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Abstract: In the current decade, based on the European Green Deal, new challenges of the wood-based
panel industry have arisen, seeking for formaldehyde-free bio-based adhesives and broadening raw
lignocellulosics. In order to contribute to the potential solution to the challenges, binder-less boards
of steam-exploded (SE 220 ◦C/2 min) hemp shives and wheat straw were investigated. The objective
of this study was to find out the optimal hot-pressing conditions in terms of temperature (150–200 ◦C)
and time (5–16 min) for the boards with three density levels (800–1000–1200 kg·m−3). An experimental
design was created and the influence of the variables on binder-less panels were evaluated using a
randomized central composite design of the response surface methodology. Water absorption (WA)
and thickness swelling (TS) during 24 h, modulus of elasticity (MOE), and modulus of rupture (MOR)
in bending test, internal bonding (IB), and Fourier-transform infrared spectroscopy were determined
for the obtained boards. Each detected physical-mechanical property of the obtained boards was
described by statistical models being different at each density level. The optimal conditions of the
obtained binder-less boards were different depending on the raw material and density. For example,
the optimal conditions of the boards from SE wheat straw with a density of 800 kg m−3 were found at
T = 220 ◦C and t = 15 min, with the achieved properties of WA = 53%, TS = 4%, MOE = 2750 N mm−2,
MOR = 15.5 N mm−2, and IB = 0.64 N mm−2. Based on the achieved properties at the optimal
conditions, the boards meet the requirements of the conventional particleboard Type P3 according to
EN 312.

Keywords: hemp shives; wheat straw; steam explosion pre-treatment; response surface methodology;
binder-less board; properties

1. Introduction

The steam explosion (SE) technology is well-known since it was established in 1930 for
wet process fiberboard production in the USA under the benchmark of Masonite [1]. After
the rapid development of the wood-based panel industry (WBP), many types of synthetic
adhesives, mostly containing formaldehyde, were integrated because of its technological
advantages; one of the most important ones being fast curing of the adhesive and, therefore,
the overall production time. Nowadays, taking more attention to the human life quality and
environmental considerations, the WBP industry was challenged to reduce formaldehyde
emission due to its recognized cancerogenic impact [2]. Another important challenge of
the WBP industry is reducing raw wood materials due to the global shrinkage of forest
area, high competition and high demand of WBP production [3]. At the same time, one
of the European Commission’s six priorities for 2019–2024, the “European Green Deal”,
highlights bioeconomy as the key element for innovative product lines based on renewable
biological resources and encourages converting the waste streams of the production, as
well as production residues and by-products, into value-added products [4].

SE is a rather simple process consisting of the application of saturated steam in a sealed
reactor at elevated temperature (160–240 ◦C) and pressure (7–34 bar) during a relatively
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shorter time (up to 30 min). After the residence time exceeds, the reactor is rapidly opened
and due to the decompression, the lignocellulosic material explodes splitting its physical
and chemical structure to lower fractions [5]. This physical-chemical splitting results in
degradation of hemicelluloses and lignin softening coating the fiber surface and further
acting as self-adhesive components. Usually, SE process is characterized by a severity factor
R0 which comprises the pre-treatment temperature and time [6]. The obvious positive effect
of SE pre-treatment on the formation and properties of binder-less boards was investigated
and proved for many biomasses, including wood and non-wood raw materials [7–9].
Therefore, the comeback of binder-less board production in the WBP industry, including
non-wood raw materials, could be a valuable solution to the raised challenges.

Due to the steam expansion in the SE process, a lignocellulosic raw material is usually
converted from the form of chips to the form of a substrate with a fibrous shape. The
SE solid substrate contains inhomogeneous particles of different sizes, starting from only
partially split chips to very small and single fibers depending on the regime and the device
feature [5]. Therefore, SE substrates are needed to be homogenized to make a board
composite with an even structure. Since it is not done by a classical defibration manner, the
obtained board is intended to be called as binder-less particleboard and its properties are
comparable to conventional particleboard and not fiberboard.

Industrial hemp (Cannabis sativa L.) has been approved for cultivation and production
of many composites due to its strong bast fibers [10,11], becoming an expanding crop in
Europe, including Latvia [12]. After the extraction of bast fibers, the hemp woody core,
called shives or hurds, remains up to 75% of the stalk mass having a great potential to be
used in particleboard production. The investigated particleboard from hemp shives bonded
with synthetic PMDI resin conformed the ANSI requirements [13], while the binder-less
board performed only from the shives by the thermoforming process showed very poor
water resistance [14]. Some of our previous studies on the complex processing of industrial
hemp shives have evaluated the production of furfural and self-binding panels [15] with
an acoustic application [16].

The most abundantly used annual agricultural crop in Europe, including Latvia,
is wheat (Triticum aestivum) with an approximately 2/3 standing area from all cereals.
After grain harvesting, the straw is a residue with high potential to be used as bio-based
composites. Different pre-treatment methods were reviewed to enhance the wheat straw
application in building materials, the most effectively reported as steam cooking and
steam explosion [17]. Investigation of wheat straw for the production of medium density
fiberboards (MDF) with synthetic adhesives [18,19], inorganic-based particleboard [20] and
binder-less board with enzymatic pre-treatment [21,22] has been demonstrated. Regarding
binder-less boards from SE wheat straw, only one research paper was found, with the
investigated SE temperature range of 160–170 ◦C [23].

Our preliminary studies regarding the utilization of SE hemp shives and wheat straw
for binder-less board production have been intended to investigate the SE impact on the
raw materials [24], optimal SE conditions and preliminary hot-pressing variables [25,26],
and conditions for medium density boards with a higher thickness [27].

The novelty of the present study is the investigation of optimal hot-pressing conditions
of binder-less boards made from SE hemp shives and wheat straw at three density levels
(800 kg m−3, 1000 kg m−3 and 1200 kg m−3) based on our previously found optimal param-
eters [25,26] and the experimental design, including temperature (150–200 ◦C) and time
(5–16 min). Based on the obtained experimental results, statistically predicted mathematical
models were created to express each property of binder-less boards.

2. Materials and Methods
2.1. Raw Crops

Shives with a maximum of 2% of the remaining long fibers of the locally cultivated
and available in Latvia retted industrial hemp variety Uso31 (Jelgava district, 56◦38′54′′ N
23◦42′50′′ E, SIA “NDRA”, Jelgava, Latvia) were used as the hemp raw material. Wheat
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straw was delivered from a farmer in the Limbaži district (57◦31′ N 24◦43′ E, ZS “TŪJASMU-
IŽA”, Zemnieki, Salacgrivas County, Latvia). Both raw materials were crushed separately
in a knife mill (CM4000, LAARMANN, Roermond, The Netherlands) to pass a sieve with
openings of Ø 10 mm, removing the fraction of ≤0.5 mm due to the high ash content [24].

