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Abstract: The paper presents the thermal properties of lightweight steel concrete wall panels under
different humidity conditions: under normal operation conditions and high moisture of the structure.
The total thermal resistance (considering thermal inhomogeneity) of the enclosing lightweight steel
concrete structure with a thickness of 310 mm using monolithic low-density foam concrete (density
grade of D200), at an equilibrium humidity of 5% and 8%, was experimentally established. It was
equal to 4.602 m2.0C/W and 4.1 m2.0C/W, respectively. In the dry state, the total thermal resistance
of this structure was 5.59 m2.0 C/W, which corresponds to a thermal conductivity coefficient of
0.057 m ◦C/W. The influence of both horizontal and vertical joints of lightweight steel concrete
wall panels and the absence of thermoprofiles on thermal properties was insignificant when using
heat-insulating gaskets. The actual total thermal resistance of the structure was 2.5–2.8 times higher
than that obtained by calculation under high-humidity conditions (29–32%). At the same time, the
decrease in the value compared to the same value at an equilibrium humidity of 5% was only 4–6%.
This indicates the good workability even of a structure with high-humidity foam concrete if the
reduced total thermal resistance is complied with by the standardized one.

Keywords: lightweight steel concrete structures; steel profile; foam concrete; thermal resistance;
thermal conductivity coefficient

1. Introduction

Lightweight steel concrete structures consist of a steel profile (profile steel frame) with
a monolithic low-density foam concrete and panel sheathing [1].

The use of these structures in various buildings is possible in the form of slabs, and
external (bearing and enclosing) and internal walls. In such structures, monolithic foam
concrete is used as a heat-insulating material, which does not have the disadvantages of
the main traditional ones [2–4].

Monolithic foam concrete is a noncombustible material [5], has a low thermal conduc-
tivity from 0.07 to 0.20 W/(m·◦C), and has a closed porosity [6,7]. The thermal conductivity
of foam concrete can be reduced to 0.062 W/(m·◦C) by introducing perlite, basalt and glass
fiber, wollastonite, and diopside [8–11]. In addition, the use of monolithic foam concrete
as thermal insulation can reduce the operational energy needs of the building, which will
lead to a compromise between embodied and operational energy [12]. The disadvantages
of foam concrete include significant shrinkage [13]. It worsens the porous structure of foam
concrete and, as a result, the strength decreases and the thermal conductivity increases [14].
Different modifiers such as wollastonite, diopside, perlite, and fly ash can be used to ensure
a stable cellular structure [15–17].

The authors of [18] described five methods for measuring construction elements’
thermal transmittance and thermal behavior. They were the heat flow meter; guarded
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hot plate; hot box, considering the protected hot box and the calibrated hot box; and
infrared thermography. A paper [19] showed two other new methods: Representative
Points Method and Weighted Area Method. In addition, there is a simplified method of
calculating thermal transmittance (U-values) in light steel framing suitable for incorporating
into U-value calculation software [20].

The authors of [21] found that a secondary wood stud can mitigate the thermal
bridging effect of the steel frame and improve the light gauge steel frame walls’ thermal
performance, which is more noticeable when there is no thermal insulation. It is also
possible to reduce the negative impact from thermal bridges in lightweight steel-framed
construction elements by using thermal break strips, slotted steel studs, or flange stud
indentation [22].

The authors of [23] investigated the thermal performance of a modular lightweight
steel framing wall, focusing on the impact of the flanking heat losses on the thermal
transmittance of the wall. The calculated heat flux values varied from 22% (external
surface) to +50% (internal surface) when the flanking loss was set to 0 as a reference
case, and the thermal transmittance was equal to 0.30 W/(m2·K). The authors of [24]
investigated the thermal insulation influence regarding its position in lightweight steel-
framed facade walls. For the same thermal insulation thickness, differing exclusively in
its position in the wall, differences between Uhom and Ureal reached values of 0.38% and
94.37%. In cold construction facade walls, considering the effect of the steel stud piercing
the insulation layer led to a U-value increase from 21.68% to 94.37%. The wall with a warm
frame construction had the maximum computed difference between Uhom and Ureal less
than 1.5%.

