in natural condition

11.50
Cp 5.63 9.57 6.13 12.72 8.97 12.20

Note: FSxy represents flexural strength in the XY direction, FSxz represents flexural strength in the XZ direction;
FSyx represents flexural strength in the YX direction, FSyz represents flexural strength in the YZ direction, FSzx
represents flexural strength in the ZX direction, FSzy represents flexural strength in the ZY direction.

Table 9. Orthogonal experimental table of various test group designs, curing conditions, and variation
coefficient of flexural strength.

Test
Group

Curing Conditions Coefficient of Variation (%)

e (◦C/h) E (h) f (◦C) FSxy FSxz FSyx FSyz FSzx FSzy

1 10 6 50 5.33 3.58 8.68 6.14 7.85 8.41
2 10 8 70 7.21 5.47 9.33 5.49 8.29 5.21
3 10 10 60 10.3 4.18 6.75 6.35 8.89 5.47
4 15 6 70 6.81 3.93 10.26 5.37 9.37 5.26
5 15 8 60 4.5 6.11 5.37 2.99 5.06 4.47
6 15 10 50 5.16 4.51 7.29 5.1 7.11 7.2
7 20 6 60 8.48 6.4 9.2 6.8 10.03 1.8
8 20 8 50 8.28 1.65 8.93 7.2 6.13 8.39
9 20 10 70 7.08 9.51 9.19 6.23 8.55 6.19

Cc
Curing in natural condition

3.8
Cp 2.15 6.07 5.68 3.74 1.15 5.14

3.2. Anisotropy Assessment in Various Curing Conditions

The test data of compressive strength, splitting tensile strength, and flexural strength
employed Equations (1) and (2) to obtain the results of various anisotropy coefficients, as
demonstrated in Table 10. The table shows that the anisotropy coefficient of splitting tensile
performance was similar to the anisotropy coefficient of flexural performance and two-time
compressive performance. The improvement of the weak interlayer surface of the printed
concrete with added 0.21 wt% PVA fiber was limited by the brittleness of cementitious
material. However, the steam curing condition improved the hydration of the materials,
thus accelerating the development of composite strengths.
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Figure 8. (a) FSxy, (b) FSxz, (c) FSyx, (d) FSyz, (e) FSzx, and (f) FSzy affected by various heating-up
rates, thermostatic periods, and thermostatic temperatures.

Table 10. Orthogonal experimental table of various test group designs, curing conditions, and
anisotropy coefficient of mechanical performance.

Test Group
Curing Conditions Compressive

Performance
Splitting Tensile

Performance
Flexural

Performance

e (◦C/h) E (h) f (◦C) Iac28 (%) Iat (%) Iaf (%)

1 10 6 50 29.33 65.00 68.10
2 10 8 70 9.70 34.80 59.62
3 10 10 60 10.78 48.25 54.78
4 15 6 70 26.03 43.55 54.03
5 15 8 60 3.38 49.64 50.29
6 15 10 50 26.78 63.85 53.88
7 20 6 60 9.15 67.14 59.86
8 20 8 50 4.95 59.49 72.67
9 20 10 70 32.07 41.67 54.23

Cp Curing in natural condition 31.22 67.41 71.87

Note: Iac28 represents anisotropy coefficient of compressive performance, Iap represents anisotropy coefficient of
splitting tensile performance, and Iaz represents anisotropy coefficient of flexural performance.

3.2.1. Anisotropy Assessment of Compressive Performance

The average anisotropy coefficient of compressive strength is shown in Table 10
and calculated with various curing conditions (heating-up rate, thermostatic period, and
thermostatic temperature), as shown in Figure 9. The compressive strength range values
of various heating-up rates, thermostatic periods, and thermostatic temperatures were
3.34%, 17.20%, and 14.83%, respectively, obtaining the degree of influence of the three
curing conditions on Iac (thermostatic period > thermostatic temperature > heating-up
rate). Figure 9 shows the relations between compressive strength and the three curing
conditions (heating-up rate, thermostatic period, and thermostatic temperature) had a
parabolic correlation. The influence of thermostatic period and thermostatic temperature
exhibited the same variation trend. Moreover, the Iac variation values with the influence
of the thermostatic period and thermostatic temperature were similar. With the curing
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time increased, the influence degrees of the three curing conditions were reduced for Iac.
Thereby, the printed samples possessed the lowest anisotropy of compressive performance
when heating-up rate, thermostatic period, and thermostatic temperature were 20 ◦C/h,
8 h, and 60 ◦C, respectively.
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3.2.2. Anisotropy Assessment of Splitting Tensile Performance