2.2. SE Pre-Treatment

The crushed raw materials (0.5–10 mm) with a moisture content of ~10% were pre-
treated separately in a steam explosion (SE) device of original construction with a 0.5 L
batch reactor at the optimal conditions of temperature 220 ◦C and residence time of 2 min,
(severity factor logR0 = 3.83) found in a previous study [25]. The SE reactor’s volume
was filled by 90–95% of the raw material and the saturated steam injected within 3–5 s to
reach the pressure of 23 bar and maintained for 2 min. After the end of the pre-treatment
time, a ball valve was opened immediately and a rapid decompression resulted in a steam
explosion, providing the pre-treated material to a receiver. Up to 25 batches were processed
with the raw material in one cycle of the SE pre-treatment. The pre-treated crops were
collected as received, oven-dried at a temperature of 60 ◦C to a moisture content of 2 ± 0.2%,
and homogenized by crushing in a knife mill (Retsch SM100, Haan, Germany) to pass a
4 mm sieve. The moisture content and fiber fraction of the SE substrates were prepared
based on a previous study [26].

2.3. Binder-Less Board Fabrication

The experimental design of the board fabrication was selected by a software of Design
Expert 13 (Stat-Ease Inc., Minneapolis, MN, USA) using a full factorial central composite
design coupled with the response surface methodology [28]. Two variables of pressing
temperature (T) and time (t) were analyzed at three density levels: 800 kg m−3, 1000 kg m−3,
and 1200 kg m−3 (Table 1).

Table 1. Experimental design for the binder-less board pressing cycle.

Experimental No. Designation Temperature
(T) ◦C

Time
(t) min

Max Pressure
(p) MPa

Density: 800 kg m−3 and 1000 kg m−3

1 150/5 150 5

4.5

2 220/5 220 5
3 150/15 150 15
4 220/15 220 15
5 150/10 150 10
6 220/10 220 10
7 185/5 185 5
8 185/15 185 15

9–11 185/10 185 10

Density: 1200 kg m−3

1 150/6 150 6

6

2 175/6 175 6
3 150/16 150 16
4 175/16 175 16
5 150/11 150 11
6 175/11 175 11
7 163/6 162.5 6
8 163/16 162.5 16

9–11 163/11 162.5 11

A total of eleven experimental trials were performed per one density level: four
factorial trials, four axial trials, and three center point replicates (experiments 9–11). The
range of the board pressing temperature and time for the boards with the density of
1200 kg m−3 was selected differently based on a previous study [26].
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One-layer binder-less boards with a thickness of 6 mm were hot-pressed in a hydraulic
hot-press (Joos LAP 40, Ulm, Germany). At the beginning, the prepared substrate (131.3 g,
164.1 g and 195.7 g for the densities of 800 kg m−3, 1000 kg m−3 and 1200 kg m−3, respec-
tively) was placed in a mold with inner dimensions of 150 × 180 mm and pre-pressed
under ~1.3 MPa for 15 s to form a mat. Then, the mold was taken off and the pressing
cycle started. Two board samples were fabricated per pressing cycle. The time-pressure
diagram included the maximum pressure (depending on a board density, Table 1) during
the first 75 s, followed by one breathing for 45 s for all boards and two breathings with
a 3 min interval for the boards with the pressing times ≥10 min, followed by decreasing
pressure down to 0.3 MPa before the opening (Figure 1). To ensure the highest density level
(1200 kg m−3), the maximum pressure at the beginning of the pressing cycle was needed to
be higher than for the boards with a lower density. To provide constant board thickness
and set density, thickness limiting bars were used at each pressing plate corner.
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Figure 1. Time–pressure diagram for binder-less board fabrication.

The obtained boards from pre-treated Uso hemp shives (Uso-board) and wheat straw
(Wh-board) were conditioned at a relative humidity of 65 ± 5% and the temperature of
20 ± 2 ◦C to achieve a constant mass before the board testing [29–31].

2.4. Binder-Less Board Evaluation

The obtained boards were evaluated by the modulus of elasticity (MOE) and the
modulus of rupture (MOR) in the three-point bending test [29], internal bonding (IB)
determining the tensile strength perpendicular to the plane of the board [31], and thickness
swelling (TS) and water absorption (WA) after the specimens immersion in water for
24 h [30]. Mechanical tests (MOE, MOR, IB) were performed on a ZWICK/Z100 (Ulm,
Germany) universal machine for testing the resistance of materials. Six specimens per
board type were determined in each test to calculate the average value of each property.

The factors of the influence on the mean values of the tested properties were analyzed
by Excel software using the one-way ANOVA tool at the significance level α = 0.05 [28].

Fourier transform infrared (FTIR) spectra of raw and pretreated crops and the ob-
tained boards were recorded in KBr (IR grade, Sigma Aldrich, Darmstadt, Germany)
pellets by a Thermo Fisher Nicolet iS50 spectrometer (Waltham, MA, USA) in the range of
4000–700 cm−1 with the resolution of 4 cm−1 and the number of scans 32. All spectra were
normalized to the highest absorption maxima in the range of 2000–700 cm−1.

3. Results and Discussion

The results of the performed experimental design (Table 1) were analyzed by the data
processing software Design Expert 13. The influence of the experimental design variables
on each board property was described by the software proposed models for each density
level separately.
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3.1. Binder-Less Fiberboards with a Density of 800 kg m−3

3.1.1. Density and Internal Bonding

The obtained boards with a density of 800 kg m−3 from both raw materials were of
good quality and without any observed cracks within the board thickness profile. The
boards’ density and IB values depending on pressing variables are shown in Figure 2. The
average density of Uso- and Wh-800 boards slightly varies from 780 to 806 kg m−3 and
from 769 to 795 kg m−3, respectively. The average IB value of Uso- and Wh-800 boards
varies significantly from 0.2 to 0.75 N mm−2 and from 0.21 to 0.64 N mm−2, respectively
(Figure 2).
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Figure 2. Density and IB changes of binder-less boards with a density of 800 kg m−3 depending on
the crop and pressing variables.