Heat-protective properties of the enclosure structure from thin-wall profiles with
polystyrene concrete [25], expanded polystyrene foam [26], and foamed concrete [27,28]
were studied by various authors. The results [25] showed that by increasing the den-
sity of polystyrene concrete by 4.1 times (from 300 kg/m3 to 1300 kg/m3), the ther-
mal conductivity was increased by 3.7 times. The results [26] showed that thermal in-
sulation of the lightweight assembled exterior wall panel with expanded polystyrene
foam was 0.9 W/(m2·K), and the same wall panel with polystyrene particle mortar was
1.15 W/(m2·K). The experimentally obtained value of thermal conductivity resistance of
the enclosure structure from thin-wall profiles with foam concrete was 1.367 (m2·K)/W,
considering a thermal resistance of 0.783 (m2·K)/W for reinforced sections [27]. In [28],
the most useful density range of this material in energy saving was defined from 100 to
300 kg/m3.

However, there is little research on foam concrete as part of lightweight steel concrete
structures. The closest is the work [27], which considered external structures with a foam
concrete density from 440 to 624 kg/m3. Further studies are needed to determine the
thermal properties of external wall panels consisting of a steel frame filled with low-density
foam concrete.

The object of the study was a lightweight steel concrete wall panel.
This work aimed to study the thermal properties of lightweight steel concrete wall

panels under different humidity conditions: under normal operation conditions and high
moisture of the structure.

Tasks of the research:

1. Experimental determination of the thermal properties of lightweight steel concrete
wall panels under normal 5% humidity conditions.

2. Determination by the calculation method of the thermal properties of lightweight
steel concrete wall panels under high humidity conditions and a dry state based on
the experiment.

3. Experimental determination of the thermal properties of a structure under the worst
operating conditions: the presence of a horizontal field joint of two wall panels; in-
creased structure humidity; absence of a thermoprofile in the steel frame composition.

4. The same, in the presence of a vertical field joint of panels.
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2. Materials and Methods
2.1. Lightweight Steel Concrete Structures Materials

For the production of lightweight steel concrete wall panels, the following materials
were used:

1. Monolithic foam concrete with D200 density grade based on Portland cement and
foaming agent. Foam concrete manufactured by SOVBI Ltd. (Saint Petersburg, Russia).
The SOVBI technology makes it possible to obtain nonshrinking foam concrete with a
fine cellular structure that has a stable quality.

2. Sheets “Steklotsem” with thickness of 8 mm manufactured by Stroyevolyutsiya Ltd.
(Moscow, Russia).

3. Galvanized steel profiles PN (channel profile) and PSt (thermoprofile) manufactured
by Stal-Profil Ltd. (Saint Petersburg, Russia).

2.2. Research Model

The research model was represented by three specimens of lightweight steel concrete
structures. The specimens consisted of steel profiles, monolithic foam concrete with D200
density grade, and “Steklotsem” sheets, which had a fixed formwork (see Figures 1–3).

The first test specimen (see Figure 1) was used after 9 days of curing. The specimen
had dimensions of 1000 (L) × 1200 (H) × 310 (W), where L, H, and W are the width, height,
and thickness of the structure (in millimeters), respectively.
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moprofiles of the PSt type. 

Figure 1. First specimen for testing. (a) Specimen dimensions; (b) specimen photo.

The second test specimen (see Figure 2) consisted of two panels with dimensions of
1000 (L) × 600 (H) × 310 (W), where L, H, and W are the width, height, and thickness of
the structure (in millimeters), respectively. The specimen had a horizontal field joint. At the
junction of the panels, two layers of heat-insulating material Izolon as a gasket were used.

The composition of specimen No. 2 was similar to that of specimen No. 1, but
nonperforated profiles of PS type were used as a load-bearing framework instead of
thermoprofiles of the PSt type.
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The tested models were placed in the design position. Further, the TX-500 climatic 
chamber was installed on one side, and the temperature in the cold (outer) part of the 
chamber was set at −30 °C. On the opposite side, there was the second heat-moisture-
drying chamber SM 5/100–500; the temperature in the warm (inner) part of the chamber 
was set at +20 °C at a humidity of 60%. The part of the structure that did not fall into the 
screens of the chamber was insulated with heat-insulating materials to prevent the loss of 
cold and warm air from both sides of the structure. 

Figure 2. Second specimen for testing. (a) Specimen dimensions; (b) specimen photo.