Figure 10 shows that the average anisotropy coefficient of the splitting tensile strength
was calculated by the data of the orthogonal test (Table 10). Furthermore, the Iap range
values of varying curing conditions of heating-up rate, thermostatic period, and thermo-
static temperature were 6.75%, 10.59%, and 22.77%, respectively, obtaining the influence
degree of thermostatic temperature > thermostatic period > heating-up rate. The Iap had
the positive correlation, parabola correlation, and negative correlation with the curing
conditions of heating-up rate, thermostatic period, and thermostatic temperature, respec-
tively. Hence, 20 ◦C/h heating-up rate, 8h thermostatic period, and 70 ◦C thermostatic
temperature were the optimum steam curing condition to reduce the anisotropy of splitting
tensile performance.
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3.2.3. Anisotropy Assessment of Flexural Performance

The data of the orthogonal test in Table 10 was used to calculate the average anisotropy
coefficient of flexural strength, as shown in Figure 11. The Iaz strength range values of
the various curing conditions of heating-up rate, thermostatic period, and thermostatic
temperature were 9.52%, 6.56%, and 9.91%, respectively, obtaining the influence degree
of three solid wastes on Iaz (thermostatic temperature > heating-up rate > thermostatic
period). Simultaneously, the Iaz had a parabola correlation with the three steam curing
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conditions (heating-up rate, thermostatic period, and thermostatic temperature). Therefore,
the lowest anisotropy of flexural performance for printed concrete was acquired when
heating-up rate, thermostatic period, and thermostatic temperature were 15 ◦C/h, 10 h,
and 60 ◦C, respectively.
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3.3. Analysis of Interlayer Bonding Capacity

Figure 12a shows that the sequence of compressive performance averages were CSy
> CSx > CSz. The compressive performance averages of the printed samples were higher
than the control cast. Figure 12b,c demonstrates that the splitting tensile and flexural
performance averages of the printed samples were lower than the cast. However, the
splitting tensile performance averages of the printed specimens in the XZ and ZX directions
were close to cast. For the flexural capacity, the averages of the printed specimens in the YZ
and ZY directions were 0.52 MPa and 0.6 MPa, slightly lower than cast, respectively.
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Figure 12. The mechanical performance average comparison of cast and printed samples in the
varying directions: (a) compressive performance, (b) splitting tensile performance, (c) flexural
performance.

The interlayer bonding capacity influences the mechanical performance of printed
concrete and is related to the steam curing method, solid waste incorporation, and the
printing parameters. The impact of steam curing conditions on mechanical performance is
discussed in Sections 3.1 and 3.2. For solid waste, printed material incorporates various
solid wastes to improve the microcrystalline nuclear effect, pozzolan effect, and micro
aggregate effect leading to a dense structure. The microcrystalline nuclear effect accelerates
the hydration reaction and improves the homogenization of the hydration product distribu-
tion. Furthermore, solid waste absorbing the calcium hydroxide of hydration enhances the
hydration of the cement to produce more C-S-H gels, thereby improving the microstructure
of the material. Meanwhile, the void ratio reduction of the material enables the cohesion of
the aggregate interface up and increases the weak interface of printed concrete.
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The printable filament height and weight were 38mm and 13mm, respectively. The
layer height of printable mortar was lower than the nozzle height of the printer due to
the additional pressure of the upper printed layer. Figure 13a,b exhibit the diagrammatic
sketches of horizontal interlayer and vertical interlayer, respectively, for the printed materi-
als using the 3DCP method. Figures 13c and 14 show that the main crack angle generated on
the C plane was oblique 45◦, which was different from cast (20◦–30◦) when the X-direction
compression was loaded on the samples. Additionally, some vertical cracks were generated
on the C plane because the weak interlayer influenced the slenderness ratio and shear span
ratio of the printed material to result in shearing failure.
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Figure 14. The printed cube sample cracks of (a) C and (b) reverse plane on the X-direction compression.