The high standard deviation of the detected IB values indicates the inhomogeneous
strength across the board area. Generally, a higher IB value was detected in the middle
specimen of a board sample while lower IB values were obtained in the specimens cut from
the outer edges of the board samples. Such a result could be related to the edge effects
of the rather small board samples (150 × 180 mm) caused by the inherent temperature
and pressure variations experienced by particles in the outer edges of a mattress [32].
A higher IB value was achieved at 185/15 by Uso-board (0.75 N mm−2) and at 220/15
by Wh-board (0.64 N mm−2), indicating the best conditions of board bonding strength
formation depending on the crop. It should be noted that the obtained higher IB values of
Uso-800 boards, including at 185/5 and 220/10, and the Wh-800 board at 220/15 exceed the
requirement of conventional particleboards (≥0.5 N mm−2, Figure 2) applied in a humid
condition proposed by the standard EN 312 P3 [33].

At the same time, the highest IB value of the Wh-800 board obtained in this study
exceeds more than twice the IB value (0.26 N mm−2) of the Wh-board obtained from SE
wheat straw at 170 ◦C for 10 min (logR0 = 3.06) and hot-pressed at 190 ◦C for 8 min [23]. This
and many other cases prove that both SE and hot-pressing conditions are very essential in IB
strength formation, producing binder-less board from the SE lignocellulosic material [7,8].
It should be noted that the IB value of conventional MDF boards produced from wheat
straw with synthetic melamine-urea-formaldehyde (MUF) adhesives [18] was close enough
to the highest IB value of Wh-800 board achieved within this study (0.67 N mm−2 vs.
0.64 N mm−2, respectively).

Analyzing the obtained IB values, no clear tendency depending on variables is ob-
served (Figure 2). Looking for a mathematical expression of the obtained boards properties
within the used factorial design ranges, Design Expert software was applied. A fit sum-
mary of the suggested models [28] for each property of the boards with the density of
800 kg m−3 is shown in Table 2. No mathematical model was suggested to express the
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IB variation of Uso-800 boards based on the obtained actual values within the pressing
variables. Therefore, in this case, only the overall mean with a value of 0.45 N mm−2 could
be used to predict within the factorial design space.

Table 2. Fit summary of the suggested models for each property of the boards with the density of
800 kg m−3.

Response Suggested
Model

Sequential
p-Value

Lack of Fit
p-Value

Adjusted
R2

Predicted
R2

Significant
Factors *

Uso-800

IB Mean <0.0001 - **
MOR Linear <0.0001 0.3385 0.9504 0.9190 A
MOE Linear 0.0004 0.1216 0.8267 0.6929 A
WA Quadratic 0.0001 0.7393 0.9906 0.9749 A, B, A2

TS Linear <0.0001 0.5365 0.9408 0.9021 A, B

Wh-800

IB Linear 0.0825 0.6715 0.3301 0.0216 -
MOR Linear <0.0001 0.2771 0.9273 0.8770 A
MOE Quadratic 0.0439 0.0392 0.9755 0.8775 A, B, AB, B2

WA Linear 0.0094 0.5385 0.6111 0.3534 A
TS Quadratic 0.0241 0.2763 0.9922 0.9692 A, B, AB, A2

* Pressing factors with a p-value < 0.05 in the suggested model: A—temperature, B—time. ** No significant factor
was found by the ANOVA of the suggested model.

In the case of Wh-800 boards, a linear regression model was suggested to express the
IB variation Equation (1); however, it was insignificant, including both factors, as can be
seen from the obtained statistical terms summarized in Table 2. Despite the insignificance
of the model proposed in Equation (1), it can be used to navigate the design space according
to the calculated adequate precision which measures the signal to the noise ratio being
greater than 4.

IBWh800 = 0.003(T) + 0.011(t) − 0.169 (1)

3.1.2. Board Bending Properties

The average MOR value increases significantly with increasing pressing temperature,
from 5.1 to 12.9 N mm−2 and from 6.1 to 15.5 N mm−2 for Uso- and Wh-800 boards, respec-
tively (Figure 3). Similarly, the average MOE value increases significantly with increasing
pressing temperature, from 1280 to 3612 N mm−2 and from 1350 to 2760 N mm−2 for
Uso- and Wh-boards, respectively (Figure 3). An increase in bending properties with the
increase in pressing temperature was observed by other authors as well [14,34] indicating
the optimal condition for the formation of inter-fiber bonds resulting to a maximum board
mechanical strength. Under the optimal condition which may differ for different lignocel-
lulosics occurs some significant chemical interactions including (1) lignin condensation
reaction, (2) crosslinking between lignin and polysaccharides, and (3) the formation of
covalent bonds between the constituents of lignocellulosic polymers [8].

It is worth noting that a significantly higher MOR value is achieved for Wh-board;
however, a significantly higher MOE value is achieved for Uso-board. This indicates the
structural differences observed between the raw materials on the micro scale [25], pre-
treated Uso hemp shives being more elastic than wheat straw. Differences in the board
properties between the used crops could be attributed to the differences in chemical compo-
sition of the crops. As was reported before [24], cellulose content of SE-220/2 wheat straw
and Uso hemp shives was the same (40.00 ± 0.14%); however, lignin and hemicelluloses
contents were different (28.7%/12.5% and 33.1%/13.3%, respectively). Furthermore, cellu-
lose degree of polymerization of these samples also differs significantly: 291 ± 2 for Uso
and 407 ± 2 for wheat straw [25].
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Figure 3. Bending properties of binder-less boards with a density of 800 kg m−3 depending on the
crop and pressing variables.

It should be also noted that the obtained higher value of MOR in the case of the
Wh-board at 220/15 and the MOE values of Uso-boards achieved at T ≥ 185 ◦C and Wh-
boards at T = 220 ◦C meet the standard EN 312 P3 value requirements (Figure 3) These
achievements indicate a high potential for binder-less boards, which could be used as a
building material for structural applications.

It is worth noting that the MOR value of the binder-less board from wheat straw
obtained in a similar study was unbelievably higher (19.8 N mm−2), taking into account
the lower SE severity (3.06) and pressing conditions at 190/8 [23]. The MOR value of MDF
obtained from wheat straw was even higher, 26.8 N mm−2, resulted by the defibration
process and the addition of synthetic MUF adhesive [18].