The third test specimen (see Figure 3) consisted of two panels. Dimensions of
the first panel were 1000 (L) × 1200 (H) × 310 (W), and those of the second panel were
1000 (L) × 600 (H) × 310 (W), where L, H, and W are the width, height, and thickness of
the structure (in millimeters), respectively. The specimen had a vertical field joint. At the
junction of the panels, two layers of heat-insulating material Izolon were used.

The composition of sample No. 3 was identical to that of sample No. 2, except for the
dimensions of the left half-panel.
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Figure 3. Third specimen for testing. (a) Specimen dimensions; (b) specimen photo.

2.3. Methods

The input data were external temperature, internal temperature, specimen dimensions,
and climatic chambers dimensions. Output data of the study were the R-value of foam
concrete and R-value of foam concrete in the places of the field joint.

The tested models were placed in the design position. Further, the TX-500 climatic
chamber was installed on one side, and the temperature in the cold (outer) part of the
chamber was set at −30 ◦C. On the opposite side, there was the second heat-moisture-
drying chamber SM 5/100–500; the temperature in the warm (inner) part of the chamber
was set at +20 ◦C at a humidity of 60%. The part of the structure that did not fall into the
screens of the chamber was insulated with heat-insulating materials to prevent the loss of
cold and warm air from both sides of the structure.

Temperature sensors and heat flow sensors were installed on the surface of the sample.
The models were tested in chambers until the state of a steady thermal process from 1 to
4 days, depending on the type of construction.
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3. Results and Discussion
3.1. Determination of the Wall Panel Thermal Properties

Specimen No. 1 with installed heat flow and temperature sensors is shown in Figure 4.
Six sensors were used, two of which (No. 3, 5) were located on the steel part of the structures,
and four sensors (No. 1, 2, 4, 6) were located on the foam concrete part of the structures.

The purpose of the experiment was to determine the thermal resistance of the zones of
pure foam concrete and the zones of the structure part with a steel profile.
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Figure 4. Test setup for specimen No. 1.

Based on the data obtained, the most temperature-stabilized estimated time intervals
were selected, and graphs of temperature on the specimen No. 1 surface versus time and of
heat flow versus time were plotted (see Figures 5 and 6).

The apparent thermal resistance in sensors 1–5 is calculated by Formula (1):

R =
δ

λ
(1)

where λ is the thermal conductivity and δ is the wall thickness.
The thermal conductivity is calculated by Formula (2):

λ =
q·δ

T2 − T1
(2)

where T1, T2 are wall surface temperatures and q is the heat flow.
Substituting (2) into (1), we obtain

R =
T2 − T1

q
(3)

Table 1 shows the results of calculating the average apparent thermal resistance values
according to the graphs in Figures 5 and 6 using Formula (3), considering the zones of the
tested wall fragment.

The total thermal resistance calculation of an inhomogeneous enclosure structure
was carried out by determining the planes parallel to the direction of the heat flow. The
enclosing structure (or part of it) was conditionally cut into sections. Some sections could be
homogeneous (single-layer) and consist of one material, and others could be heterogeneous
and consist of different materials (see Figure 7).
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Table 1. Fragment of a monolithic wall with a thermoprofile inside.

Fragment
Zone

Inner Surface
Temperature,

T2 [◦C]

Outer Surface
Temperature,

T1 [◦C]

Heat Flow,
q [W/m2]

Apparent Thermal
Resistance,

R [m2·◦C/W]

Foam concrete
(bottom right zone) −18.9 19.6 8.71 4.414

Profile
(zone of outer panel) −22.5 19.5 16.39 2.56

Foam concrete
(top right zone) −22.7 19.6 8.80 4.801

Profile
(zone of inner panel) −22.9 19.9 26.46 1.597

Foam concrete
(top left zone) −18.5 19.6 6.70 5.689
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Table 2 shows the areas of each zone falling on the screen of the climate chamber.

Table 2. Areas of characteristic zones of the wall structure.