Figure 15 demonstrates that a cross-shaped main crack and a horizontal main crack
were generated on the C plane and the reverse plane, respectively, when the Y-direction
compression was loaded on the samples. Moreover, a slide was created on the weakest
vertical interlayer of the printed specimen when the compression was loaded, hence proving
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that the horizontal interlayer bond was higher than the vertical interlayer bond. Two
main vertical cracks and shear oblique cracks were generated on the forward and reverse
plane respectively of the A plane when the Z-direction compression was loaded on the
samples, as shown in Figure 16. Due to the rectangular printable filament, some controllable
deformation may improve the vertical interlayer bond and dense microstructure at the
deposition effect, thereby reducing anisotropy for material. Hence, the improvement of
fluidity is beneficial to the horizontal interlayer bond of materials without horizontal
additional pressure.
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4. Conclusions

This study proposed that the anisotropy coefficient and orthogonal experiment be
applied to evaluate the mechanical performance and anisotropy of concrete using 3DCP
technology when various steam curing conditions are used for printed materials. Subse-
quently, the optimum steam curing conditions and interlayer bonding were investigated.
The following conclusions can be drawn:

1. The most influential factors for solid wastes for CSx, CSy, and CSz are heating-up rate,
thermostatic period, and thermostatic period, respectively. The optimal steam curing
conditions of CSx and CSy are 10 ◦C/h heating-up rate, 10 h thermostatic period, and
70 ◦C for the thermostatic temperature. The optimal Fz curing conditions are 10 ◦C/h
heating-up rate, 8h thermostatic period, and 60 ◦C thermostatic temperature.

2. The optimal curing conditions (thermostatic period, thermostatic temperature, heating-
up rate) are 15 ◦C/h, 8 h, and 60 ◦C for TSxy; 10 ◦C/h, 6 h, and 70 ◦C for TSxz; 10 ◦C/h,
6 h, and 50 ◦C for TSyx; 15 ◦C/h, 10 h, and 60 ◦C for TSyz; 10 ◦C/h, 8 h, and 70 ◦C for
TSzx; 10 ◦C/h, 8 h, and 70 ◦C for TSzy; respectively.

3. The optimal flexural strengths are obtained when the thermostatic period, thermostatic
temperature, heating-up rate are 15 ◦C/h, 10 h, 60 ◦C for FSxy; 15 ◦C/h, 10 h, 50 ◦C
for FSxz; 10 ◦C/h, 10 h, 70 ◦C for FSyx; 20 ◦C/h, 8 h, 50 ◦C for FSyz; 20 ◦C/h, 8 h, 60 ◦C
for FSzx; and 10 ◦C/h, 8 h, 70 ◦C for FSzy; respectively.
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4. The optimal heating-up rate, thermostatic period, and thermostatic temperature are
20 ◦C/h, 8 h, 60 ◦C for compressive performance; and 20 ◦C/h, 8 h, 70 ◦C for splitting
tensile performance; and 15 ◦C/h, 10 h, 60 ◦C for flexural performance; respectively,
to reduce the anisotropy.

5. The interlayer bonding capacity is influenced by steam curing conditions, solid waste
incorporation, and printing parameters. Solid waste incorporation can improve the
microstructure and interface bond of the printed concrete. Furthermore, some control-
lable deformation may improve the vertical interlayer bond and dense microstructure
at the deposition effect, thereby reducing anisotropy for the material. Meanwhile, the
bond of the horizontal interlayer mainly depends on the fluidity of materials without
horizontal additional pressure.
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