The MOR variation depending on the variables was expressed by significant linear
models for Uso- and Wh-800 boards proposed in Equations (2) and (3), respectively. Because
of the approved significance of the factor A (Table 2), the obtained equations can be inter-
preted as follows: increasing the T by 1 ◦C, the MOR value will increase by 0.09 N mm−2

and by 0.1 N mm−2 for Uso- and Wh-boards, respectively:

MORUso800 = 0.09(T) − 0.03(t) − 8.25 (2)

MORWh800 = 0.10(T) + 0.15(t) − 10.48 (3)

The MOE variation depending on the variables was expressed by the significant linear
model (4) for the Uso-board and by the significant quadratic model (5) for the Wh-board:

MOEUso800 = 23.62(T) − 20.18(t) − 1947.45 (4)

MOEWh800 = 470.84 + 8.76(T) − 187.28(t) +0.57(T t) − 0.0008(T2) + 5.58(t2) (5)

In the case of the Uso-board, the MOE variation is significantly dependent on the
factor A: increasing T by 1 ◦C, the MOE value will increase by 23.62 N mm−2. In the case
of the Wh-board, the MOE variation is significantly dependent on both factors A and B,
including its interaction and quadratic level except for B (Table 2).

3.1.3. Water Resistance Properties

The average WA value of the obtained binder-less boards decreases significantly with
increasing pressing temperature, from 65% to 52% and from 63% to 53% for Uso- and
Wh-800 boards, respectively (Figure 4). The decrease of the WA value of binder-less boards
from SE wheat straw depending on hot-pressing time was demonstrated by another study
where the lowest WA value was reported as 61.5% [23]. It is well-known that the WA of
particleboards or fiberboards is highly dependent on the board density—the higher the
density, the lower WA is achieved due to the higher compaction of particles [32]. This study
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reveals that WA is also significantly dependent on pressing temperature that was confirmed
by the obtained statistical models (6) and (7), the significance of which was approved by
ANOVA summarized in Table 2.
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Figure 4. WA and TS of binder-less boards with a density of 800 kg m−3 depending on the crop and
pressing variables.

In the case of Uso-boards, the WA variation was expressed by the quadratic model
with both significant factors:

WAUso800 = 189.34 − 1.27(T) − 0.27(t) − 0.0005(T t) + 0.003(T2) + 0.01(t2) (6)

In the case of Wh-boards, the WA variation was described by the significant linear model
(7): increasing T by 1 ◦C and t by 1 min, WA will decrease by 0.08% and 0.2%, respectively.

WAWh800 = 73.59 − 0.08(T) − 0.203(t) (7)

The average TS value of the boards also decreases significantly with increasing both
pressing variables, from 13% to 4%, very similarly for both Uso- and Wh-800 boards
(Figure 4). Slightly lower TS values are observed for Wh-boards with a significant difference
in some cases (e.g., at 185/5 and 220/5, Figure 4). It should be noted that the obtained TS
values of both Uso- and Wh-boards in all experimental cases perfectly meet the standard
EN 312 P3 value requirement, which is ≤20%. It has been reported [18] that the MDF from
wheat straw with MUF adhesives contains TS values in the range of 7.1–7.8%, which fit
with the TS values obtained within this study, starting at 185/5 and higher (Figure 4). These
results again indicate the high potential of the binder-less boards, which could be used as a
building material for structural applications even in humid conditions.

The dependence of the boards’ TS on the variables significantly describes the linear (8)
and quadratic (9) models for Uso- and Wh-boards, respectively:

TSUso800 = 27.21 − 0.09(T) − 0.17(t) (8)

TSWh800 = 45.897 − 0.261(T) − 0.847(t) + 0.002(T t) + 0.0003(T2) + 0.016(t2) (9)

Both factors were found to be significant, describing the TS variation by the models
(Table 2). In the case of Uso-boards, Equation (8) can be interpreted as follows: increasing T
by 1 ◦C and t by 1 min, TS will decrease by 0.09% and 0.17%, respectively.

3.1.4. Model Fit

Summarizing all the obtained properties of the Uso-800 board, the best actual values
were achieved at the pressing temperature of 220 ◦C and time of 10 min (Figures 2–4) which
were found to fit well with the predicted ones (Figure 5) according to Equations (2), (4), (6)
and (8) except IB, as mentioned in the Section 3.1.1. The best actual values of the obtained
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Wh-800 board properties were achieved at the pressing temperature of 220 ◦C and time of
15 min (Figures 2–4), which also were found to fit well with the predicted ones (Figure 6)
according to Equations (1), (3), (5), (7) and (9) without exceptions. The calculated difference
between the actual and predicted values of the board properties (except IB in the case of
Uso-800) from both crops is within the confidence level of 95%.
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3.2. Binder-Less Fiberboards with a Density of 1000 kg m−3

3.2.1. Density and Internal Bonding

Generally, the obtained boards with a density of 1000 kg m−3 were of good qual-
ity except for the Wh-boards hot-pressed at 185/5, 220/5, and 220/10—these contained
blisters or cracks within the board thickness or area profile. This revealed certain circum-
stances unsuitable for binder-less board production from pre-treated wheat straw. This
phenomenon also indicates and reveals a significant dependence of hot-pressing conditions
on the board density. As was mentioned in the previous subsection, the Wh-800 boards
obtained at these conditions were of good quality. Despite the cracks which were generally
formed in the board center, it was possible to cut some specimens for the evaluation of the
board’s properties.

The average density of the obtained Uso- and Wh-1000 boards significantly varies from
942 to 994 kg m−3 and from 935 to 990 kg m−3, respectively (Figure 7). The achieved lower
density for the Uso-board at 150/5 is related to the spring back effect that was proved by a
higher thickness (5.97 vs. 5.77 mm, in average, for Uso-1000 boards). This indicates too low
pressing temperature and time under which it is not possible to obtain a stable composite
from pre-treated Uso hemp shives. The density of Uso-boards increases with increasing
pressing time at 150 ◦C and slightly decreases at 220 ◦C. A lower density was detected also
for Wh-boards (at 185/5, 220/5 and 220/10) with achieved blisters/cracks, possibly due to
the loss of volatile compounds which were formed from unreacted compounds during the
hot-pressing [35].
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Figure 7. Density and IB of binder-less boards with a density of 1000 kg m−3 depending on the crop
and pressing variables.