Zone Areas of Zone [m2]

Foam concrete zone (area above the profile) 0.29625

Profile zone 0.0375

Foam concrete zone (area below the profile) 0.39375

Total: 0.7275

The weighted average thermal resistance value Rk of the tested wall fragment is
calculated by Formula (4):

Rk =
AΣ

∑n
i=1

Ai
Ri

=
AΣ

A1
R1

+ A2
R2

+ A3
R3

=
72.75·10−2

29.625·10−2

5.245 + 3.75·10−2

2.078 + 39.375·10−2

4.414

= 4.443
(

m2·K/W
)

. (4)

The total thermal resistance of the tested wall fragment along the surface of the wall
structure RT is calculated by Formula (5):

RT = Rsi + Rk + Rse =
1

8.7
+ 4.443 +

1
23

= 4.602
(

m2·K/W
)

. (5)

Thermal transmittance (according to ISO 9869-1:2014(E)) is calculated by Formula (6):

U =
1

RT
=

1
4.602

= 0.217
(

W/m2·K
)

, (6)

where Rsi =
1

αint
and αint are heat transfer coefficients of the inner surfaces of the building

envelope, taken for walls equal to 8.7 W/m2 ◦C according to Russian State Standard
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SNIP 23-02 “Thermal performance of the buildings”; Rse =
1

αext
and αext are heat transfer

coefficients of the outer surfaces of the building envelope for cold season conditions, taken
for walls equal to 23 W/m2 ◦C according to Russian State Standard SNIP 23-101 “Thermal
performance design of buildings”.

For comparison, the required total thermal resistance of newly erected external walls
in St. Petersburg is 3.08 m2·◦C/W, which indicates good thermal insulation properties of
monolithic foam concrete.

In this case, the average coefficient of thermal conductivity of a wall fragment with a
thickness of δ = 0.310 mm is calculated by Formula (7):

λ =
δ

Rk
=

0.310
4.443

= 0.07
(

m2·C0/W
)

. (7)

It should be noted that the indicated value corresponds to the structures only at actual
humidity. In practice, it is necessary to use the thermal resistances values at the normalized
equilibrium moisture content of 5% and 8% and in a dry state.

3.2. Determination of the Reduced Total Thermal Resistance of Lightweight Steel Concrete
Structures at Different Foam Concrete Moistures
3.2.1. Determination of Foam Concrete Actual Moistures

The actual moisture content of foam concrete samples was determined according to
Russian State Standard GOST 12730.2-2020 “Concretes. Method of determination of moisture
content”. After the end of the experiment, a core with dimensions of 100 × 100 × 300 (mm)
was drilled out, weighed in a wet state and placed in a low-temperature laboratory electric
furnace SNOL 67/350, and dried at a temperature of +105 ◦C to a constant mass (after 48 h
in the chamber, the mass of the sample can be considered constant). After re-weighing, the
moisture content of the sample was calculated by Formula (8):

Wm =
mb − mc

mc
·100% =

651 − 620
620

·100% = 5%, (8)

where Wm is the sample moisture, %; mb is the sample weight before drying, g; mc is the
sample weight after drying, g.

Figure 8 shows the moisture distribution across the wall thickness.
The graph shows that the plane of maximum masonry moisture is at a distance of 2/3

of its thickness when measured from the inner surface of the test fragment.

3.2.2. Determination of the Reduced Total Thermal Resistance at Equilibrium Moisture
Content of 8%

The thermal resistance of the tested wall fragment at an equilibrium moisture of 8%,
following STB EN 1745-2008, is calculated according to Formula (9):

Rr
wi = Rr

w0 · e fw(w2−w1).

Rr
w8 = 4.443 · e4·(0.05−0.08) = 3.941

(
m2·C0/W

)
,

(9)

where fw is a coefficient adopted following STB EN 1745-2008;
w1 = 8% is equilibrium moisture;
w2 = 5% is moisture of the wall fragment during the test.
Total thermal resistance is calculated by Formula (5):

RT,8 =
1

8.7
+ 3.941 +

1
23

= 4.10
(

m2·K/W
)

.



Materials 2022, 15, 3193 9 of 15

Thermal transmittance is calculated by Formula (6):

U8 =
1

4.10
= 0.244

(
W/m2·K

)
.
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3.2.3. Determination of the Reduced Total Thermal Resistance in Dry State

The theoretical value of thermal resistance in the state at zero moisture is:

Rr
w,dry = 4.443 · e4·(0.05−0.00) = 5.427

(
m2·C0/W

)
.

The average coefficient of thermal conductivity for a dry wall fragment is:

λ =
δ

Rr
w,dry

=
0.310
5.427

= 0.057
(

m·C0/W
)

.

The theoretical value of total thermal resistance in the state at zero moisture is:

RT,dry =
1

8.7
+ 5.427 +

1
23

= 5.59
(

m2·K/W
)

.