The average IB value of the boards with a density of 1000 kg m−3 varies signifi-
cantly from 0.40 to 0.90 N mm−2 and from 0.10 to 0.73 N mm−2 for Uso- and Wh-boards,
respectively (Figure 7). Comparing the overall average IB value (obtained from 11 ex-
periments, Table 1) of Uso-800 and Uso-1000 boards, it was increased from 0.45 N mm−2

to 0.64 N mm−2. The increase of the IB value indicates a significant impact of the board
density. However, in the case of Wh-1000 boards, the increase of the overall average IB
value did not occur, while the maximum—0.73 N mm−2—was exceeded at 150/15. At the
same time, the maximum IB value of the Uso-1000 board—0.90 N mm−2—was achieved at
185/5, which exceeded the maximum IB value of Uso-800 (0.75 N mm−2 at 185/15) and
Wh-1000 boards (Figures 2 and 7). The lower IB values of the Wh-1000 boards achieved at
185/5 (0.1 N mm−2) and 220/5 (0.13 N mm−2) were impacted by the formed blisters/cracks,
meaning too low pressing time. However, all other samples obtained at T ≥ 185 ◦C also
achieved low IB values compared to Uso-boards (Figure 7), indicating significant structural
differences of the crops.
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To describe the IB variation of Uso-1000 boards depending on T and t, the quadratic
model was suggested as expressed in Equation (10), although it is not significant (Table 3).
The calculated adequate precision of the model was lower than 4, therefore, the overall
mean (0.64 N mm−2) may be a better predictor, similarly to the case of Uso-800 boards.

IBUso1000 = 0.07(T) + 0.15(t) − 0.0003(T t) − 0.0002(T2) − 0.005(t2) − 6.72 (10)

Table 3. Fit summary of suggested models for each property of the boards with the density of
1000 kg m−3.

Response Suggested
Model

Sequential
p-Value

Lack of Fit
p-Value

Adjusted
R2

Predicted
R2

Significant
Factors *

Uso-1000

IB Quadratic 0.1513 0.8455 0.1054 -0.9481 - **
MOR 2FI 0.0339 0.0914 0.8296 0.6137 A, AB
MOE Quadratic 0.0070 0.3781 0.9136 0.6655 A, AB, A2

WA Quadratic 0.0030 0.5938 0.9266 0.7669 A, B, AB, A2

TS Linear <0.0001 0.1875 0.9590 0.9243 A, B

Wh-1000

IB Quadratic 0.0107 0.5748 0.9021 0.6675 A, B, A2

MOR Quadratic 0.0051 0.1817 0.8331 0.4520 A, A2

MOE Quadratic 0.0020 0.0354 0.8799 0.5662 A, B, A2

WA Quadratic 0.0050 0.9284 0.8863 0.8110 B, AB, A2, B2

TS Linear <0.0001 0.0234 0.9010 0.8052 A, B
* Pressing factors with a p-value < 0.05 in the suggested model: A—temperature, B—time. ** No significant factor
was found by the ANOVA of the suggested model.

Differently, similar to the case of Uso-boards, the suggested quadratic model (11) to
describe the IB variation of Wh-1000 boards is significant, including both variable factors
as shown in Table 3:

IBWh1000 = 6.59 − 0.07(T) + 0.07(t) − 0.0001 (T t) + 0.0002(T2) − 0.002(t2) (11)

3.2.2. Board Bending Properties

The average MOR value increases significantly with increasing T, from 10.1 to 19.7 N mm−2

and from 11.1 to 19.1 N mm−2 for Uso- and Wh-1000 boards, respectively (Figure 8). The
average MOE value of the boards also increases significantly with increasing T, from 2685
to 5065 N mm−2 and from 2160 to 3820 N mm−2 for Uso- and Wh-boards, respectively
(Figure 8). The maximum MOR value of the Uso-1000 board (19.7 N mm−2) was achieved
at 220/5, which was almost equal to the maximum of the Wh-1000 board (19.1 N mm−2)
achieved at 185/10. Considering the increase of density from 800 to 1000 kg m−3 (~25%),
the maximum MOR value was increased by 53% and 23% for Uso- and Wh-boards, respec-
tively. Differently from MOR, the MOE values of Uso-1000 boards are significantly higher
compared to those of Wh-1000 boards (Figure 8) as in the case of a lower density (Figure 3),
and the maximum was increased also by 40% and 38%, respectively.

Based on the obtained results, the MOR variation depending on the variables was
expressed by the significant two factor interaction (2FI) model for the Uso-1000 board in
Equation (12) and the quadratic model for the Wh-1000 board in Equation (13). In both
regressions, only the factor T and its interaction with t in Equation (12) are statistically
significant (Table 3).

MORUso1000 = 0.19(T) + 1.92(t) − 0.009(T t) − 21.97 (12)

MORWh1000 = 1.24(T) + 1.24(t) − 0.001(T t) − 0.003(T2) − 0.04(t2) − 108.48 (13)
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Figure 8. Bending properties of binder-less boards with a density of 1000 kg m−3 depending on the
crop and pressing variables.

The MOE variation depending on the variables was expressed by significant quadratic
models for Uso- and Wh-1000 boards in Equations (14) and (15), respectively:

MOEUso1000 = 277.53(T) + 323.94(t) − 2.57(T t) − 0.63(T2) + 8.96(t2) − 24832.6 (14)

MOEWh1000 = 267.68(T) + 208.59(t) + 0.56(T t) − 0.71(T2) − 12.58(t2) − 23200.8 (15)

In the case of Uso-1000 board, the MOE variation is significantly dependent on factor
T and its interaction with t. In the case of the Wh-1000 board, the MOE variation is
significantly dependent on both variable factors (Table 3).

3.2.3. Water Resistance Properties

The average WA value of the boards varies significantly from 30% to 42% and from
32% to 38% for Uso-1000 and Wh-1000 boards, respectively (Figure 9). The increase of
density from 800 to 1000 kg m−3 resulted in a decrease of the WA value by 43% and 40%
for Uso- and Wh-1000 boards, respectively.
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Figure 9. WA and TS of binder-less boards with a density of 1000 kg m−3 depending on the crop and
pressing variables.

At the density level of 1000 kg m−3, WA was found to be significantly dependent on
both variables that was approved by the obtained significant quadratic models. In the case
of Uso-boards, almost all model terms are significant except for t2:
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WAUso1000 = 193.32 − 1.48(T) − 3.145(t) − 0.01(T t) + 0.003(T2) + 0.03(t2) (16)

In the case of Wh-boards, only T is not significant that was approved by ANOVA as
summarized in Table 3:

WAWh1000 = 95.83 − 0.5(T) − 3.08(t) + 0.007 (T t) + 0.001(T2) + 0.07(t2) (17)

The average TS value decreases significantly with increasing both pressing variables,
from 13% to 5% and from 12% to 4% for Uso-1000 and Wh-1000 boards, respectively
(Figure 9). The increase of density from 800 to 1000 kg m−3 did not promote the improve-
ment of TS for both Uso- and Wh-boards. The significant linear models (18) and (19) were
suggested to describe the dependence of TS on the variables for both Uso- and Wh-boards:

TSUso1000 = 25.29 − 0.08(T) − 0.176(t) (18)

TSWh1000 = 22.93 − 0.07(T) − 0.19(t) (19)

Both variable factors were found to be significant (Table 3), describing the TS vari-
ation by the models (18) and (19). Therefore, in the case of Uso-boards, increasing T by
1 ◦C and t by 1 min, TS will decrease by 0.08% and 0.176%, respectively. In turn, in the
case of Wh-boards, increasing T by 1 ◦C and t by 1 min, TS will decrease by 0.07% and
0.19%, respectively.

3.2.4. Model Fit

Summarizing all the obtained properties of Uso-1000 boards, good enough actual val-
ues were achieved at the pressing temperature of 185 ◦C and time of 10 min (Figures 7–9),
which fit well with the predicted ones (Figure 10) according to the above presented Equa-
tions (10), (12), (14), (16) and (18). The difference between the actual and predicted values is
within the confidence level of 95%, meaning that the obtained quadratic model (10) for IB
could be used as well at least at these conditions. Considering the obtained and predicted
results, it could be concluded that the optimal conditions for production of Uso-1000 board
with a thickness of 6 mm are 210/10. The conditions were approved by an additional
experimental trial and the following results were obtained: D = 952 kg m−3, WA = 37%,
TS = 8%, MOR = 18.6 N mm−2, MOE = 4910 N mm−2, IB = 1.24 N mm−2. The obtained
results fully meet the requirements of the standard EN 312 P3.

Comparing the achieved actual values of the Wh-1000 board properties obtained at
the pressing temperature of 185 ◦C and time of 10 min (Figures 2–4) with the predicted
ones (Figure 11), it could be noted that these fit well, proving the suitability of the proposed
Equations (11), (13), (15), (17) and (19). Based on the obtained and predicted results, it
could be concluded that the optimal condition for production of Wh-1000 board with a
thickness of 6 mm is 185/10. The condition was approved by a repeated experimental trial
and the obtained results were the same even with the improved IB value of ≥0.8 N mm−2.
The improvement resulted from the increased MC (≥15%) of the raw wheat straw before
SE. The obtained results fully meet the requirements of the standard EN 312 P3, making
the boards suitable for application in humid conditions.
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3.3. Binder-Less Fiberboards with a Density of 1200 kg m−3

3.3.1. Density and Internal Bonding

Implementing the experimental design of the boards with a density of 1200 kg m−3

(Table 1), plenty of failures in terms of the formed blisters or cracks within the board
thickness or area profile were revealed. Uso-1200 boards made at T = 175 ◦C (except at
t = 16 min) contained blisters within the board thickness profile in the middle area of the
board sample. Wh-1200 boards made at T ≥ 165 ◦C contained both blisters and cracks
within the board thickness or area profile. This revealed the unsuitable pressing tempera-
tures for high-density binder-less board production from SE crops. The phenomenon is
related to the difficult vapor-gas diffusion within the board mat during hot-pressing of
highly compressed particles [32]. The pressing temperature resulting in the board forma-
tion differences depending on the raw material could be attributed to the obtained different
thermal properties. For example, the glass transition region was detected in the range
of 163–192 ◦C and 135–137 ◦C for SE-220/2 Uso hemp shives and wheat straw samples,
respectively [24]. As in the case of the boards with the density of 1000 kg m−3, it was
possible to cut some specimens for the evaluation of the board’s properties.

The average density of Uso- and Wh-1200 boards varies from 1085 to 1150 kg m−3 and
from 1101 to 1151 kg m−3, respectively (Figure 12). One of the reasons for the unreached
target density (1200 kg m−3) is a spring back effect that was proved by a higher thickness
compared to the case of the boards with a lower density (1000 kg m−3)—5.92 mm and
5.77 mm, respectively. The lower density is observed for the boards obtained at shorter
times. Another reason for the lower density is the formed blisters and cracks through which
volatile organic compounds vapored rapidly immediately after the hot-pressing.
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Figure 12. Density and IB of binder-less boards with a density of 1200 kg m−3 depending on the crop
and pressing variables.

The average IB value varies significantly from 0.34 to 1.66 N mm−2 and from 0.27 to
1.45 N mm−2 for Uso- and Wh-1200 boards, respectively (Figure 12). The rapid maximum
of the IB value was increased by 85% and 99% for Uso- and Wh-board, respectively, due to
the density increase from 1000 to 1200 kg m−3. The highest IB values of the obtained boards
were achieved at 165/16 from both pre-treated crops. The best result of IB for Wh-1200
board was not anticipated due to the observed blister at 165/16. However, the blister was
located at the center of the board sample and the specimens cut for the board evaluation
did not contain the inner gaps. This indicates that an optimal solution for Wh-1200 board
production without blisters could be achieved at lower T or higher t. The lowest achieved
IB values were related to the low temperature (150 ◦C) and the formed blisters/cracks.
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The IB of the Uso-1200 board depending on the pressing variables was suggested to
be expressed by the significant quadratic regression with the initially predicted R2 = 0.3376
and two significant factor terms (Table 4). The insignificant model terms such as (T t)
and (t2) were removed that resulted in an increase of the predicted R2 = 0.5851 and the
decreased coded p-value = 0.0079:

IBUso1200 = 1.17(T) + 0.07(t) − 0.004(T2) − 94.47 (20)

Table 4. Fit summary of the suggested models for each property of the boards with the density of
1200 kg m−3.

Response Suggested
Model

Sequential
p-Value

Lack of Fit
p-Value

Adjusted
R2

Predicted
R2

Significant
Factors *

Uso-1200

IB Quadratic 0.0382 0.8367 0.7026 0.3376 B, A2

MOR Quadratic 0.0327 0.8499 0.8350 0.6441 A, B, A2

MOE Linear 0.0159 0.7065 0.5560 0.2768 B
WA Linear 0.0091 0.0287 0.6143 0.3394 A, B
TS Linear 0.0008 0.1690 0.7867 0.6487 A, B

Wh-1200

IB Quadratic 0.0965 0.4493 0.3582 −0.6734 A2

MOR Linear 0.0258 0.2338 0.4992 0.0302 A, B
MOE Linear 0.0554 0.8338 0.3937 0.1575 B
WA Linear 0.0007 0.2946 0.7971 0.6726 B
TS Linear 0.0160 0.7223 0.5555 0.3833 B

* Pressing factors with a p-value < 0.05 in the suggested model: A—temperature, B—time.