The thermal transmittance is:

Udry =
1

5.59
= 0.179

(
W/m2·K

)
.

Next, consider the theoretical values of the reduced thermal resistance in wetting the
main heat-insulating layer—foam concrete to moisture values of 29% and 32%.

3.2.4. Determination of the Reduced Total Thermal Resistance under High-Humidity Conditions

The theoretical values of the reduced thermal resistance, total thermal resistance, and
thermal transmittance under high-humidity conditions (29% and 32%) are, respectively:

Rr
w29 = 4.443 · e4·(0.05−0.29) = 1.701

(
m2·C0/W

)
,

RT,29 =
1

8.7
+ 1.701 +

1
23

= 1.86
(

m2·K/W
)

, (10)

U29 =
1

1.86
= 0.538

(
W/m2·K

)
,

Rr
w32 = 4.443 · e4·(0.05−0.32) = 1.509

(
m2·C0/W

)
,

RT,32 =
1

8.7
+ 1.509 +

1
23

= 1.67
(

m2·K/W
)

, (11)
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U32 =
1

1.67
= 0.599

(
W/m2·K

)
These values are low, but they are only theoretical ones. Next, we consider an ex-

perimental study of the thermal resistance of samples at high humidity and prove their
performance, considering the zones of the junction of the panels.

3.3. Determination of the Thermal Properties of Structure with Horizontal Joint and under High
Humidity Conditions

Sample No. 2, which has a horizontal field joint of two wall panels with installed
thermal and temperature sensors, is shown in Figure 9. Seven sensors are used, four of
which are located at the field joint, and three sensors are located on the foam concrete.
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Based on the data obtained, the most temperature-stabilized estimated time intervals
were selected, and graphs of temperature on the specimen No. 2 surface versus time and of
heat flow versus time were plotted (see Figures 10 and 11).
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Figure 10. Temperature on the specimen No. 2 surface with time.
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Table 3 shows the results of calculating the apparent thermal resistance in sensors 1–7
using Formula (3), considering the zones of the tested wall fragment.

Table 3. Wall fragment with a horizontal field joint.

Fragment
Zone

Inner Surface
Temperature,

T2 [◦C]

Outer Surface
Temperature,

T1 [◦C]

Heat Flow,
q [W/m2]

Apparent Thermal
Resistance,

R [m2·◦C/W]

Foam concrete
(upper zone) −26.8 19.6 8.71 5.33

Profile
(zone of inner panel) −24.6 19.3 33.86 1.328

Profile
(zone of outer panel) −22.8 19.7 8.36 5.08

Foam concrete
(bottom left zone) −29.5 19.6 11.04 4.452

Foam concrete
(bottom right zone) −28.8 19.6 9.83 4.918

Table 4 shows the areas of each zone falling on the screen of the climate chamber.

Table 4. Areas of characteristic zones of the wall structure.

Zone Areas of Zone [m2]

Foam concrete zone (area above the profile) 0.39

Profile zone 0.0375

Foam concrete zone (area below the profile) 0.2775

Total: 0.705

The weighted average thermal resistance value Rk of the tested wall fragment is
calculated by Formula (4):

Rk =
70.5·10−2

39·10−2

4.879 + 3.75·10−2

1.328 + 27.75·10−2

4.879

= 4.272
(

m2·K/W
)

.

The total thermal resistance of the tested wall fragment along the surface of the wall
structure RT is calculated by Formula (5):

RT =
1

8.7
+ 4.272 +

1
23

= 4.43
(

m2·K/W
)

.
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Thermal transmittance is:

U =
1

4.43
= 0.226

(
W/m2·K

)
.

The moisture content of the sample is:

Wm =
mb − mc

mc
·100% =

647 − 455
647

·100% = 29%.

The sample moisture content of 29% does not correspond to 3–8% operating conditions.
However, the total thermal resistance value, even with increased moisture of the sample,
is quite high (2.5 times more than the theoretical (10)) and meets the requirements for
thermal protection of buildings, for example, in St. Petersburg, which indicates the actual
performance of the structure even when the foam concrete becomes wet.