The IB of Wh-1200 board depending on the pressing variables was also expressed by
the suggested quadratic regression. However, the model was statistically insignificant and
with a negative predicted R2 value (Table 4). Therefore, insignificant terms such as (T t)
and (t2) were excluded from the model, resulting in the reduced quadratic model with a
decreased p-value = 0.0693:

IBWh1200 = 0.91(T) + 0.04(t) − 0.003(T2) − 73.65 (21)

3.3.2. Board Bending Properties

The average MOR value of Uso- and Wh-1200 boards increases significantly with
increasing pressing temperature and time, from 18.2 to 30.3 N mm−2 and from 20.1 to
28.5 N mm−2, respectively (Figure 13). The results of the lowest bending properties were
affected by the formed inner gaps of the obtained board samples. The lower values of all
mechanical properties were observed for the middle specimens of the board samples. At
the same time, the board samples obtained without inner gaps demonstrated a bit higher
value of the mechanical properties for the middle specimens, meaning favorable pressing
conditions. The highest MOR/MOE values were achieved at 175/16 for both Uso- and Wh-
boards despite the presence of blisters in the case of the Wh-board. The conditions at 165/10
(only for the Uso-1200 board), 165/16, and 175/11 also promoted the high MOR/MOE
values; however, those are not suitable for Wh-boards because of the formation of blisters.
The increase of density from 1000 to 1200 kg m−3 resulted in an increase of the maximum
MOR value by 54% and 50% for Uso- and Wh-boards, respectively.

The MOR of the Uso-1200 board depending on the pressing variables was suggested
to be expressed by the significant quadratic regression with three significant model terms
(Table 4):

MORUso1200 = 6.08(T) − 0.37(t) + 0.01(T t) − 6.87(T2) − 0.06(t2) − 486.54 (22)
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Figure 13. Bending properties of binder-less boards with a density of 1200 kg m−3 depending on the
crop and pressing variables.

The MOR of Wh-1200 board was suggested to be expressed by the significant linear
regression (23) with both significant variable factors (Table 4). This means that increasing T
by 1 ◦C and t by 1 min, MOR will increase by 0.16 N mm−2 and 0.41 N mm−2, respectively:

MORWh1200 = 0.16(T) + 0.41(t) − 6.87 (23)

The average MOE value of Uso- and Wh-1200 boards increases significantly with in-
creasing pressing temperature, from 3880 to 5590 N mm−2 and from 3400 to 4640 N mm−2,
respectively (Figure 13). The tendency of MOE dynamics depending on the pressing condi-
tions is very close to the MOR dynamics presented above. The increase of density from
1000 to 1200 kg m−3 resulted in an increase of the maximum MOE value by 10% and 22%
for Uso- and Wh-boards, respectively.

The MOE of the Uso-1200 board was suggested to be expressed by the significant
linear regression (24) with one significant model term (Table 4). This means that increasing
t by 1 min, MOE will increase by 93.81 N mm−2:

MOEUso1200 = 162.15 + 21.39(T) + 93.81(t) (24)

The MOE of the Wh-1200 board was suggested to be expressed also by the linear
regression (25), the fit summary of which is not so good; however, the pressing time was
found to be as the significant factor (Table 4). Despite the insignificance of the model, it can
be used to navigate the design space according to the calculated adequate precision being
greater than 4. This means that increasing t by 1 min, MOE will increase approximately by
100 N mm−2:

MOEWh1200 = 586 + 13.37(T) +99.94(t) (25)

3.3.3. Water Resistance Properties

The average WA value of Uso- and Wh-1200 boards decreases with increasing variables
similarly, from 24% to ~15% (Figure 14). The highest WA value of the Wh-board (26%)
was achieved due to the formation of multi blisters affected by the too short pressing time
at the current temperature. The best WA values were achieved at the highest pressing
temperature/time for both Uso- and Wh-boards. The increase of density from 1000 to
1200 kg m−3 resulted in a significant decrease of the lowest WA value by 51% and 56% for
Uso- and Wh-boards, respectively.
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Figure 14. WA and TS of binder-less boards with a density of 1200 kg m−3 depending on the crop
and pressing variables.

The significant linear models were suggested to describe WA depending on the vari-
ables for both Uso- and Wh-1200 boards:

WAUso1200 = 46.09 − 0.15(T) − 0.33(t) (26)

WAWh1200 = 35.78 − 0.04(T) − 0.79(t) (27)

Both variable factors were found to be significant (Table 4), describing the WA variation
for the Uso-board in Equation (26) and only one significant factor t for the Wh-1200 board
in Equation (27). In the case of the Uso-1200 board, increasing T by 1 ◦C and t by 1 min, WA
will decrease by 0.15% and 0.33%, respectively. In turn, in the case of Wh-boards, increasing
t by 1 min, WA will decrease by 0.79%.

The TS values of Uso- and Wh-1200 boards also decrease with increasing pressing
variables, from 9% to 5% and from 11% to 6%, respectively (Figure 14). The obtained TS
values at all pressing conditions are significantly lower for the Uso-board compared to the
Wh-board. This indicates and proves that the binder-less board produced from SE Uso
shives is more form-stable than that from SE wheat straw. From another point of view, all
the obtained TS values from both board crops fully meet the standard requirement (≤20%)
of EN 312 P3. The increase of density from 1000 to 1200 kg m−3, again, did not promote the
improvement of TS values, even the increment by 33% in the case of the Wh-1200 board.
This again proved some advantage of hemp shives vs. wheat straw in terms of the form
stability of binder-less boards.