3.4. Determination of the Thermal Properties of Structure with Vertical Joint and under
High-Humidity Conditions

Sample No. 3, which has a vertical field joint of two wall panels with installed thermal
and temperature sensors, is shown in Figure 12. Six sensors are used, three of which are
located at the field joint, and three sensors are located on the foam concrete.
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Based on the data obtained, the most temperature-stabilized estimated time intervals
were selected, and graphs of temperature on the specimen No. 3 surface versus time and of
heat flow versus time were plotted (see Figures 13 and 14).
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Figure 13. Temperature on the specimen No. 2 surface with time.

Table 5 shows the results of calculating the apparent thermal resistance in sensors 1–6
using Formula (3), considering the zones of the tested wall fragment.
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Table 6 shows the areas of each zone falling on the screen of the climate chamber.
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Table 5. Wall fragment with a vertical field joint.

Fragment
Zone

Inner Surface
Temperature,

T2 [◦C]

Outer Surface
Temperature,

T1 [◦C]

Heat Flow,
q [W/m2]

Apparent Thermal
Resistance,

R [m2·◦C/W]

Foam concrete
(left zone) −23.4 19.35 8.559 4.995

Profile (left zone) −25.39 18.99 40.543 1.095

Profile (right zone) −25.14 19.07 33.98 1.301

Foam concrete
(right zone) −22.72 19.38 8.267 5.093

Foam concrete
(left zone) −23.4 19.35 8.559 4.995

Table 6. Areas of characteristic zones of the wall structure.

Zone Areas of Zone [m2]

Foam concrete zone (left zone) 0.28

Profile zone 0.042

Foam concrete zone (right zone) 0.28

Total: 0.602

The weighted average thermal resistance value Rk of the tested wall fragment is
calculated by Formula (4):

Rk =
60.2·10−2

28·10−2

4.995 + 4.2·10−2

1.215 + 28·10−2

5.216

= 4.172
(

m2·K/W
)

.

The total thermal resistance of the tested wall fragment along the surface of the wall
structure RT is calculated by Formula (5):

RT =
1

8.7
+ 4.172 +

1
23

= 4.33
(

m2·K/W
)

.

Thermal transmittance is:

U =
1

4.33
= 0.231

(
W/m2·K

)
,
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The moisture content of the sample is:

Wm =
mb − mc

mc
·100% =

966 − 649
966

·100% = 32%.

The sample moisture content of 32% does not correspond to 3–8% operating conditions.
However, the total thermal resistance value, even with increased moisture of the sample,
is quite high (2.8 times more than the theoretical (11)) and meets the requirements for
thermal protection of buildings, for example, in St. Petersburg, which indicates the actual
performance of the structure even when the foam concrete becomes wet.

4. Conclusions

The thermal properties of lightweight steel concrete wall panels were studied by
experimental methods. From this research, the following conclusions can be obtained:

1. The total thermal resistance (considering thermal inhomogeneity) of the enclosing
lightweight steel concrete structure with a thickness of 310 mm using monolithic
low-density foam concrete (density grade of D200), at an equilibrium humidity of 5%
and 8%, was established by calculation based on experimental data. It was equal to
4.602 m2.0 K/W and 4.1 m2.0 K/W, respectively, which corresponds to U-values equal
to 0.217 W/m2.0 K and 0.244 W/m2.0 K, respectively.

2. In the dry state, the total thermal resistance of this structure was 5.59 m2.0 C/W, which
corresponds to a thermal conductivity coefficient of 0.057 m ◦C/W and U-value equal
to 0.179 W/m2.0 K.

3. The influence of both horizontal and vertical joints of lightweight steel concrete wall
panels and the absence of thermoprofiles on thermal properties was insignificant
when using heat-insulating gaskets.

4. The presence or absence of perforation in the steel profile of lightweight steel concrete
wall panels did not significantly affect their thermal properties.

5. The total thermal resistance (considering thermal inhomogeneity) of the considered
structure at an increased humidity of 29% and 32% was established by calculation
based on experimental data. It was equal to 4.43 m2.0 K/W and 4.33 m2.0 K/W,
respectively, which corresponds to U-values of 0.226 W/m2.0 K and 0.231 W/m2.0 K,
respectively.

6. The actual total thermal resistance of the structure was 2.5–2.8 times higher than that
obtained by calculation based on experimental data under high-humidity conditions
(29–32%). At the same time, the decrease in the value compared to the same value
at an equilibrium humidity of 5% was only 4–6%. This indicates good workability
even of a structure with high-humidity foam concrete if the reduced total thermal
resistance is complied with by the standardized one.
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