As in the case of WA, the significant linear models were suggested to describe also TS
depending on the variables for both Uso- and Wh-1200 boards:

TSUso1200 = 18.48 − 0.06(T) − 0.12(t) (28)

TSWh1200 = 24.6 − 0.07(T) − 0.34(t) (29)

Both variable factors were found to be significant (Table 4), describing the TS variation
for the Uso-board in Equation (28) and only one significant factor t for the Wh-1200 board
in Equation (29). In the case of Uso-1200 boards, increasing T by 1 ◦C and t by 1 min, TS
will decrease by 0.06% and 0.12%, respectively. In turn, in the case of Wh-1200 boards,
increasing t by 1 min, TS will decrease by 0.34%.
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3.3.4. Model Fit

Summarizing all the obtained properties of Uso-1200 boards at each pressing condi-
tion, the best actual values were achieved at 175/16 (Figures 12–14) and fit well with the
predicted ones (Figure 15). As the predicted values of Uso-1200 board properties fit with
the actual values within the confidence level of 95%, it proves the suitability of the obtained
regression models proposed in Equations (20), (22), (24), (26) and (28).
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Comparing the achieved optimal actual values of the Wh-1200 board properties
obtained at the pressing temperature of 165 ◦C and time of 16 min (Figures 12–14) with the
predicted ones (Figure 16), it could be concluded that those fit well, proving the suitability of
the obtained models proposed in Equations (21), (23), (25), (27) and (29). In these conditions
(165/16), even the insignificant regression models obtained for IB and MOE proposed in
Equations (21) and (25) fit the predicted values within the confidence level of 95%.

Both Uso- and Wh-1200 boards, in terms of the obtained optimal values, fully meet
the requirements of the standard EN 312 P3. Due to the high density, the obtained binder-
less boards can be compared to the conventional hardboard restricted by the standard
requirements of EN 625-2 HB (IB ≥ 0.5 N mm−2, MOR ≥ 25 N mm−2, TS ≤ 25%), which
were successfully fulfilled not only at optimal conditions (Figures 12–14).
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3.4. Evaluation of Binder-Less Boards by FTIR Spectroscopy

Fourier-transform infrared spectroscopy (FTIR) was used for analyses of the chemical
composition changes of raw and pre-treated crops and the obtained boards. The chemical
composition of wheat straw and hemp shives consists mainly of cellulose, hemicelluloses,
and lignin in different proportion and various minor compounds; therefore, FTIR spectra
show a similarity of the main absorption bands but differ in their intensity. The results of
FTIR spectroscopy are presented in Figure 17. The absorption peaks maxima were assigned
with the previously published literature data [36,37]. The neat crops represent typical FTIR
spectra of lignocellulosic biomass with the following absorption peak maxima: a broad
absorption peak around 3400 cm−1 for OH groups, an aliphatic (–CH2–) stretch region
2940–2840 cm−1, various carbonyl (C = O) regions between 1800 and 1600 cm−1, including
the adsorption peak maximum around 1740 cm−1 for unconjugated C = O of the aliphatic
ester group, for example, the acetyl group, aromatic skeletal vibration around 1510 cm−1

typical of lignin and a complex band of C–O–C, C–O, C–C stretching and C–OH bending
around 1050 cm−1, more typical of carbohydrates. A comparison of the FTIR spectra of raw
crops indicates that wheat straw contains more carbohydrates and less lignin than hemp
shives, but hemp shives contain more esters (e.g., esterified hemicelluloses).

After SE pre-treatment, the broad absorption peak around 3400 cm−1 of OH groups
remains, indicating a possible formation of hydrogen bonds during the hot-pressing of
binder-less board, which enhance its IB [38]. The absorption peak maxima at 1741 cm−1

and around 1250 cm−1 (C–O stretch of acetate groups) drastically decreased. The peak
ratio of carbohydrates (1054 cm−1) and lignin (1508 cm−1) absorption maxima decreased.
This confirms the destruction and deacetylation of hemicelluloses by SE pre-treatment.
Furthermore, the higher intensity of the absorption peaks maxima of carbohydrates and
lignin is observed for all Uso samples compared to wheat samples indicating a higher
content of hemicelluloses and lignin that is in accordance with the previously detected
chemical composition [24]. In turn, this may lead to the explanation of obtained higher
MOE of Uso boards mentioned in the Section 3.3.
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The frequency of the carbonyl group absorption is determined by the structure of the
rest molecule. Frequency shift away from its position have been considered by numerous
studies. C = O stretching vibration of saturated carbonyl group is 1725–1705 cm−1 (ke-
tone). Conjugation of a carbonyl group with unsaturated linkages (e.g., aryl or quinones)
results in a lowering of absorption wavenumber (<1690 cm−1). Observed shift of carbonyl
group absorption in the 1800–1600 cm−1 region to the smaller wavelength region could be
explained by C = O groups conjugation, probably as a result of condensation reactions at
thermal treatment [39]. Pressing at temperatures up to 185 ◦C did not significantly affect
the chemical composition of boards from both crops. Increasing pressing temperature to
220 ◦C led to further hemicellulose destruction and deacetylation. It coincides with our
previous observation that deacetylation at temperatures <200 ◦C does not occur [40].

4. Conclusions

Optimal hot-pressing conditions of binder-less board formation from steam-exploded
(220 ◦C/2 min, logR0 = 3.83) hemp shives and wheat straw are reported. Based on the
experimental design, which includes two factor variables of temperature (150–220 ◦C)
and time (5–15 min) at three board density levels (800–1000–1200 kg m−3), statistically
significant mathematical models were obtained to express the properties of the obtained
boards. It is possible to obtain a binder-less board from both crops at different density
levels; however, its quality is highly dependent on the pressing temperature and time.
The optimal pressing temperature decreases with increasing density. The detected op-
timal conditions differ depending on the crop and density levels: for Uso- and Wh-800
boards—220 ◦C/10 min and 15 min, respectively; for Uso-1000 board—210 ◦C/10 min;
for Wh-1000 board—185 ◦C/10 min; for Uso-1200 board—175 ◦C/16 min; for Wh-1200
board—165 ◦C/16 min. Despite the obtained good properties of the Wh-1200 board
(IB = 1.45 N mm−2, MOR = 27.5 N mm−2, MOE = 4260 N mm−2, TS = 6%), SE wheat
straw is not suggested for binder-less board production at this density level since blistering
formation was not avoided at T ≥ 165 ◦C. The obtained binder-less boards from both crops
at a density level of ≥ 1000 kg m−3 meet the requirements of the conventional particle-
board Type P3 according to EN 312 suitable for application in humid condition. At the
density level of 800 kg m−3, only the boards from SE wheat straw meet the standard values
(IB = 0.64 N mm−2, MOE = 2750 N mm−2, MOR = 15.5 N mm−2, WA = 53%, TS = 4%),
while Uso-800 boards do not meet the standard requirements due to a lower MOR value
(IB = 0.64 N mm−2, MOE = 2950 N mm−2, MOR = 12 N mm−2, WA = 53%, TS = 5%). FTIR
analysis testified that only the pressing temperature of 220 ◦C led to the further destruction
and deacetylation of hemicelluloses.
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